Search results for: audit of accounts
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 909

Search results for: audit of accounts

9 Cultivation of Halophytes: Effect of Salinity on Nutritional and Functional Properties

Authors: Luisa Barreira, Viana Castaneda, Maria J. Rodrigues, Florinda Gama, Tamara Santos, Marta Oliveira, Catarina Pereira, Maribela Pestana, Pedro Correia, Miguel Salazar, Carla Nunes, Luisa Custodio, Joao Varela

Abstract:

In the last century, the world witnessed an exponential demographic increase that has put an enormous pressure on agriculture and food production. Associated also with climate changes, there has been a decrease in the amount of available freshwater and an increased salinization of soils which can affect the production of most food crops. Halophytes, however, are plants able to withstand high salinities while maintaining a good growth productivity. To cope with the excess salt, they produce secondary metabolites (e.g. vitamins and phenolic compounds) which, along with the natural presence of some minerals, makes them not only nutritionally rich but also functional foods. Some halophytes, as quinoa or salicornia, are already used in some countries, mostly as gourmet food. Hydroponic cultivation of halophytes using seawater or diluted seawater for watering can decrease the pressure on freshwater resources while producing a nutritional and functional food. The XtremeGourmet project funded by the EU aims to develop and optimize the production of different halophytes by hydroponics. One of the more specific objectives of this project is the study of halophytes’ productivity and chemical composition under different abiotic conditions, e.g. salt and nutrient concentration and light intensity. Three species of halophytes commonly occurring in saltmarshes of the South of Portugal (Inula chrithmoides, Salicornia ramosissima and Mesembryanthemum nodiflorum) were cultivated using hydroponics under different salinities, ranging from 5 to 45 dS/m. For each condition, several parameters were assessed namely: total and commercial productivity, electrical conductivity, total soluble solids, proximal composition, mineral profile, total phenolics, flavonoids and condensed tannins content and antioxidant activity. Results show that productivity was significantly reduced for all plants with increasing salinity up to salinity 29 dS/m and remained low onwards. Oppositely, the electrical conductivity and the total soluble solids content of the produced plants increased with salinity, reaching a plateau at 29 dS/m. It seems that plants reflect the salt concentration of the water up to some point, being able to regulate their salt content for higher salinities. The same tendency was observed for the ash content of these plants, which is related to the mineral uptake from the cultivating media and the plants’ capacity to both accumulate and regulate ions’ concentration in their tissues. Nonetheless, this comes with a metabolic cost which is observed by a decrease in productivity. The mineral profile of these plants shows high concentrations of sodium but also high amounts of potassium. In what concerns the microelements, these plants appear to be a good source of manganese and iron and the low amounts of toxic metals account for their safe consumption in moderate amounts. Concerning the phenolics composition, plants presented moderate concentrations of phenolics but high amounts of condensed tannins, particularly I. crithmoides which accounts for its characteristic sour and spicy taste. Contrary to some studies in which higher amounts of phenolics were found in plants cultivated under higher salinities, in this study, the highest amount of phenolic compounds were found in plants grown at the lowest or intermediate salinities. Nonetheless, there was a positive correlation between the concentration of these compounds and the antioxidant capacity of the plants’ extracts.

Keywords: functional properties, halophytes, hydroponics, nutritional composition, salinity effect

Procedia PDF Downloads 270
8 Case Study about Women Driving in Saudi Arabia Announced in 2018: Netnographic and Data Mining Study

Authors: Majdah Alnefaie

Abstract:

The ‘netnographic study’ and data mining have been used to monitor the public interaction on Social Media Sites (SMSs) to understand what the motivational factors influence the Saudi intentions regarding allowing women driving in Saudi Arabia in 2018. The netnographic study monitored the publics’ textual and visual communications in Twitter, Snapchat, and YouTube. SMSs users’ communications method is also known as electronic word of mouth (eWOM). Netnography methodology is still in its initial stages as it depends on manual extraction, reading and classification of SMSs users text. On the other hand, data mining is come from the computer and physical sciences background, therefore it is much harder to extract meaning from unstructured qualitative data. In addition, the new development in data mining software does not support the Arabic text, especially local slang in Saudi Arabia. Therefore, collaborations between social and computer scientists such as ‘netnographic study’ and data mining will enhance the efficiency of this study methodology leading to comprehensive research outcome. The eWOM communications between individuals on SMSs can promote a sense that sharing their preferences and experiences regarding politics and social government regulations is a part of their daily life, highlighting the importance of using SMSs as assistance in promoting participation in political and social. Therefore, public interactions on SMSs are important tools to comprehend people’s intentions regarding the new government regulations in the country. This study aims to answer this question, "What factors influence the Saudi Arabians' intentions of Saudi female's car-driving in 2018". The study utilized qualitative method known as netnographic study. The study used R studio to collect and analyses 27000 Saudi users’ comments from 25th May until 25th June 2018. The study has developed data collection model that support importing and analysing the Arabic text in the local slang. The data collection model in this study has been clustered based on different type of social networks, gender and the study main factors. The social network analysis was employed to collect comments from SMSs owned by governments’ originations, celebrities, vloggers, social activist and news SMSs accounts. The comments were collected from both males and females SMSs users. The sentiment analysis shows that the total number of positive comments Saudi females car driving was higher than negative comments. The data have provided the most important factors influenced the Saudi Arabians’ intention of Saudi females car driving including, culture and environment, freedom of choice, equal opportunities, security and safety. The most interesting finding indicted that women driving would play a role in increasing the individual freedom of choice. Saudi female will be able to drive cars to fulfill her daily life and family needs without being stressed due to the lack of transportation. The study outcome will help Saudi government to improve woman quality of life by increasing the ability to find more jobs and studies, increasing income through decreasing the spending on transport means such as taxi and having more freedom of choice in woman daily life needs. The study enhances the importance of using use marketing research to measure the public opinions on the new government regulations in the country. The study has explained the limitations and suggestions for future research.

Keywords: netnographic study, data mining, social media, Saudi Arabia, female driving

Procedia PDF Downloads 155
7 Internet of Assets: A Blockchain-Inspired Academic Program

Authors: Benjamin Arazi

Abstract:

Blockchain is the technology behind cryptocurrencies like Bitcoin. It revolutionizes the meaning of trust in the sense of offering total reliability without relying on any central entity that controls or supervises the system. The Wall Street Journal states: “Blockchain Marks the Next Step in the Internet’s Evolution”. Blockchain was listed as #1 in Linkedin – The Learning Blog “most in-demand hard skills needed in 2020”. As stated there: “Blockchain’s novel way to store, validate, authorize, and move data across the internet has evolved to securely store and send any digital asset”. GSMA, a leading Telco organization of mobile communications operators, declared that “Blockchain has the potential to be for value what the Internet has been for information”. Motivated by these seminal observations, this paper presents the foundations of a Blockchain-based “Internet of Assets” academic program that joins under one roof leading application areas that are characterized by the transfer of assets over communication lines. Two such areas, which are pillars of our economy, are Fintech – Financial Technology and mobile communications services. The next application in line is Healthcare. These challenges are met based on available extensive professional literature. Blockchain-based assets communication is based on extending the principle of Bitcoin, starting with the basic question: If digital money that travels across the universe can ‘prove its own validity’, can this principle be applied to digital content. A groundbreaking positive answer here led to the concept of “smart contract” and consequently to DLT - Distributed Ledger Technology, where the word ‘distributed’ relates to the non-existence of reliable central entities or trusted third parties. The terms Blockchain and DLT are frequently used interchangeably in various application areas. The World Bank Group compiled comprehensive reports, analyzing the contribution of DLT/Blockchain to Fintech. The European Central Bank and Bank of Japan are engaged in Project Stella, “Balancing confidentiality and auditability in a distributed ledger environment”. 130 DLT/Blockchain focused Fintech startups are now operating in Switzerland. Blockchain impact on mobile communications services is treated in detail by leading organizations. The TM Forum is a global industry association in the telecom industry, with over 850 member companies, mainly mobile operators, that generate US$2 trillion in revenue and serve five billion customers across 180 countries. From their perspective: “Blockchain is considered one of the digital economy’s most disruptive technologies”. Samples of Blockchain contributions to Fintech (taken from a World Bank document): Decentralization and disintermediation; Greater transparency and easier auditability; Automation & programmability; Immutability & verifiability; Gains in speed and efficiency; Cost reductions; Enhanced cyber security resilience. Samples of Blockchain contributions to the Telco industry. Establishing identity verification; Record of transactions for easy cost settlement; Automatic triggering of roaming contract which enables near-instantaneous charging and reduction in roaming fraud; Decentralized roaming agreements; Settling accounts per costs incurred in accordance with agreement tariffs. This clearly demonstrates an academic education structure where fundamental technologies are studied in classes together with these two application areas. Advanced courses, treating specific implementations then follow separately. All are under the roof of “Internet of Assets”.

Keywords: blockchain, education, financial technology, mobile telecommunications services

Procedia PDF Downloads 180
6 Recurrent Torsades de Pointes Post Direct Current Cardioversion for Atrial Fibrillation with Rapid Ventricular Response

Authors: Taikchan Lildar, Ayesha Samad, Suraj Sookhu

Abstract:

Atrial fibrillation with rapid ventricular response results in the loss of atrial kick and shortened ventricular filling time, which often leads to decompensated heart failure. Pharmacologic rhythm control is the treatment of choice, and patients frequently benefit from the restoration of sinus rhythm. When pharmacologic treatment is unsuccessful or a patient declines hemodynamically, direct cardioversion is the treatment of choice. Torsades de pointes or “twisting of the points'' in French, is a rare but under-appreciated risk of cardioversion therapy and accounts for a significant number of sudden cardiac death each year. A 61-year-old female with no significant past medical history presented to the Emergency Department with worsening dyspnea. An electrocardiogram showed atrial fibrillation with rapid ventricular response, and a chest X-ray was significant for bilateral pulmonary vascular congestion. Full-dose anticoagulation and diuresis were initiated with moderate improvement in symptoms. A transthoracic echocardiogram revealed biventricular systolic dysfunction with a left ventricular ejection fraction of 30%. After consultation with an electrophysiologist, the consensus was to proceed with the restoration of sinus rhythm, which would likely improve the patient’s heart failure symptoms and possibly the ejection fraction. A transesophageal echocardiogram was negative for left atrial appendage thrombus; the patient was treated with a loading dose of amiodarone and underwent successful direct current cardioversion with 200 Joules. The patient was placed on telemetry monitoring for 24 hours and was noted to have frequent premature ventricular contractions with subsequent degeneration to torsades de pointes. The patient was found unresponsive and pulseless; cardiopulmonary resuscitation was initiated with cardioversion, and return of spontaneous circulation was achieved after four minutes to normal sinus rhythm. Post-cardiac arrest electrocardiogram showed sinus bradycardia with heart-rate corrected QT interval of 592 milliseconds. The patient continued to have frequent premature ventricular contractions and required two additional cardioversions to achieve a return of spontaneous circulation with intravenous magnesium and lidocaine. An automatic implantable cardioverter-defibrillator was subsequently implanted for secondary prevention of sudden cardiac death. The backup pacing rate of the automatic implantable cardioverter-defibrillator was set higher than usual in an attempt to prevent premature ventricular contractions-induced torsades de pointes. The patient did not have any further ventricular arrhythmias after implantation of the automatic implantable cardioverter-defibrillator. Overdrive pacing is a method utilized to treat premature ventricular contractions-induced torsades de pointes by preventing a patient’s susceptibility to R on T-wave-induced ventricular arrhythmias. Pacing at a rate of 90 beats per minute succeeded in controlling the arrhythmia without the need for traumatic cardiac defibrillation. In our patient, conversion of atrial fibrillation with rapid ventricular response to normal sinus rhythm resulted in a slower heart rate and an increased probability of premature ventricular contraction occurring on the T-wave and ensuing ventricular arrhythmia. This case highlights direct current cardioversion for atrial fibrillation with rapid ventricular response resulting in persistent ventricular arrhythmia requiring an automatic implantable cardioverter-defibrillator placement with overdrive pacing to prevent a recurrence.

Keywords: refractory atrial fibrillation, atrial fibrillation, overdrive pacing, torsades de pointes

Procedia PDF Downloads 149
5 Optimized Marketing of Bidirectional Charging Capacities for Commercial Freight Transport

Authors: Luzie Krings

Abstract:

The electrification of the transport sector is increasingly recognized as a vital strategy for decarbonization. However, integrating electric vehicles (EVs) into the energy grid poses challenges due to decentralized power units and the intermittent nature of renewable energy sources. Vehicle-to-grid (V2G) technology offers a compelling solution by enabling EVs to function as mobile storage units, providing system services, reducing grid congestion, and offering economic incentives. This potential is particularly significant in freight transport, which accounts for 38% of transport-related emissions. The aggregated use of energy storage in this sector can facilitate grid stability and renewable energy integration. Despite this, existing optimization methods for energy markets frequently overlook operational constraints, such as fixed schedules and state-of-charge requirements, while redispatch markets remain underutilized. This study introduces a risk-averse optimization model for marketing EV flexibilities across multiple energy markets in Germany. Using a linear optimization framework, the model incorporates technical, regulatory, and user constraints. EVs are modeled as energy storage units, and the integration of renewable energy sources, such as photovoltaic (PV) and wind energy, is evaluated. To benchmark performance, unidirectional charging with dynamic tariffs is used as the reference scenario. The research examines four distinct logistics depot fleets, each with varying capacities and schedules, to simulate commercial EV operations. The methodology employs a multi-market optimization model that integrates Day-Ahead, Intraday, and Redispatch energy markets, each with specific trading conditions and temporal offsets. The tool, developed using the Python-based library energy pilot by Fraunhofer IEE, also explores scenarios where proprietary renewable energy sources are incorporated to maximize benefits. By accounting for charging schedules, market requirements, and technical constraints, the study aims to enhance grid stability and improve economic outcomes and integration of renewable energies. The findings highlight the economic, environmental, and grid-related advantages of optimizing EV flexibility. Compared to the reference scenario of unidirectional charging, bidirectional strategies delivered an approximate economic benefit of 20%. Furthermore, the integration of proprietary renewable energy sources increased by 15%, demonstrating the potential for environmental gains. The study revealed that the duration of a single charging cycle has a greater impact on economic benefits than the total daily charging time spread across multiple cycles. This underscores the marketing potential of vehicles with extended idle times rather than frequent charging cycles. In conclusion, optimizing energy trading through flexible EV portfolios and efficient charging infrastructure offers substantial cost savings, particularly by increasing the number of charging stations and extending charging cycle durations. By leveraging multiple marketing options, high investment costs can be offset through enhanced revenues. Further gains could be achieved by simultaneously optimizing all trading options, though this approach introduces risks from price volatility and unreliable redispatch capacities. As electrified trucks are modeled as energy storage units, the study's findings are applicable to other forms of energy storage, offering a scalable and transferable framework for future energy systems.

Keywords: electric vehicles, energy markets, energy storage, energy grid

Procedia PDF Downloads 14
4 Microbes at Work: An Assessment on the Use of Microbial Inoculants in Reforestation and Rehabilitation of the Forest Ancestral Land of Magbukun Aytas of Morong, Bataan, Philippines

Authors: Harold M. Carag, April Charmaine D. Camacho, Girlie Nora A. Abrigo, Florencia G. Palis, Ma. Larissa Lelu P. Gata

Abstract:

A technology impact assessment on the use of microbial inoculants in the reforestation and rehabilitation of forest ancestral lands of the Magbukün Aytas in Morong, Bataan was conducted. This two-year rainforestation technology aimed to determine the optimum condition for the improvement of seedling survival rate in the nursery and in the field to hasten the process of forest regeneration of Magbukün Ayta’s ancestral land. A combination of qualitative methods (key informant interviews, focus groups and participant observation), participated by the farmers who were directly involved in the project, community men and women, the council of elders and the project staff, was employed to complete this impact assessment. The recorded data were transcribed, and the accounts were broadly categorized on the following aspects: social (gender, institutional, anthropological), economic and environmental. The Australian Center for International Agricultural Research (ACIAR) framework was primarily used for the impact analysis while the Harvard Analytical Framework was specifically used for the gender impact analysis. Through this technology, a wildling nursery with more than one thousand seedlings was successfully established and served as a good area for the healthy growth of seedlings that would be planted in the forest. Results showed that this technology affected positively and negatively the various gender roles present in the community although household work remained to be the women’s responsibility. The technology introduced directly added up to the workload done by the men and women (preparing and applying fertilizer, making pots etc.) but this, in turn, provided ways to increase their sources of livelihood. The gender roles that were already present were further strengthened after the project and men remained to be in control. The technology or project in turn also benefited from the already present roles since they no longer have to assign things to them, the execution of the various roles was smoothly executed. In the anthropological aspect, their assigned task to manage the nursery was an easy responsibility because of their deep connection to the environment and their fear and beliefs on ‘engkato’ and ‘anito’ was helpful in guarding the forest. As the cultural value of these trees increases, their mindset of safeguarding the forest also heightens. Meanwhile, the welfare of the whole tribe is the ultimate determinant of the swift entry of projects. The past institutions brought ephemeral reliefs on the subsistence of the Magbukün Aytas. These were good ‘conditioning’ factors for the adoption of the technology of the project. As an attempt to turn away from the dependent of harmful chemical, the project’s way of introducing organic inputs was slowly gaining popularity in the community. Economically, the project was able to provide additional income to the farmers. However, the slow mode of payment dismayed other farmers and abandoned their roles. Lastly, major environmental effects weren’t that much observed after the application of the technology. The minor effects concentrated more on the improved conditions of the soil and water in the community. Because of the introduced technology, soil conditions became more favorable specifically for the species that were planted. The organic fertilizers used were in turn not harmful for the residents living in Sitio Kanawan. There were no human diseases caused by the technology. The conservation of the biodiversity of the forest is clearly the most evident long-term result of the project.

Keywords: ancestral lands, impact assessment, microbial inculants, reforestation

Procedia PDF Downloads 143
3 Employee Engagement

Authors: Jai Bakliya, Palak Dhamecha

Abstract:

Today customer satisfaction is given utmost priority be it any industry. But when it comes to hospitality industry this applies even more as they come in direct contact with customers while providing them services. Employee engagement is new concept adopted by Human Resource Department which impacts customer satisfactions. To satisfy your customers, it is necessary to see that the employees in the organisation are satisfied and engaged enough in their work that they meet the company’s expectations and contribute in the process of achieving company’s goals and objectives. After all employees is human capital of the organisation. Employee engagement has become a top business priority for every organisation. In this fast moving economy, business leaders know that having a potential and high-performing human resource is important for growth and survival. They recognize that a highly engaged manpower can increase innovation, productivity, and performance, while reducing costs related to retention and hiring in highly competitive talent markets. But while most executives see a clear need to improve employee engagement, many have yet to develop tangible ways to measure and tackle this goal. Employee Engagement is an approach which is applied to establish an emotional connection between an employee and the organisation which ensures the employee’s commitment towards his work which affects the productivity and overall performance of the organisation. The study was conducted in hospitality industry. A popular branded hotel was chosen as a sample unit. Data were collected, both qualitative and quantitative from respondents. It is found that employee engagement level of the organisation (Hotel) is quite low. This means that employees are not emotionally connected with the organisation which may in turn, affect performance of the employees it is important to note that in hospitality industry individual employee’s performance specifically in terms of emotional engagement is critical and, therefore, a low engagement level may contribute to low organisation performance. An attempt to this study was made to identify employee engagement level. Another objective to take this study was to explore the factors impeding employee engagement and to explore employee engagement facilitation. While in the hospitality industry where people tend to work for as long as 16 to 18 hours concepts like employee engagement is essential. Because employees get tired of their routine job and in case where job rotation cannot be done employee engagement acts as a solution. The study was conducted at Trident Hotel, Udaipur. It was conducted on the sample size of 30 in-house employees from 6 different departments. The various departments were: Accounts and General, Front Office, Food & Beverage Service, Housekeeping, Food & Beverage Production and Engineering. It was conducted with the help of research instrument. The research instrument was Questionnaire. Data collection source was primary source. Trident Udaipur is one of the busiest hotels in Udaipur. The occupancy rate of the guest over there is nearly 80%. Due the high occupancy rate employees or staff of the hotel used to remain very busy and occupied all the time in their work. They worked for their remuneration only. As a result, they do not have any encouragement for their work nor they are interested in going an extra mile for the organisation. The study result shows working environment factors including recognition and appreciation, opinions of the employee, counselling, feedback from superiors, treatment of managers and respect from the organisation are capable of increasing employee engagement level in the hotel. The above study result encouraged us to explore the factors contributed to low employee engagement. It is being found that factors such as recognition and appreciation, feedback from supervisors, opinion of the employee, counselling, feedback from supervisors, treatment from managers has contributed negatively to employee engagement level. Probable reasons for the low contribution are number of employees gave the negative feedback in accordance to the factors stated above of the organisation. It seems that the structure of organisation itself is responsible for the low contribution of employee engagement. The scope of this study is limited to trident hotel situated in the Udaipur. The limitation of the study was that that the results or findings were only based on the responses of respondents of Trident, Udaipur. And so the recommendations were also applicable in Trident, Udaipur and not to all the like organisations across the country. Through the data collected was further analysed, interpreted and concluded. On the basis of the findings, suggestions were provided to the hotel for improvisation.

Keywords: human resource, employee engagement, research, study

Procedia PDF Downloads 308
2 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications

Authors: Atish Bagchi, Siva Chandrasekaran

Abstract:

Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.

Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning

Procedia PDF Downloads 150
1 Detailed Degradation-Based Model for Solid Oxide Fuel Cells Long-Term Performance

Authors: Mina Naeini, Thomas A. Adams II

Abstract:

Solid Oxide Fuel Cells (SOFCs) feature high electrical efficiency and generate substantial amounts of waste heat that make them suitable for integrated community energy systems (ICEs). By harvesting and distributing the waste heat through hot water pipelines, SOFCs can meet thermal demand of the communities. Therefore, they can replace traditional gas boilers and reduce greenhouse gas (GHG) emissions. Despite these advantages of SOFCs over competing power generation units, this technology has not been successfully commercialized in large-scale to replace traditional generators in ICEs. One reason is that SOFC performance deteriorates over long-term operation, which makes it difficult to find the proper sizing of the cells for a particular ICE system. In order to find the optimal sizing and operating conditions of SOFCs in a community, a proper knowledge of degradation mechanisms and effects of operating conditions on SOFCs long-time performance is required. The simplified SOFC models that exist in the current literature usually do not provide realistic results since they usually underestimate rate of performance drop by making too many assumptions or generalizations. In addition, some of these models have been obtained from experimental data by curve-fitting methods. Although these models are valid for the range of operating conditions in which experiments were conducted, they cannot be generalized to other conditions and so have limited use for most ICEs. In the present study, a general, detailed degradation-based model is proposed that predicts the performance of conventional SOFCs over a long period of time at different operating conditions. Conventional SOFCs are composed of Yttria Stabilized Zirconia (YSZ) as electrolyte, Ni-cermet anodes, and LaSr₁₋ₓMnₓO₃ (LSM) cathodes. The following degradation processes are considered in this model: oxidation and coarsening of nickel particles in the Ni-cermet anodes, changes in the pore radius in anode, electrolyte, and anode electrical conductivity degradation, and sulfur poisoning of the anode compartment. This model helps decision makers discover the optimal sizing and operation of the cells for a stable, efficient performance with the fewest assumptions. It is suitable for a wide variety of applications. Sulfur contamination of the anode compartment is an important cause of performance drop in cells supplied with hydrocarbon-based fuel sources. H₂S, which is often added to hydrocarbon fuels as an odorant, can diminish catalytic behavior of Ni-based anodes by lowering their electrochemical activity and hydrocarbon conversion properties. Therefore, the existing models in the literature for H₂-supplied SOFCs cannot be applied to hydrocarbon-fueled SOFCs as they only account for the electrochemical activity reduction. A regression model is developed in the current work for sulfur contamination of the SOFCs fed with hydrocarbon fuel sources. The model is developed as a function of current density and H₂S concentration in the fuel. To the best of authors' knowledge, it is the first model that accounts for impact of current density on sulfur poisoning of cells supplied with hydrocarbon-based fuels. Proposed model has wide validity over a range of parameters and is consistent across multiple studies by different independent groups. Simulations using the degradation-based model illustrated that SOFCs voltage drops significantly in the first 1500 hours of operation. After that, cells exhibit a slower degradation rate. The present analysis allowed us to discover the reason for various degradation rate values reported in literature for conventional SOFCs. In fact, the reason why literature reports very different degradation rates, is that literature is inconsistent in definition of how degradation rate is calculated. In the literature, the degradation rate has been calculated as the slope of voltage versus time plot with the unit of voltage drop percentage per 1000 hours operation. Due to the nonlinear profile of voltage over time, degradation rate magnitude depends on the magnitude of time steps selected to calculate the curve's slope. To avoid this issue, instantaneous rate of performance drop is used in the present work. According to a sensitivity analysis, the current density has the highest impact on degradation rate compared to other operating factors, while temperature and hydrogen partial pressure affect SOFCs performance less. The findings demonstrated that a cell running at lower current density performs better in long-term in terms of total average energy delivered per year, even though initially it generates less power than if it had a higher current density. This is because of the dominant and devastating impact of large current densities on the long-term performance of SOFCs, as explained by the model.

Keywords: degradation rate, long-term performance, optimal operation, solid oxide fuel cells, SOFCs

Procedia PDF Downloads 133