Search results for: ion torrent personal genome machine (PGM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5293

Search results for: ion torrent personal genome machine (PGM)

4393 Two Concurrent Convolution Neural Networks TC*CNN Model for Face Recognition Using Edge

Authors: T. Alghamdi, G. Alaghband

Abstract:

In this paper we develop a model that couples Two Concurrent Convolution Neural Network with different filters (TC*CNN) for face recognition and compare its performance to an existing sequential CNN (base model). We also test and compare the quality and performance of the models on three datasets with various levels of complexity (easy, moderate, and difficult) and show that for the most complex datasets, edges will produce the most accurate and efficient results. We further show that in such cases while Support Vector Machine (SVM) models are fast, they do not produce accurate results.

Keywords: Convolution Neural Network, Edges, Face Recognition , Support Vector Machine.

Procedia PDF Downloads 140
4392 Effect of Rotation Speed on Microstructure and Microhardness of AA7039 Rods Joined by Friction Welding

Authors: H. Karakoc, A. Uzun, G. Kırmızı, H. Çinici, R. Çitak

Abstract:

The main objective of this investigation was to apply friction welding for joining of AA7039 rods produced by powder metallurgy. Friction welding joints were carried out using a rotational friction welding machine. Friction welds were obtained under different rotational speeds between (2700 and 2900 rpm). The friction pressure of 10 MPa and friction time of 30 s was kept constant. The cross sections of joints were observed by optical microscopy. The microstructures were analyzed using scanning electron microscope/energy dispersive X-ray spectroscopy. The Vickers micro hardness measurement of the interface was evaluated using a micro hardness testing machine. Finally the results obtained were compared and discussed.

Keywords: Aluminum alloy, powder metallurgy, friction welding, microstructure

Procedia PDF Downloads 351
4391 Paddy/Rice Singulation for Determination of Husking Efficiency and Damage Using Machine Vision

Authors: M. Shaker, S. Minaei, M. H. Khoshtaghaza, A. Banakar, A. Jafari

Abstract:

In this study a system of machine vision and singulation was developed to separate paddy from rice and determine paddy husking and rice breakage percentages. The machine vision system consists of three main components including an imaging chamber, a digital camera, a computer equipped with image processing software. The singulation device consists of a kernel holding surface, a motor with vacuum fan, and a dimmer. For separation of paddy from rice (in the image), it was necessary to set a threshold. Therefore, some images of paddy and rice were sampled and the RGB values of the images were extracted using MATLAB software. Then mean and standard deviation of the data were determined. An Image processing algorithm was developed using MATLAB to determine paddy/rice separation and rice breakage and paddy husking percentages, using blue to red ratio. Tests showed that, a threshold of 0.75 is suitable for separating paddy from rice kernels. Results from the evaluation of the image processing algorithm showed that the accuracies obtained with the algorithm were 98.36% and 91.81% for paddy husking and rice breakage percentage, respectively. Analysis also showed that a suction of 45 mmHg to 50 mmHg yielding 81.3% separation efficiency is appropriate for operation of the kernel singulation system.

Keywords: breakage, computer vision, husking, rice kernel

Procedia PDF Downloads 361
4390 An Investigation on Smartphone-Based Machine Vision System for Inspection

Authors: They Shao Peng

Abstract:

Machine vision system for inspection is an automated technology that is normally utilized to analyze items on the production line for quality control purposes, it also can be known as an automated visual inspection (AVI) system. By applying automated visual inspection, the existence of items, defects, contaminants, flaws, and other irregularities in manufactured products can be easily detected in a short time and accurately. However, AVI systems are still inflexible and expensive due to their uniqueness for a specific task and consuming a lot of set-up time and space. With the rapid development of mobile devices, smartphones can be an alternative device for the visual system to solve the existing problems of AVI. Since the smartphone-based AVI system is still at a nascent stage, this led to the motivation to investigate the smartphone-based AVI system. This study is aimed to provide a low-cost AVI system with high efficiency and flexibility. In this project, the object detection models, which are You Only Look Once (YOLO) model and Single Shot MultiBox Detector (SSD) model, are trained, evaluated, and integrated with the smartphone and webcam devices. The performance of the smartphone-based AVI is compared with the webcam-based AVI according to the precision and inference time in this study. Additionally, a mobile application is developed which allows users to implement real-time object detection and object detection from image storage.

Keywords: automated visual inspection, deep learning, machine vision, mobile application

Procedia PDF Downloads 111
4389 A Double Differential Chaos Shift Keying Scheme for Ultra-Wideband Chaotic Communication Technology Applied in Low-Rate Wireless Personal Area Network

Authors: Ghobad Gorji, Hasan Golabi

Abstract:

The goal of this paper is to describe the design of an ultra-wideband (UWB) system that is optimized for the low-rate wireless personal area network application. To this aim, we propose a system based on direct chaotic communication (DCC) technology. Based on this system, a 2-GHz wide chaotic signal is directly generated into the lower band of the UWB spectrum, i.e., 3.1–5.1 GHz. For this system, two simple modulation schemes, namely chaotic on-off keying (COOK) and differential chaos shift keying (DCSK), were studied before, and their performance was evaluated. We propose a modulation scheme, namely Double DCSK, to improve the performance of UWB DCC. Different characteristics of these systems, with Monte Carlo simulations based on the Additive White Gaussian Noise (AWGN) and the IEEE 802.15.4a standard channel models, are compared.

Keywords: UWB, DCC, IEEE 802.15.4a, COOK, DCSK

Procedia PDF Downloads 61
4388 Runtime Monitoring Using Policy-Based Approach to Control Information Flow for Mobile Apps

Authors: Mohamed Sarrab, Hadj Bourdoucen

Abstract:

Mobile applications are verified to check the correctness or evaluated to check the performance with respect to specific security properties such as availability, integrity, and confidentiality. Where they are made available to the end users of the mobile application is achievable only to a limited degree using software engineering static verification techniques. The more sensitive the information, such as credit card data, personal medical information or personal emails being processed by mobile application, the more important it is to ensure the confidentiality of this information. Monitoring non-trusted mobile application during execution in an environment where sensitive information is present is difficult and unnerving. The paper addresses the issue of monitoring and controlling the flow of confidential information during non-trusted mobile application execution. The approach concentrates on providing a dynamic and usable information security solution by interacting with the mobile users during the run-time of mobile application in response to information flow events.

Keywords: mobile application, run-time verification, usable security, direct information flow

Procedia PDF Downloads 367
4387 The Optimum Mel-Frequency Cepstral Coefficients (MFCCs) Contribution to Iranian Traditional Music Genre Classification by Instrumental Features

Authors: M. Abbasi Layegh, S. Haghipour, K. Athari, R. Khosravi, M. Tafkikialamdari

Abstract:

An approach to find the optimum mel-frequency cepstral coefficients (MFCCs) for the Radif of Mirzâ Ábdollâh, which is the principal emblem and the heart of Persian music, performed by most famous Iranian masters on two Iranian stringed instruments ‘Tar’ and ‘Setar’ is proposed. While investigating the variance of MFCC for each record in themusic database of 1500 gushe of the repertoire belonging to 12 modal systems (dastgâh and âvâz), we have applied the Fuzzy C-Mean clustering algorithm on each of the 12 coefficient and different combinations of those coefficients. We have applied the same experiment while increasing the number of coefficients but the clustering accuracy remained the same. Therefore, we can conclude that the first 7 MFCCs (V-7MFCC) are enough for classification of The Radif of Mirzâ Ábdollâh. Classical machine learning algorithms such as MLP neural networks, K-Nearest Neighbors (KNN), Gaussian Mixture Model (GMM), Hidden Markov Model (HMM) and Support Vector Machine (SVM) have been employed. Finally, it can be realized that SVM shows a better performance in this study.

Keywords: radif of Mirzâ Ábdollâh, Gushe, mel frequency cepstral coefficients, fuzzy c-mean clustering algorithm, k-nearest neighbors (KNN), gaussian mixture model (GMM), hidden markov model (HMM), support vector machine (SVM)

Procedia PDF Downloads 431
4386 Predicting the Product Life Cycle of Songs on Radio - How Record Labels Can Manage Product Portfolio and Prioritise Artists by Using Machine Learning Techniques

Authors: Claus N. Holm, Oliver F. Grooss, Robert A. Alphinas

Abstract:

This research strives to predict the remaining product life cycle of a song on radio after it has been played for one or two months. The best results were achieved using a k-d tree to calculate the most similar songs to the test songs and use a Random Forest model to forecast radio plays. An 82.78% and 83.44% accuracy is achieved for the two time periods, respectively. This explorative research leads to over 4500 test metrics to find the best combination of models and pre-processing techniques. Other algorithms tested are KNN, MLP and CNN. The features only consist of daily radio plays and use no musical features.

Keywords: hit song science, product life cycle, machine learning, radio

Procedia PDF Downloads 141
4385 Encounters with the Other Sisters of the Past: the Role of Colonial History and Memory in the Adjustment of the Postcolonial Female Identity

Authors: Fatiha Kaïd Berrahal, Nassima Kaïd, Djihad Affaf Selt

Abstract:

The present paper is a comparative analysis of the Algerian writer Assia Djebar’s women of Algiers in Their Apartment (1982) and the Anglo-Egyptian Ahdaf Soueif’s The Map of Love (1999) foregrounded on the female protagonists’ painfully common colonial and patriarchal experiences, though in different geographical regions of North Africa. This study raises questions pertaining, first, to the emerging contemporary genre “Historiographic meta-fiction” in which the novels examined could be inscribed, then, the interplay of colonial history and personal memory that impinges on the development of the identity of the post-colonial female subject. As the novels alternate between the historical and the autobiographical, we currently seek to understand how it is pertinent and pressing for women to excavate the lost and occluded stories of the past for the adjustment of their present personal identities, which are undoubtedly an important part of the identity of a nation.

Keywords: postcolonial feminism, islamic feminism, memory, histoirographic metafiction

Procedia PDF Downloads 632
4384 Psychological Aspects of Quality of Life in Patients with Primary and Metastatic Bone Tumors

Authors: O. Yu Shchelkova, E. B. Usmanova

Abstract:

Introduction: Last decades scientific research of quality of life (QoL) is developing fast worldwide. QoL concept pays attention to emotional experience of disease in patients, particularly to personal sense of possibility to satisfy actual needs and possibility of full social functioning in spite of disease limitations. QoL in oncological patients is studied intensively. Nevertheless, the issue of QoL in patients with bone tumors focused on psychological factors of QoL and relation to disease impact on QoL is not discussed. The aim of the study was to reveal the basic aspects and personality factors of QoL in patients with bone tumor. Results: Study participants were 139 patients with bone tumors. The diagnoses were osteosarcoma (n=42), giant cell tumor (n=32), chondrosarcoma (n=32), Ewing sarcoma (n=10) and bone metastases (n=23). The study revealed that patients with bone metastases assess their health significantly worse than other patients. Besides patients with osteosarcoma evaluate their general health higher than patients with giant cell tumors. Social functioning in patients with chondrosarcoma is higher than in patients with bone metastases and patients with giant cell tumor. Patients with chondrosarcoma have higher physical functioning and less restricted in daily activities than patients with bone metastases. Patients with bone metastases characterize their pain as more widespread than patients with primary bone tumors and have more functional restrictions due to bone incision. Moreover, the study revealed personality significant influence on QoL related to bone tumors. Such characteristics in structure of personality as high degree of self-consciousness, personal resources, cooperation and disposition to positive reappraisal in difficult situation correspond to higher QoL. Otherwise low personal resources and slight problem solving behaviour, low degree of self-consciousness and high social dependence correspond to decrease of QoL in patients with bone tumors. Conclusion: Patients with bone metastasis have lower QoL compared to patients with primary bone tumors. Patients with giant cell tumor have the worth quality of life among patients with primary bone tumors. Furthermore, the results revealed differences in QoL parameters associated with personality characteristics in patients with bone tumors. Such psychological factors as future goals, interest in life and emotional saturation, besides high degree of personal resources and cooperation influence on increasing QoL in patients with bone tumors.

Keywords: quality of life, psychological factors, bone tumor, personality

Procedia PDF Downloads 128
4383 Multilayer Perceptron Neural Network for Rainfall-Water Level Modeling

Authors: Thohidul Islam, Md. Hamidul Haque, Robin Kumar Biswas

Abstract:

Floods are one of the deadliest natural disasters which are very complex to model; however, machine learning is opening the door for more reliable and accurate flood prediction. In this research, a multilayer perceptron neural network (MLP) is developed to model the rainfall-water level relation, in a subtropical monsoon climatic region of the Bangladesh-India border. Our experiments show promising empirical results to forecast the water level for 1 day lead time. Our best performing MLP model achieves 98.7% coefficient of determination with lower model complexity which surpasses previously reported results on similar forecasting problems.

Keywords: flood forecasting, machine learning, multilayer perceptron network, regression

Procedia PDF Downloads 160
4382 Elitism: Navigating Professional Diversity Barriers

Authors: Rachel Nir, Tina Mckee

Abstract:

In the UK, reliance has been placed on the professions to ‘heal themselves’ in improving equality and diversity. This approach has faltered, in part due to the global economic climate, and stimulus is needed to make faster equality progress. Recent empirical evidence has identified specific diversity barriers, namely: the cost of training; the use of high school grades as a primary selection criteria; the significance of prior work experience in recruitment decisions; and recruitment from elite universities. Students from majority groups and affluent backgrounds are advantaged over their counterparts. We as educators are passionate about resisting this. We believe that education can be a key agent of change. As part of this belief, the presenters have recently designed learning and teaching materials for the 2015/16 academic year. These are aimed at undergraduate law students for the purpose of 1) educating them on career barriers; 2) helping them to develop personal strategies to overcome them; and 3) encouraging them to address their own biases, both conscious and implicit, so that they, themselves, may be fairer employers and managers in the future.

Keywords: career barriers, challenging professional bias, education, elitism, personal student strategies

Procedia PDF Downloads 225
4381 A Novel Harmonic Compensation Algorithm for High Speed Drives

Authors: Lakdar Sadi-Haddad

Abstract:

The past few years study of very high speed electrical drives have seen a resurgence of interest. An inventory of the number of scientific papers and patents dealing with the subject makes it relevant. In fact democratization of magnetic bearing technology is at the origin of recent developments in high speed applications. These machines have as main advantage a much higher power density than the state of the art. Nevertheless particular attention should be paid to the design of the inverter as well as control and command. Surface mounted permanent magnet synchronous machine is the most appropriate technology to address high speed issues. However, it has the drawback of using a carbon sleeve to contain magnets that could tear because of the centrifugal forces generated in rotor periphery. Carbon fiber is well known for its mechanical properties but it has poor heat conduction. It results in a very bad evacuation of eddy current losses induce in the magnets by time and space stator harmonics. The three-phase inverter is the main harmonic source causing eddy currents in the magnets. In high speed applications such harmonics are harmful because on the one hand the characteristic impedance is very low and on the other hand the ratio between the switching frequency and that of the fundamental is much lower than that of the state of the art. To minimize the impact of these harmonics a first lever is to use strategy of modulation producing low harmonic distortion while the second is to introduce a sinus filter between the inverter and the machine to smooth voltage and current waveforms applied to the machine. Nevertheless, in very high speed machine the interaction of the processes mentioned above may introduce particular harmonics that can irreversibly damage the system: harmonics at the resonant frequency, harmonics at the shaft mode frequency, subharmonics etc. Some studies address these issues but treat these phenomena with separate solutions (specific strategy of modulation, active damping methods ...). The purpose of this paper is to present a complete new active harmonic compensation algorithm based on an improvement of the standard vector control as a global solution to all these issues. This presentation will be based on a complete theoretical analysis of the processes leading to the generation of such undesired harmonics. Then a state of the art of available solutions will be provided before developing the content of a new active harmonic compensation algorithm. The study will be completed by a validation study using simulations and practical case on a high speed machine.

Keywords: active harmonic compensation, eddy current losses, high speed machine

Procedia PDF Downloads 384
4380 High Frequency Rotary Transformer Used in Synchronous Motor/Generator of Flywheel Energy Storage System

Authors: J. Lu, H. Li, F. Cole

Abstract:

This paper proposes a high-frequency rotary transformer (HFRT) for a separately excited synchronous machine (SESM) used in a flywheel energy storage system. The SESM can eliminate and reduce rare earth permanent magnet (REPM) usage and provide a better performance in renewable energy systems. However, the major drawback of such SESM is the necessity of brushes and slip rings to supply the field current, which increases the maintenance cost and operation reliability. To overcome these problems, an HFRT integrated with SiC semiconductor devices can replace brushes and slip rings in the SESM. The proposed HFRT features a high-frequency magnetic ferrite for both the stationary part as the transformer primary and the rotating part as the transformer secondary, as well as an air gap, allowing safe operation at high rotational speeds. Hence, this rotary transformer can enable the adoption of a wound rotor synchronous machine (WRSM). The HFRT, working at over 100kHz operating frequency, exhibits excellent performance of power efficiency and significant size reduction. The experimental validations to support the theoretical findings have been provided.

Keywords: brushes and slip rings, flywheel energy storage, high frequency rotary transformer, separately excited synchronous machine

Procedia PDF Downloads 7
4379 A Case Study on Machine Learning-Based Project Performance Forecasting for an Urban Road Reconstruction Project

Authors: Soheila Sadeghi

Abstract:

In construction projects, predicting project performance metrics accurately is essential for effective management and successful delivery. However, conventional methods often depend on fixed baseline plans, disregarding the evolving nature of project progress and external influences. To address this issue, we introduce a distinct approach based on machine learning to forecast key performance indicators, such as cost variance and earned value, for each Work Breakdown Structure (WBS) category within an urban road reconstruction project. Our proposed model leverages time series forecasting techniques, namely Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term Memory (LSTM) networks, to predict future performance by analyzing historical data and project progress. Additionally, the model incorporates external factors, including weather patterns and resource availability, as features to improve forecast accuracy. By harnessing the predictive capabilities of machine learning, our performance forecasting model enables project managers to proactively identify potential deviations from the baseline plan and take timely corrective measures. To validate the effectiveness of the proposed approach, we conduct a case study on an urban road reconstruction project, comparing the model's predictions with actual project performance data. The outcomes of this research contribute to the advancement of project management practices in the construction industry by providing a data-driven solution for enhancing project performance monitoring and control.

Keywords: project performance forecasting, machine learning, time series forecasting, cost variance, schedule variance, earned value management

Procedia PDF Downloads 22
4378 Regulating Issues concerning Data Protection in Cloud Computing: Developing a Saudi Approach

Authors: Jumana Majdi Qutub

Abstract:

Rationale: Cloud computing has rapidly developed the past few years. Because of the importance of providing protection for personal data used in cloud computing, the role of data protection in promoting trust and confidence in users’ data has become an important policy priority. This research examines key regulatory challenges rose by the growing use and importance of cloud computing with focusing on protection of individuals personal data. Methodology: Describing and analyzing governance challenges facing policymakers and industry in Saudi Arabia, with an account of anticipated governance responses. The aim of the research is to describe and define the regulatory challenges on cloud computing for policy making in Saudi Arabia and comparing it with potential complied issues rose in respect of transported data to EU member state. In addition, it discusses information privacy issues. Finally, the research proposes policy recommendation that would resolve concerns surrounds the privacy and effectiveness of clouds computing frameworks for data protection. Results: There are still no clear regulation in Saudi Arabia specialized in legalizing cloud computing and specialty regulations in transferring data internationally and locally. Decision makers need to review the applicable law in Saudi Arabia that protect information in cloud computing. This should be from an international and a local view in order to identify all requirements surrounding this area. It is important to educate cloud computing users about their information value and rights before putting it in the cloud to avoid further legal complications, such as making an educational program to prevent giving personal information to a bank employee. Therefore, with many kinds of cloud computing services, it is important to have it covered by the law in all aspects.

Keywords: cloud computing, cyber crime, data protection, privacy

Procedia PDF Downloads 245
4377 An Implementation Direct Torque Control Strategy of Induction Machine Using DSPACE TMS 320F2812

Authors: Hamid Chaikhy, Mouna Essaadi, Aziz El Afia

Abstract:

This paper presents an experimental implementation of a new direct torque control strategy of induction machine called twelve sectors direct torque control strategy (12_DTC) using DSPACE TMS 320F2812.The aim of this work is to give an experimental performance analysis of 12_DTC in term of torque, currents distortions and stator flux, to validate simulation results obtained in previous works.

Keywords: 12_DTC, DSPACE TMS 320F2812 torque, stator flux, currents distortions, experimental performance analysis

Procedia PDF Downloads 379
4376 Quality Evaluation of Backfill Grout in Tunnel Boring Machine Tail Void Using Impact-Echo (IE): Short-Time Fourier Transform (STFT) Numerical Analysis

Authors: Ju-Young Choi, Ki-Il Song, Kyoung-Yul Kim

Abstract:

During Tunnel Boring Machine (TBM) tunnel excavation, backfill grout should be injected after the installation of segment lining to ensure the stability of the tunnel and to minimize ground deformation. If grouting is not sufficient to fill the gap between the segments and rock mass, hydraulic pressures occur in the void, which can negatively influence the stability of the tunnel. Recently the tendency to use TBM tunnelling method to replace the drill and blast(NATM) method is increasing. However, there are only a few studies of evaluation of backfill grout. This study evaluates the TBM tunnel backfill state using Impact-Echo(IE). 3-layers, segment-grout-rock mass, are simulated by FLAC 2D, FDM-based software. The signals obtained from numerical analysis and IE test are analyzed by Short-Time Fourier Transform(STFT) in time domain, frequency domain, and time-frequency domain. The result of this study can be used to evaluate the quality of backfill grouting in tail void.

Keywords: tunnel boring machine, backfill grout, impact-echo method, time-frequency domain analysis, finite difference method

Procedia PDF Downloads 252
4375 Modeling and Analysis of DFIG Based Wind Power System Using Instantaneous Power Components

Authors: Jaimala Ghambir, Tilak Thakur, Puneet Chawla

Abstract:

As per the statistical data, the Doubly-fed Induction Generator (DFIG) based wind turbine with variable speed and variable pitch control is the most common wind turbine in the growing wind market. This machine is usually used on the grid connected wind energy conversion system to satisfy grid code requirements such as grid stability, fault ride through (FRT), power quality improvement, grid synchronization and power control etc. Though the requirements are not fulfilled directly by the machine, the control strategy is used in both the stator as well as rotor side along with power electronic converters to fulfil the requirements stated above. To satisfy the grid code requirements of wind turbine, usually grid side converter is playing a major role. So in order to improve the operation capacity of wind turbine under critical situation, the intensive study of both machine side converter control and grid side converter control is necessary In this paper DFIG is modeled using power components as variables and the performance of the DFIG system is analysed under grid voltage fluctuations. The voltage fluctuations are made by lowering and raising the voltage values in the utility grid intentionally for the purpose of simulation keeping in view of different grid disturbances.

Keywords: DFIG, dynamic modeling, DPC, sag, swell, voltage fluctuations, FRT

Procedia PDF Downloads 453
4374 Decision Support System for Diagnosis of Breast Cancer

Authors: Oluwaponmile D. Alao

Abstract:

In this paper, two models have been developed to ascertain the best network needed for diagnosis of breast cancer. Breast cancer has been a disease that required the attention of the medical practitioner. Experience has shown that misdiagnose of the disease has been a major challenge in the medical field. Therefore, designing a system with adequate performance for will help in making diagnosis of the disease faster and accurate. In this paper, two models: backpropagation neural network and support vector machine has been developed. The performance obtained is also compared with other previously obtained algorithms to ascertain the best algorithms.

Keywords: breast cancer, data mining, neural network, support vector machine

Procedia PDF Downloads 327
4373 Uncertainty Evaluation of Erosion Volume Measurement Using Coordinate Measuring Machine

Authors: Mohamed Dhouibi, Bogdan Stirbu, Chabotier André, Marc Pirlot

Abstract:

Internal barrel wear is a major factor affecting the performance of small caliber guns in their different life phases. Wear analysis is, therefore, a very important process for understanding how wear occurs, where it takes place, and how it spreads with the aim on improving the accuracy and effectiveness of small caliber weapons. This paper discusses the measurement and analysis of combustion chamber wear for a small-caliber gun using a Coordinate Measuring Machine (CMM). Initially, two different NATO small caliber guns: 5.56x45mm and 7.62x51mm, are considered. A Micura Zeiss Coordinate Measuring Machine (CMM) equipped with the VAST XTR gold high-end sensor is used to measure the inner profile of the two guns every 300-shot cycle. The CMM parameters, such us (i) the measuring force, (ii) the measured points, (iii) the time of masking, and (iv) the scanning velocity, are investigated. In order to ensure minimum measurement error, a statistical analysis is adopted to select the reliable CMM parameters combination. Next, two measurement strategies are developed to capture the shape and the volume of each gun chamber. Thus, a task-specific measurement uncertainty (TSMU) analysis is carried out for each measurement plan. Different approaches of TSMU evaluation have been proposed in the literature. This paper discusses two different techniques. The first is the substitution method described in ISO 15530 part 3. This approach is based on the use of calibrated workpieces with similar shape and size as the measured part. The second is the Monte Carlo simulation method presented in ISO 15530 part 4. Uncertainty evaluation software (UES), also known as the Virtual Coordinate Measuring Machine (VCMM), is utilized in this technique to perform a point-by-point simulation of the measurements. To conclude, a comparison between both approaches is performed. Finally, the results of the measurements are verified through calibrated gauges of several dimensions specially designed for the two barrels. On this basis, an experimental database is developed for further analysis aiming to quantify the relationship between the volume of wear and the muzzle velocity of small caliber guns.

Keywords: coordinate measuring machine, measurement uncertainty, erosion and wear volume, small caliber guns

Procedia PDF Downloads 138
4372 A Method to Saturation Modeling of Synchronous Machines in d-q Axes

Authors: Mohamed Arbi Khlifi, Badr M. Alshammari

Abstract:

This paper discusses the general methods to saturation in the steady-state, two axis (d & q) frame models of synchronous machines. In particular, the important role of the magnetic coupling between the d-q axes (cross-magnetizing phenomenon), is demonstrated. For that purpose, distinct methods of saturation modeling of dumper synchronous machine with cross-saturation are identified, and detailed models synthesis in d-q axes. A number of models are given in the final developed form. The procedure and the novel models are verified by a critical application to prove the validity of the method and the equivalence between all developed models is reported. Advantages of some of the models over the existing ones and their applicability are discussed.

Keywords: cross-magnetizing, models synthesis, synchronous machine, saturated modeling, state-space vectors

Procedia PDF Downloads 438
4371 Forward Conditional Restricted Boltzmann Machines for the Generation of Music

Authors: Johan Loeckx, Joeri Bultheel

Abstract:

Recently, the application of deep learning to music has gained popularity. Its true potential, however, has been largely unexplored. In this paper, a new idea for representing the dynamic behavior of music is proposed. A ”forward” conditional RBM takes into account not only preceding but also future samples during training. Though this may sound controversial at first sight, it will be shown that it makes sense from a musical and neuro-cognitive perspective. The model is applied to reconstruct music based upon the first notes and to improvise in the musical style of a composer. Different to expectations, reconstruction accuracy with respect to a regular CRBM with the same order, was not significantly improved. More research is needed to test the performance on unseen data.

Keywords: deep learning, restricted boltzmann machine, music generation, conditional restricted boltzmann machine (CRBM)

Procedia PDF Downloads 513
4370 Modeling and Implementation of a Hierarchical Safety Controller for Human Machine Collaboration

Authors: Damtew Samson Zerihun

Abstract:

This paper primarily describes the concept of a hierarchical safety control (HSC) in discrete manufacturing to up-hold productivity with human intervention and machine failures using a systematic approach, through increasing the system availability and using additional knowledge on machines so as to improve the human machine collaboration (HMC). It also highlights the implemented PLC safety algorithm, in applying this generic concept to a concrete pro-duction line using a lab demonstrator called FATIE (Factory Automation Test and Integration Environment). Furthermore, the paper describes a model and provide a systematic representation of human-machine collabora-tion in discrete manufacturing and to this end, the Hierarchical Safety Control concept is proposed. This offers a ge-neric description of human-machine collaboration based on Finite State Machines (FSM) that can be applied to vari-ous discrete manufacturing lines instead of using ad-hoc solutions for each line. With its reusability, flexibility, and extendibility, the Hierarchical Safety Control scheme allows upholding productivity while maintaining safety with reduced engineering effort compared to existing solutions. The approach to the solution begins with a successful partitioning of different zones around the Integrated Manufacturing System (IMS), which are defined by operator tasks and the risk assessment, used to describe the location of the human operator and thus to identify the related po-tential hazards and trigger the corresponding safety functions to mitigate it. This includes selective reduced speed zones and stop zones, and in addition with the hierarchical safety control scheme and advanced safety functions such as safe standstill and safe reduced speed are used to achieve the main goals in improving the safe Human Ma-chine Collaboration and increasing the productivity. In a sample scenarios, It is shown that an increase of productivity in the order of 2.5% is already possible with a hi-erarchical safety control, which consequently under a given assumptions, a total sum of 213 € could be saved for each intervention, compared to a protective stop reaction. Thereby the loss is reduced by 22.8%, if occasional haz-ard can be refined in a hierarchical way. Furthermore, production downtime due to temporary unavailability of safety devices can be avoided with safety failover that can save millions per year. Moreover, the paper highlights the proof of the development, implementation and application of the concept on the lab demonstrator (FATIE), where it is realized on the new safety PLCs, Drive Units, HMI as well as Safety devices in addition to the main components of the IMS.

Keywords: discrete automation, hierarchical safety controller, human machine collaboration, programmable logical controller

Procedia PDF Downloads 362
4369 Improving Fake News Detection Using K-means and Support Vector Machine Approaches

Authors: Kasra Majbouri Yazdi, Adel Majbouri Yazdi, Saeid Khodayi, Jingyu Hou, Wanlei Zhou, Saeed Saedy

Abstract:

Fake news and false information are big challenges of all types of media, especially social media. There is a lot of false information, fake likes, views and duplicated accounts as big social networks such as Facebook and Twitter admitted. Most information appearing on social media is doubtful and in some cases misleading. They need to be detected as soon as possible to avoid a negative impact on society. The dimensions of the fake news datasets are growing rapidly, so to obtain a better result of detecting false information with less computation time and complexity, the dimensions need to be reduced. One of the best techniques of reducing data size is using feature selection method. The aim of this technique is to choose a feature subset from the original set to improve the classification performance. In this paper, a feature selection method is proposed with the integration of K-means clustering and Support Vector Machine (SVM) approaches which work in four steps. First, the similarities between all features are calculated. Then, features are divided into several clusters. Next, the final feature set is selected from all clusters, and finally, fake news is classified based on the final feature subset using the SVM method. The proposed method was evaluated by comparing its performance with other state-of-the-art methods on several specific benchmark datasets and the outcome showed a better classification of false information for our work. The detection performance was improved in two aspects. On the one hand, the detection runtime process decreased, and on the other hand, the classification accuracy increased because of the elimination of redundant features and the reduction of datasets dimensions.

Keywords: clustering, fake news detection, feature selection, machine learning, social media, support vector machine

Procedia PDF Downloads 161
4368 Predicting Match Outcomes in Team Sport via Machine Learning: Evidence from National Basketball Association

Authors: Jacky Liu

Abstract:

This paper develops a team sports outcome prediction system with potential for wide-ranging applications across various disciplines. Despite significant advancements in predictive analytics, existing studies in sports outcome predictions possess considerable limitations, including insufficient feature engineering and underutilization of advanced machine learning techniques, among others. To address these issues, we extend the Sports Cross Industry Standard Process for Data Mining (SRP-CRISP-DM) framework and propose a unique, comprehensive predictive system, using National Basketball Association (NBA) data as an example to test this extended framework. Our approach follows a holistic methodology in feature engineering, employing both Time Series and Non-Time Series Data, as well as conducting Explanatory Data Analysis and Feature Selection. Furthermore, we contribute to the discourse on target variable choice in team sports outcome prediction, asserting that point spread prediction yields higher profits as opposed to game-winner predictions. Using machine learning algorithms, particularly XGBoost, results in a significant improvement in predictive accuracy of team sports outcomes. Applied to point spread betting strategies, it offers an astounding annual return of approximately 900% on an initial investment of $100. Our findings not only contribute to academic literature, but have critical practical implications for sports betting. Our study advances the understanding of team sports outcome prediction a burgeoning are in complex system predictions and pave the way for potential profitability and more informed decision making in sports betting markets.

Keywords: machine learning, team sports, game outcome prediction, sports betting, profits simulation

Procedia PDF Downloads 83
4367 Towards Developing a Self-Explanatory Scheduling System Based on a Hybrid Approach

Authors: Jian Zheng, Yoshiyasu Takahashi, Yuichi Kobayashi, Tatsuhiro Sato

Abstract:

In the study, we present a conceptual framework for developing a scheduling system that can generate self-explanatory and easy-understanding schedules. To this end, a user interface is conceived to help planners record factors that are considered crucial in scheduling, as well as internal and external sources relating to such factors. A hybrid approach combining machine learning and constraint programming is developed to generate schedules and the corresponding factors, and accordingly display them on the user interface. Effects of the proposed system on scheduling are discussed, and it is expected that scheduling efficiency and system understandability will be improved, compared with previous scheduling systems.

Keywords: constraint programming, factors considered in scheduling, machine learning, scheduling system

Procedia PDF Downloads 308
4366 Development of an Automatic Computational Machine Learning Pipeline to Process Confocal Fluorescence Images for Virtual Cell Generation

Authors: Miguel Contreras, David Long, Will Bachman

Abstract:

Background: Microscopy plays a central role in cell and developmental biology. In particular, fluorescence microscopy can be used to visualize specific cellular components and subsequently quantify their morphology through development of virtual-cell models for study of effects of mechanical forces on cells. However, there are challenges with these imaging experiments, which can make it difficult to quantify cell morphology: inconsistent results, time-consuming and potentially costly protocols, and limitation on number of labels due to spectral overlap. To address these challenges, the objective of this project is to develop an automatic computational machine learning pipeline to predict cellular components morphology for virtual-cell generation based on fluorescence cell membrane confocal z-stacks. Methods: Registered confocal z-stacks of nuclei and cell membrane of endothelial cells, consisting of 20 images each, were obtained from fluorescence confocal microscopy and normalized through software pipeline for each image to have a mean pixel intensity value of 0.5. An open source machine learning algorithm, originally developed to predict fluorescence labels on unlabeled transmitted light microscopy cell images, was trained using this set of normalized z-stacks on a single CPU machine. Through transfer learning, the algorithm used knowledge acquired from its previous training sessions to learn the new task. Once trained, the algorithm was used to predict morphology of nuclei using normalized cell membrane fluorescence images as input. Predictions were compared to the ground truth fluorescence nuclei images. Results: After one week of training, using one cell membrane z-stack (20 images) and corresponding nuclei label, results showed qualitatively good predictions on training set. The algorithm was able to accurately predict nuclei locations as well as shape when fed only fluorescence membrane images. Similar training sessions with improved membrane image quality, including clear lining and shape of the membrane, clearly showing the boundaries of each cell, proportionally improved nuclei predictions, reducing errors relative to ground truth. Discussion: These results show the potential of pre-trained machine learning algorithms to predict cell morphology using relatively small amounts of data and training time, eliminating the need of using multiple labels in immunofluorescence experiments. With further training, the algorithm is expected to predict different labels (e.g., focal-adhesion sites, cytoskeleton), which can be added to the automatic machine learning pipeline for direct input into Principal Component Analysis (PCA) for generation of virtual-cell mechanical models.

Keywords: cell morphology prediction, computational machine learning, fluorescence microscopy, virtual-cell models

Procedia PDF Downloads 192
4365 Comprehensive Review of Adversarial Machine Learning in PDF Malware

Authors: Preston Nabors, Nasseh Tabrizi

Abstract:

Portable Document Format (PDF) files have gained significant popularity for sharing and distributing documents due to their universal compatibility. However, the widespread use of PDF files has made them attractive targets for cybercriminals, who exploit vulnerabilities to deliver malware and compromise the security of end-user systems. This paper reviews notable contributions in PDF malware detection, including static, dynamic, signature-based, and hybrid analysis. It presents a comprehensive examination of PDF malware detection techniques, focusing on the emerging threat of adversarial sampling and the need for robust defense mechanisms. The paper highlights the vulnerability of machine learning classifiers to evasion attacks. It explores adversarial sampling techniques in PDF malware detection to produce mimicry and reverse mimicry evasion attacks, which aim to bypass detection systems. Improvements for future research are identified, including accessible methods, applying adversarial sampling techniques to malicious payloads, evaluating other models, evaluating the importance of features to malware, implementing adversarial defense techniques, and conducting comprehensive examination across various scenarios. By addressing these opportunities, researchers can enhance PDF malware detection and develop more resilient defense mechanisms against adversarial attacks.

Keywords: adversarial attacks, adversarial defense, adversarial machine learning, intrusion detection, PDF malware, malware detection, malware detection evasion

Procedia PDF Downloads 27
4364 On the Use of Machine Learning for Tamper Detection

Authors: Basel Halak, Christian Hall, Syed Abdul Father, Nelson Chow Wai Kit, Ruwaydah Widaad Raymode

Abstract:

The attack surface on computing devices is becoming very sophisticated, driven by the sheer increase of interconnected devices, reaching 50B in 2025, which makes it easier for adversaries to have direct access and perform well-known physical attacks. The impact of increased security vulnerability of electronic systems is exacerbated for devices that are part of the critical infrastructure or those used in military applications, where the likelihood of being targeted is very high. This continuously evolving landscape of security threats calls for a new generation of defense methods that are equally effective and adaptive. This paper proposes an intelligent defense mechanism to protect from physical tampering, it consists of a tamper detection system enhanced with machine learning capabilities, which allows it to recognize normal operating conditions, classify known physical attacks and identify new types of malicious behaviors. A prototype of the proposed system has been implemented, and its functionality has been successfully verified for two types of normal operating conditions and further four forms of physical attacks. In addition, a systematic threat modeling analysis and security validation was carried out, which indicated the proposed solution provides better protection against including information leakage, loss of data, and disruption of operation.

Keywords: anti-tamper, hardware, machine learning, physical security, embedded devices, ioT

Procedia PDF Downloads 138