Search results for: travel demand management
12697 Analysis of Travel Behavior Patterns of Frequent Passengers after the Section Shutdown of Urban Rail Transit - Taking the Huaqiao Section of Shanghai Metro Line 11 Shutdown During the COVID-19 Epidemic as an Example
Authors: Hongyun Li, Zhibin Jiang
Abstract:
The travel of passengers in the urban rail transit network is influenced by changes in network structure and operational status, and the response of individual travel preferences to these changes also varies. Firstly, the influence of the suspension of urban rail transit line sections on passenger travel along the line is analyzed. Secondly, passenger travel trajectories containing multi-dimensional semantics are described based on network UD data. Next, passenger panel data based on spatio-temporal sequences is constructed to achieve frequent passenger clustering. Then, the Graph Convolutional Network (GCN) is used to model and identify the changes in travel modes of different types of frequent passengers. Finally, taking Shanghai Metro Line 11 as an example, the travel behavior patterns of frequent passengers after the Huaqiao section shutdown during the COVID-19 epidemic are analyzed. The results showed that after the section shutdown, most passengers would transfer to the nearest Anting station for boarding, while some passengers would transfer to other stations for boarding or cancel their travels directly. Among the passengers who transferred to Anting station for boarding, most of passengers maintained the original normalized travel mode, a small number of passengers waited for a few days before transferring to Anting station for boarding, and only a few number of passengers stopped traveling at Anting station or transferred to other stations after a few days of boarding on Anting station. The results can provide a basis for understanding urban rail transit passenger travel patterns and improving the accuracy of passenger flow prediction in abnormal operation scenarios.Keywords: urban rail transit, section shutdown, frequent passenger, travel behavior pattern
Procedia PDF Downloads 8412696 Urban Sustainability and Sustainable Mobility, Lessons Learned from the Case of Chile
Authors: Jorge Urrutia-Mosquera, Luz Flórez-Calderón, Yasna Cortés
Abstract:
We assessed the state of progress in terms of urban sustainability indicators and studied the impact of current land use conditions and the level of spatial accessibility to basic urban amenities on travel patterns and sustainable mobility in Santiago de Chile. We determined the spatial impact of urban facilities on sustainable travel patterns through the statistical analysis, data visualisation, and weighted regression models. The results show a need to diversify land use in more than 60% of the communes, although in 85% of the communes, accessibility to public spaces is guaranteed. The findings also suggest improving access to early education facilities, as only 26% of the communes meet the sustainability standard, negatively impacting travel in sustainable modes. It is also observed that the level of access to urban facilities generates spatial heterogeneity in the city, which negatively affects travel patterns in terms of time over 60 minutes and modes of travel in private vehicles. The results obtained allow us to identify opportunities for public policy intervention to promote and adopt sustainable mobility.Keywords: land use, urban sustainability, travel patterns, spatial heterogeneity, GWR model, sustainable mobility
Procedia PDF Downloads 8012695 Exploring the Travel Preferences of Generation Z: A Look into the Next Generation of Tourists
Authors: M. Panidou, F. Kilipiris, E. Christou, K. Alexandris
Abstract:
This study focuses on Generation Z, the next generation of tourists born between 1996 and 2012. Given their significant population size, Generation Z is expected to have a substantial impact on the travel and tourism sector. Therefore, understanding their travel preferences is crucial for businesses in the hospitality and tourism industry. By examining their travel preferences, this research aims to identify the unique characteristics and motivations of this generation when it comes to travel. This study used a quantitative method, and primary data was collected through a survey (online questionnaire), while secondary data was gathered from academic literature, industry reports, and online sources to provide a comprehensive analysis of the topic. The sample of the study was 100 Greek individuals aged between 18-26 years old. The data was analyzed with the support of SPSS software. The findings of the research indicated that technology, sustainability, and budget-friendly options are essential components for attracting and retaining Generation Z tourists. These preferences highlight the importance of incorporating innovative technologies, promoting sustainable practices, and offering affordable travel options to effectively engage this market niche. This research contributes to the field of hospitality and tourism businesses by providing valuable insights into the travel preferences of Generation Z. By understanding their distinct features and preferences; businesses can tailor their strategies and marketing efforts to effectively engage and retain this market segment. Considering the limitations of the sample size, future studies could aim for a larger and more diverse sample to enhance the generalizability of the findings.Keywords: gen Z, technology, travel preferences, sustainability
Procedia PDF Downloads 8512694 Ethiopia as a Tourist Destination: An Exploration of Italian Tourists’ Market Demand
Authors: Frezer Okubay Weldegebriel
Abstract:
The tourism sector in Ethiopia plays a significant role in the national economy. The government is granting its pledge and readiness to develop this sector through various initiatives since to eradicate poverty and encourage economic development of the country is one of the Millennium Development plans. The tourism sector has been identified as one of the priority economic sectors by many countries, and the Government of Ethiopia has planned to make Ethiopia among the top five African destinations by 2020. Nevertheless, the international tourism demand for Ethiopia currently lags behind other African countries such as South Africa, Egypt, Morocco, Tanzania, and Kenya. Meanwhile, the number of international tourists’ arrival in Ethiopia is recently increasing even if it cannot be competitive with other African countries. Therefore, to offer demand-driven tourism products, the Ethiopian government, Tourism planners, Tour & Travel operators need to understand the important factors, which affect international tourists’ decision to visit Ethiopian destinations. This study was intended to analyze Italian Tourists Demand towards Ethiopian destination. The researcher aimed to identify the demand for Italian tourists’ preference to Ethiopian destinations comparing to the top East African countries. This study uses both qualitative and quantitative research methodology, and the data is manipulating through primary data collection method using questionnaires, interviews, and secondary data by reviewing books, journals, magazines, past researches, and websites. An active and potential Italian tourist cohort, five well-functioning tour operators based in Ethiopia for Italian tourists and professionals from Ethiopian Ministry of Tourism and Culture participated. Based on the analysis of the data collected through the questionnaire, interviews, and reviews of different materials, the study disclosed that the majority of Italian tourists have a high demand on Ethiopian Tourist destination. Historical and cultural interest, safety and security, the hospitality of the people and affordable accommodation coast are the main reason for them. However, some Italian tourists prefer to visit Kenya, Tanzania, and Uganda due to the fact that they are fascinated by adventure, safari and beaches, while Ethiopia cannot provide these attractions. Most Italian tourists have little information and practical experiences on Ethiopian tourism possibilities via a tour and travel companies. Moreover, the insufficient marketing campaign and promotion by Ethiopian Government and Ministry of Tourism could also contribute to the failure of Ethiopian tourism.Keywords: The demand of Italian tourists, Ethiopia economy, Ethiopia tourism destination, promoting Ethiopia tourism
Procedia PDF Downloads 20612693 Exploring the Spatial Relationship between Built Environment and Ride-hailing Demand: Applying Street-Level Images
Authors: Jingjue Bao, Ye Li, Yujie Qi
Abstract:
The explosive growth of ride-hailing has reshaped residents' travel behavior and plays a crucial role in urban mobility within the built environment. Contributing to the research of the spatial variation of ride-hailing demand and its relationship to the built environment and socioeconomic factors, this study utilizes multi-source data from Haikou, China, to construct a Multi-scale Geographically Weighted Regression model (MGWR), considering spatial scale heterogeneity. The regression results showed that MGWR model was demonstrated superior interpretability and reliability with an improvement of 3.4% on R2 and from 4853 to 4787 on AIC, compared with Geographically Weighted Regression model (GWR). Furthermore, to precisely identify the surrounding environment of sampling point, DeepLabv3+ model is employed to segment street-level images. Features extracted from these images are incorporated as variables in the regression model, further enhancing its rationality and accuracy by 7.78% improvement on R2 compared with the MGWR model only considered region-level variables. By integrating multi-scale geospatial data and utilizing advanced computer vision techniques, this study provides a comprehensive understanding of the spatial dynamics between ride-hailing demand and the urban built environment. The insights gained from this research are expected to contribute significantly to urban transportation planning and policy making, as well as ride-hailing platforms, facilitating the development of more efficient and effective mobility solutions in modern cities.Keywords: travel behavior, ride-hailing, spatial relationship, built environment, street-level image
Procedia PDF Downloads 7912692 Shared Versus Pooled Automated Vehicles: Exploring Behavioral Intentions Towards On-Demand Automated Vehicles
Authors: Samira Hamiditehrani
Abstract:
Automated vehicles (AVs) are emerging technologies that could potentially offer a wide range of opportunities and challenges for the transportation sector. The advent of AV technology has also resulted in new business models in shared mobility services where many ride hailing and car sharing companies are developing on-demand AVs including shared automated vehicles (SAVs) and pooled automated vehicles (Pooled AVs). SAVs and Pooled AVs could provide alternative shared mobility services which encourage sustainable transport systems, mitigate traffic congestion, and reduce automobile dependency. However, the success of on-demand AVs in addressing major transportation policy issues depends on whether and how the public adopts them as regular travel modes. To identify conditions under which individuals may adopt on-demand AVs, previous studies have applied human behavior and technology acceptance theories, where Theory of Planned Behavior (TPB) has been validated and is among the most tested in on-demand AV research. In this respect, this study has three objectives: (a) to propose and validate a theoretical model for behavioral intention to use SAVs and Pooled AVs by extending the original TPB model; (b) to identify the characteristics of early adopters of SAVs, who prefer to have a shorter and private ride, versus prospective users of Pooled AVs, who choose more affordable but longer and shared trips; and (c) to investigate Canadians’ intentions to adopt on-demand AVs for regular trips. Toward this end, this study uses data from an online survey (n = 3,622) of workers or adult students (18 to 75 years old) conducted in October and November 2021 for six major Canadian metropolitan areas: Toronto, Vancouver, Ottawa, Montreal, Calgary, and Hamilton. To accomplish the goals of this study, a base bivariate ordered probit model, in which both SAV and Pooled AV adoptions are estimated as ordered dependent variables, alongside a full structural equation modeling (SEM) system are estimated. The findings of this study indicate that affective motivations such as attitude towards AV technology, perceived privacy, and subjective norms, matter more than sociodemographic and travel behavior characteristic in adopting on-demand AVs. Also, the results of second objective provide evidence that although there are a few affective motivations, such as subjective norms and having ample knowledge, that are common between early adopters of SAVs and PooledAVs, many examined motivations differ among SAV and Pooled AV adoption factors. In other words, motivations influencing intention to use on-demand AVs differ among the service types. Likewise, depending on the types of on-demand AVs, the sociodemographic characteristics of early adopters differ significantly. In general, findings paint a complex picture with respect to the application of constructs from common technology adoption models to the study of on-demand AVs. Findings from the final objective suggest that policymakers, planners, the vehicle and technology industries, and the public at large should moderate their expectations that on-demand AVs may suddenly transform the entire transportation sector. Instead, this study suggests that SAVs and Pooled AVs (when they entire the Canadian market) are likely to be adopted as supplementary mobility tools rather than substitutions for current travel modesKeywords: automated vehicles, Canadian perception, theory of planned behavior, on-demand AVs
Procedia PDF Downloads 7212691 The Research of Culture Heritage Tourism Loyalty in Taiwan
Authors: Chih-Wen Wu
Abstract:
This study examines the antecedents of heritage tourism loyalty and its relation to destination image, consumer travel experience, and destination satisfaction in the tourism context. In this respect, a number of important questions concerning how destination image, consumer travel experience, and destination satisfaction impact destination loyalty are raised. This study attempts to identify three key antecedents of loyalty in the heritage context. The author empirically tests predicted relationships by using personal interview data from 475 foreign tourists. The conceptual model investigated the relevant relationships among the constructs by using confirmatory factor analysis(CFA) and structural equation modeling (SEM) approach. Findings from the research sample support the argument that destination image, consumer travel experience, destination satisfaction are the key determinants of destination loyalty. Destination image and consumer travel experience influence destination satisfaction. The author also discusses theoretical and managerial implications of research findings for marketing the heritage globally.Keywords: heritage, destination loyalty, destination image, consumer travel experience, destination satisfaction, tourism
Procedia PDF Downloads 44212690 Micro-Transformation Strategy Of Residential Transportation Space Based On The Demand Of Residents: Taking A Residential District In Wuhan, China As An Example
Abstract:
With the acceleration of urbanization and motorization in China, the scale of cities and the travel distance of residents are constantly expanding, and the number of cars is continuously increasing, so the urban traffic problem is more and more serious. Traffic congestion, environmental pollution, energy consumption, travel safety and direct interference between traffic and other urban activities are increasingly prominent problems brought about by motorized development. This not only has a serious impact on the lives of the residents but also has a major impact on the healthy development of the city. The paper found that, in order to solve the development of motorization, a number of problems will arise; urban planning and traffic planning and design in residential planning often take into account the development of motorized traffic but neglects the demand for street life. This kind of planning has resulted in the destruction of the traditional communication space of the residential area, the pollution of noise and exhaust gas, and the potential safety risks of the residential area, which has disturbed the previously quiet and comfortable life of the residential area, resulting in the inconvenience of residents' life and the loss of street vitality. Based on these facts, this paper takes a residential area in Wuhan as the research object, through the actual investigation and research, from the perspective of micro-transformation analysis, combined with the concept of traffic micro-reconstruction governance. And research puts forward the residential traffic optimization strategies such as strengthening the interaction and connection between the residential area and the urban street system, street traffic classification and organization.Keywords: micro-transformation, residential traffic, residents demand, traffic microcirculation
Procedia PDF Downloads 11412689 Special Case of Trip Distribution Model and Its Use for Estimation of Detailed Transport Demand in the Czech Republic
Authors: Jiri Dufek
Abstract:
The national model of the Czech Republic has been modified in a detailed way to get detailed travel demand in the municipality level (cities, villages over 300 inhabitants). As a technique for this detailed modelling, three-dimensional procedure for calibrating gravity models, was used. Besides of zone production and attraction, which is usual in gravity models, the next additional parameter for trip distribution was introduced. Usually it is called by “third dimension”. In the model, this parameter is a demand between regions. The distribution procedure involved calculation of appropriate skim matrices and its multiplication by three coefficients obtained by iterative balancing of production, attraction and third dimension. This type of trip distribution was processed in R-project and the results were used in the Czech Republic transport model, created in PTV Vision. This process generated more precise results in local level od the model (towns, villages)Keywords: trip distribution, three dimension, transport model, municipalities
Procedia PDF Downloads 12512688 Evaluation of Energy Supply and Demand Side Management for Residential Buildings in Ekiti State, Nigeria
Authors: Oluwatosin Samuel Adeoye
Abstract:
Ekiti State is an agrarian state located in south western part of Nigeria. The injected power to the Ado-Ekiti and the entire state are 25MW and 37.6 MW respectively. The estimated power demand for Ado Ekiti and Ekiti state were 29.01MW and 224.116MW respectively. The distributed power to the consumers is characterized with shortcomings which include: in-adequate supply, poor voltage regulation, improper usage, illiteracy and wastage. The power generation in Nigeria is presently 1680.60MW which does not match the estimated power demand of 15,000MW with a population of over 170 million citizens. This paper evaluates the energy utilization in Ado Ekiti metropolis, the wastage and its economic implication as well as effective means of its management. The use of direct interviews, administration of questionnaires, measurements of current and voltage with clamp multimeter, and simple mathematical approach were used for the purpose of evaluation. Recommendations were made with the view of reducing energy waste from mean value of 10.84% to 2% in order to reduce the cost implication such that the huge financial waste can be injected to other parts of the economy as well as the management of energy in Ekiti state.Keywords: consumers, demand, energy, management, power supply, waste
Procedia PDF Downloads 34012687 Analysis of Residents’ Travel Characteristics and Policy Improving Strategies
Authors: Zhenzhen Xu, Chunfu Shao, Shengyou Wang, Chunjiao Dong
Abstract:
To improve the satisfaction of residents' travel, this paper analyzes the characteristics and influencing factors of urban residents' travel behavior. First, a Multinominal Logit Model (MNL) model is built to analyze the characteristics of residents' travel behavior, reveal the influence of individual attributes, family attributes and travel characteristics on the choice of travel mode, and identify the significant factors. Then put forward suggestions for policy improvement. Finally, Support Vector Machine (SVM) and Multi-Layer Perceptron (MLP) models are introduced to evaluate the policy effect. This paper selects Futian Street in Futian District, Shenzhen City for investigation and research. The results show that gender, age, education, income, number of cars owned, travel purpose, departure time, journey time, travel distance and times all have a significant influence on residents' choice of travel mode. Based on the above results, two policy improvement suggestions are put forward from reducing public transportation and non-motor vehicle travel time, and the policy effect is evaluated. Before the evaluation, the prediction effect of MNL, SVM and MLP models was evaluated. After parameter optimization, it was found that the prediction accuracy of the three models was 72.80%, 71.42%, and 76.42%, respectively. The MLP model with the highest prediction accuracy was selected to evaluate the effect of policy improvement. The results showed that after the implementation of the policy, the proportion of public transportation in plan 1 and plan 2 increased by 14.04% and 9.86%, respectively, while the proportion of private cars decreased by 3.47% and 2.54%, respectively. The proportion of car trips decreased obviously, while the proportion of public transport trips increased. It can be considered that the measures have a positive effect on promoting green trips and improving the satisfaction of urban residents, and can provide a reference for relevant departments to formulate transportation policies.Keywords: neural network, travel characteristics analysis, transportation choice, travel sharing rate, traffic resource allocation
Procedia PDF Downloads 13812686 Traffic Congestion Analysis and Modeling for Urban Roads of Srinagar City
Authors: Adinarayana Badveeti, Mohammad Shafi Mir
Abstract:
In Srinagar City, in India, traffic congestion is a condition on transport networks that occurs as use increases and is characterized by slower speeds, longer trip times, and increased vehicular queuing. Traffic congestion is conventionally measured using indicators such as roadway level-of-service, the Travel Time Index and their variants. Several measures have been taken in order to counteract congestion like road pricing, car pooling, improved traffic management, etc. While new road construction can temporarily relieve congestion in the longer term, it simply encourages further growth in car traffic through increased travel and a switch away from public transport. The full paper report, on which this abstract is based, aims to provide policymakers and technical staff with the real-time data, conceptual framework and guidance on some of the engineering tools necessary to manage congestion in such a way as to reduce its overall impact on individuals, families, communities, and societies dynamic, affordable, liveable and attractive urban regions will never be free of congestion. Road transport policies, however, should seek to manage congestion on a cost-effective basis with the aim of reducing the burden that excessive congestion imposes upon travellers and urban dwellers throughout the urban road network.Keywords: traffic congestion, modeling, traffic management, travel time index
Procedia PDF Downloads 31812685 PLO-AIM: Potential-Based Lane Organization in Autonomous Intersection Management
Authors: Berk Ecer, Ebru Akcapinar Sezer
Abstract:
Traditional management models of intersections, such as no-light intersections or signalized intersection, are not the most effective way of passing the intersections if the vehicles are intelligent. To this end, Dresner and Stone proposed a new intersection control model called Autonomous Intersection Management (AIM). In the AIM simulation, they were examining the problem from a multi-agent perspective, demonstrating that intelligent intersection control can be made more efficient than existing control mechanisms. In this study, autonomous intersection management has been investigated. We extended their works and added a potential-based lane organization layer. In order to distribute vehicles evenly to each lane, this layer triggers vehicles to analyze near lanes, and they change their lane if other lanes have an advantage. We can observe this behavior in real life, such as drivers, change their lane by considering their intuitions. Basic intuition on selecting the correct lane for traffic is selecting a less crowded lane in order to reduce delay. We model that behavior without any change in the AIM workflow. Experiment results show us that intersection performance is directly connected with the vehicle distribution in lanes of roads of intersections. We see the advantage of handling lane management with a potential approach in performance metrics such as average delay of intersection and average travel time. Therefore, lane management and intersection management are problems that need to be handled together. This study shows us that the lane through which vehicles enter the intersection is an effective parameter for intersection management. Our study draws attention to this parameter and suggested a solution for it. We observed that the regulation of AIM inputs, which are vehicles in lanes, was as effective as contributing to aim intersection management. PLO-AIM model outperforms AIM in evaluation metrics such as average delay of intersection and average travel time for reasonable traffic rates, which is in between 600 vehicle/hour per lane to 1300 vehicle/hour per lane. The proposed model reduced the average travel time reduced in between %0.2 - %17.3 and reduced the average delay of intersection in between %1.6 - %17.1 for 4-lane and 6-lane scenarios.Keywords: AIM project, autonomous intersection management, lane organization, potential-based approach
Procedia PDF Downloads 13812684 Big Data Applications for the Transport Sector
Authors: Antonella Falanga, Armando Cartenì
Abstract:
Today, an unprecedented amount of data coming from several sources, including mobile devices, sensors, tracking systems, and online platforms, characterizes our lives. The term “big data” not only refers to the quantity of data but also to the variety and speed of data generation. These data hold valuable insights that, when extracted and analyzed, facilitate informed decision-making. The 4Vs of big data - velocity, volume, variety, and value - highlight essential aspects, showcasing the rapid generation, vast quantities, diverse sources, and potential value addition of these kinds of data. This surge of information has revolutionized many sectors, such as business for improving decision-making processes, healthcare for clinical record analysis and medical research, education for enhancing teaching methodologies, agriculture for optimizing crop management, finance for risk assessment and fraud detection, media and entertainment for personalized content recommendations, emergency for a real-time response during crisis/events, and also mobility for the urban planning and for the design/management of public and private transport services. Big data's pervasive impact enhances societal aspects, elevating the quality of life, service efficiency, and problem-solving capacities. However, during this transformative era, new challenges arise, including data quality, privacy, data security, cybersecurity, interoperability, the need for advanced infrastructures, and staff training. Within the transportation sector (the one investigated in this research), applications span planning, designing, and managing systems and mobility services. Among the most common big data applications within the transport sector are, for example, real-time traffic monitoring, bus/freight vehicle route optimization, vehicle maintenance, road safety and all the autonomous and connected vehicles applications. Benefits include a reduction in travel times, road accidents and pollutant emissions. Within these issues, the proper transport demand estimation is crucial for sustainable transportation planning. Evaluating the impact of sustainable mobility policies starts with a quantitative analysis of travel demand. Achieving transportation decarbonization goals hinges on precise estimations of demand for individual transport modes. Emerging technologies, offering substantial big data at lower costs than traditional methods, play a pivotal role in this context. Starting from these considerations, this study explores the usefulness impact of big data within transport demand estimation. This research focuses on leveraging (big) data collected during the COVID-19 pandemic to estimate the evolution of the mobility demand in Italy. Estimation results reveal in the post-COVID-19 era, more than 96 million national daily trips, about 2.6 trips per capita, with a mobile population of more than 37.6 million Italian travelers per day. Overall, this research allows us to conclude that big data better enhances rational decision-making for mobility demand estimation, which is imperative for adeptly planning and allocating investments in transportation infrastructures and services.Keywords: big data, cloud computing, decision-making, mobility demand, transportation
Procedia PDF Downloads 6112683 An Improved Convolution Deep Learning Model for Predicting Trip Mode Scheduling
Authors: Amin Nezarat, Naeime Seifadini
Abstract:
Trip mode selection is a behavioral characteristic of passengers with immense importance for travel demand analysis, transportation planning, and traffic management. Identification of trip mode distribution will allow transportation authorities to adopt appropriate strategies to reduce travel time, traffic and air pollution. The majority of existing trip mode inference models operate based on human selected features and traditional machine learning algorithms. However, human selected features are sensitive to changes in traffic and environmental conditions and susceptible to personal biases, which can make them inefficient. One way to overcome these problems is to use neural networks capable of extracting high-level features from raw input. In this study, the convolutional neural network (CNN) architecture is used to predict the trip mode distribution based on raw GPS trajectory data. The key innovation of this paper is the design of the layout of the input layer of CNN as well as normalization operation, in a way that is not only compatible with the CNN architecture but can also represent the fundamental features of motion including speed, acceleration, jerk, and Bearing rate. The highest prediction accuracy achieved with the proposed configuration for the convolutional neural network with batch normalization is 85.26%.Keywords: predicting, deep learning, neural network, urban trip
Procedia PDF Downloads 13712682 A Fuzzy Inference System for Predicting Air Traffic Demand Based on Socioeconomic Drivers
Authors: Nur Mohammad Ali, Md. Shafiqul Alam, Jayanta Bhusan Deb, Nowrin Sharmin
Abstract:
The past ten years have seen significant expansion in the aviation sector, which during the previous five years has steadily pushed emerging countries closer to economic independence. It is crucial to accurately forecast the potential demand for air travel to make long-term financial plans. To forecast market demand for low-cost passenger carriers, this study suggests working with low-cost airlines, airports, consultancies, and governmental institutions' strategic planning divisions. The study aims to develop an artificial intelligence-based methods, notably fuzzy inference systems (FIS), to determine the most accurate forecasting technique for domestic low-cost carrier demand in Bangladesh. To give end users real-world applications, the study includes nine variables, two sub-FIS, and one final Mamdani Fuzzy Inference System utilizing a graphical user interface (GUI) made with the app designer tool. The evaluation criteria used in this inquiry included mean square error (MSE), accuracy, precision, sensitivity, and specificity. The effectiveness of the developed air passenger demand prediction FIS is assessed using 240 data sets, and the accuracy, precision, sensitivity, specificity, and MSE values are 90.83%, 91.09%, 90.77%, and 2.09%, respectively.Keywords: aviation industry, fuzzy inference system, membership function, graphical user interference
Procedia PDF Downloads 7012681 Optimal Location of the I/O Point in the Parking System
Authors: Jing Zhang, Jie Chen
Abstract:
In this paper, we deal with the optimal I/O point location in an automated parking system. In this system, the S/R machine (storage and retrieve machine) travels independently in vertical and horizontal directions. Based on the characteristics of the parking system and the basic principle of AS/RS system (Automated Storage and Retrieval System), we obtain the continuous model in units of time. For the single command cycle using the randomized storage policy, we calculate the probability density function for the system travel time and thus we develop the travel time model. And we confirm that the travel time model shows a good performance by comparing with discrete case. Finally in this part, we establish the optimal model by minimizing the expected travel time model and it is shown that the optimal location of the I/O point is located at the middle of the left-hand above corner.Keywords: parking system, optimal location, response time, S/R machine
Procedia PDF Downloads 40812680 Application of a Theoretical framework as a Context for a Travel Behavior Change Policy Intervention
Authors: F. Moghtaderi, M. Burke, J. Troelsen
Abstract:
There has been a significant decline in active travel as well as the massive increase use of car-dependent travel mode in many countries during past two decades. Evidential risks for people’s physical and mental health problems are followed by this increased use of motorized travel mode. These problems range from overweight and obesity to increasing air pollution. In response to these rising concerns, local councils and other interested organizations around the world have introduced a variety of initiatives regarding reduce the dominance of cars for the daily journeys. However, the nature of these kinds of interventions, which related to the human behavior, make lots of complexities. People’s travel behavior and changing this behavior, has two different aspects. People’s attitudes and perceptions toward the sustainable and healthy modes of travel, and motorized travel modes (especially private car use) is one these two aspects. The other one related to people’s behavior change processes. There are no comprehensive model in order to guide policy interventions to increase the level of succeed of such interventions. A comprehensive theoretical framework is required in accordance to facilitate and guide the processes of data collection and analysis to achieve the best possible guidelines for policy makers. Regarding this gaps in the travel behavior change research, this paper attempted to identify and suggest a multidimensional framework in order to facilitate planning interventions. A structured mixed-method is suggested regarding the expand the scope and improve the analytic power of the result according to the complexity of human behavior. In order to recognize people’s attitudes, a theory with the focus on people’s attitudes towards a particular travel behavior was needed. The literature around the theory of planned behavior (TPB) was the most useful, and had been proven to be a good predictor of behavior change. Another aspect of the research, related to the people’s decision-making process regarding explore guidelines for the further interventions. Therefore, a theory was needed to facilitate and direct the interventions’ design. The concept of the transtheoretical model of behavior change (TTM) was used regarding reach a set of useful guidelines for the further interventions with the aim to increase active travel and sustainable modes of travel. Consequently, a combination of these two theories (TTM and TPB) had presented as an appropriate concept to identify and design implemented travel behavior change interventions.Keywords: behavior change theories, theoretical framework, travel behavior change interventions, urban research
Procedia PDF Downloads 37312679 Evaluation of the Impact of Reducing the Traffic Light Cycle for Cars to Improve Non-Vehicular Transportation: A Case of Study in Lima
Authors: Gheyder Concha Bendezu, Rodrigo Lescano Loli, Aldo Bravo Lizano
Abstract:
In big urbanized cities of Latin America, motor vehicles have priority over non-motor vehicles and pedestrians. There is an important problem that affects people's health and quality of life; lack of inclusion towards pedestrians makes it difficult for them to move smoothly and safely since the city has been planned for the transit of motor vehicles. Faced with the new trend for sustainable and economical transport, the city is forced to develop infrastructure in order to incorporate pedestrians and users with non-motorized vehicles in the transport system. The present research aims to study the influence of non-motorized vehicles on an avenue, the optimization of a cycle using traffic lights based on simulation in Synchro software, to improve the flow of non-motor vehicles. The evaluation is of the microscopic type; for this reason, field data was collected, such as vehicular, pedestrian, and non-motor vehicle user demand. With the values of speed and travel time, it is represented in the current scenario that contains the existing problem. These data allow to create a microsimulation model in Vissim software, later to be calibrated and validated so that it has a behavior similar to reality. The results of this model are compared with the efficiency parameters of the proposed model; these parameters are the queue length, the travel speed, and mainly the travel times of the users at this intersection. The results reflect a reduction of 27% in travel time, that is, an improvement between the proposed model and the current one for this great avenue. The tail length of motor vehicles is also reduced by 12.5%, a considerable improvement. All this represents an improvement in the level of service and in the quality of life of users.Keywords: bikeway, microsimulation, pedestrians, queue length, traffic light cycle, travel time
Procedia PDF Downloads 17112678 Economic Development Impacts of Connected and Automated Vehicles (CAV)
Authors: Rimon Rafiah
Abstract:
This paper will present a combination of two seemingly unrelated models, which are the one for estimating economic development impacts as a result of transportation investment and the other for increasing CAV penetration in order to reduce congestion. Measuring economic development impacts resulting from transportation investments is becoming more recognized around the world. Examples include the UK’s Wider Economic Benefits (WEB) model, Economic Impact Assessments in the USA, various input-output models, and additional models around the world. The economic impact model is based on WEB and is based on the following premise: investments in transportation will reduce the cost of personal travel, enabling firms to be more competitive, creating additional throughput (the same road allows more people to travel), and reducing the cost of travel of workers to a new workplace. This reduction in travel costs was estimated in out-of-pocket terms in a given localized area and was then translated into additional employment based on regional labor supply elasticity. This additional employment was conservatively assumed to be at minimum wage levels, translated into GDP terms, and from there into direct taxation (i.e., an increase in tax taken by the government). The CAV model is based on economic principles such as CAV usage, supply, and demand. Usage of CAVs can increase capacity using a variety of means – increased automation (known as Level I thru Level IV) and also by increased penetration and usage, which has been predicted to go up to 50% by 2030 according to several forecasts, with possible full conversion by 2045-2050. Several countries have passed policies and/or legislation on sales of gasoline-powered vehicles (none) starting in 2030 and later. Supply was measured via increased capacity on given infrastructure as a function of both CAV penetration and implemented technologies. The CAV model, as implemented in the USA, has shown significant savings in travel time and also in vehicle operating costs, which can be translated into economic development impacts in terms of job creation, GDP growth and salaries as well. The models have policy implications as well and can be adapted for use in Japan as well.Keywords: CAV, economic development, WEB, transport economics
Procedia PDF Downloads 7212677 ICT Applications and Gender Participation on the Sustainability of Tourism and Hospitality Industry
Authors: Ayanfulu Yekini
Abstract:
The hotel and tourism industry remains male-dominated, particularly in the upper echelons of management and ICT remained underutilized. While there is a massive revolution in this trend across the globe, it appears much progress has not been made in our nation Nigeria. This paper aimed at evaluating the relevance of ICT and Gender Participation to Sustainability of Hospitality and Tourism Industry in Nigeria. The research study was conducted in tourism organizations, travel agents, hotels, restaurants, resorts, professionals in tourism, travel and hospitality industry within Nigeria. The respondents are from the tourism/hospitality industries employees and entrepreneurs only.Keywords: ICT, hotel, gender participation, Nigeria, tourism
Procedia PDF Downloads 44912676 Regenerative Tourism: Industry Readiness for the Big Shift
Authors: Renuka Mahadevan, Maneka Jayasinghe, Dianne Dredge
Abstract:
Over the last two years, tourism has been subject to unprecedented changes, and experts predict further change, especially with respect to travel and tourism choices. As concerns regarding the environment and climate change grow, many tourism industry stakeholders are particularly keen on taking steps to mitigate the adverse impacts of the travel industry to the broader society and environment. This approach and process is commonly referred to as 'Sustainable Tourism'. An emerging concept that extends beyond 'sustainable tourism' is 'Regenerative Tourism', which aims to impact the local systems, society and environment positively. In particular, it aims to provide transformational experiences to tourists and thereby inspire the travellers while the local cultural heritage and traditions are preserved from generation to generation. This study analyses how tourism stakeholders are shifting their attitude towards travel and tourism, particularly regarding its impact on people, places, businesses and the environment. The analysis will be based on a global survey of 1200 businesses, tourism organisations, employees, and travel consumers. The preliminary analysis of responses reveals a high interest towards transformational experiences during travel.Keywords: regenerative tourism, transformational, experience, local systems
Procedia PDF Downloads 6912675 Changes in When and Where People Are Spending Time in Response to COVID-19
Authors: Nicholas Reinicke, Brennan Borlaug, Matthew Moniot
Abstract:
The COVID-19 pandemic has resulted in a significant change in driving behavior as people respond to the new environment. However, existing methods for analyzing driver behavior, such as travel surveys and travel demand models, are not suited for incorporating abrupt environmental disruptions. To address this, we analyze a set of high-resolution trip data and introduce two new metrics for quantifying driving behavioral shifts as a function of time, allowing us to compare the time periods before and after the pandemic began. We apply these metrics to the Denver, Colorado metropolitan statistical area (MSA) to demonstrate the utility of the metrics. Then, we present a case study for comparing two distinct MSAs, Louisville, Kentucky, and Des Moines, Iowa, which exhibit significant differences in the makeup of their labor markets. The results indicate that although the regions of study exhibit certain unique driving behavioral shifts, emerging trends can be seen when comparing between seemingly distinct regions. For instance, drivers in all three MSAs are generally shown to have spent more time at residential locations and less time in workplaces in the time period after the pandemic started. In addition, workplaces that may be incompatible with remote working, such as hospitals and certain retail locations, generally retained much of their pre-pandemic travel activity.Keywords: COVID-19, driver behavior, GPS data, signal analysis, telework
Procedia PDF Downloads 11112674 An Empirical Study on the Impact of Peace in Tourists' Country of Origin on Their Travel Behavior
Authors: Claudia Seabra, Elisabeth Kastenholz, José Luís Abrantes, Manuel Reis
Abstract:
In a world of increasing mobility and global risks, terrorism has, in a perverse way, capitalized on contemporaneous society’s growing interest in travel to explore a world whose national boundaries and distances have decreased. Terrorists have identified the modern tourist flows originated from the economically more developed countries as new appealing targets so as to: i) call attention to the causes they defend and ii) destroy a country’s foundations of tourism, with the final aim of disrupting the economic and consequently social fabric of the affected countries. The present study analyses sensitivity towards risk and travel behaviors in international travel amongst a sample of 600 international tourists from 49 countries travelling by air. Specifically, the sample was segmented according to the Global Peace Index. This index defines country profiles regarding the levels of peace. The indicators used are established over three broad themes: i) ongoing domestic and international conflict; ii) societal safety and security; and iii) militarisation. Tourists were segmented, according to their country of origin, in different levels of peacefulness. Several facets of travel behavior were evaluated, namely motivations, attitude towards trip planning, quality perception and perceived value of the trip. Also factors related with risk perception were evaluated, specifically terrorism risk perception during the trip, unsafety sensation as well as importance attributed to safety in travel. Results contribute to our understanding of the role of previous exposure to the lack of peace and safety at home in the international tourists behaviors, which is further discussed in terms of tourism management and marketing implications which should particularly interest tourism services and destinations more affected by terrorism, war, political turmoil, crime and other safety risks.Keywords: terrorism, tourism, safety, risk perception
Procedia PDF Downloads 44012673 Analysis of Urban Rail Transit Station's Accessibility Reliability: A Case Study of Hangzhou Metro, China
Authors: Jin-Qu Chen, Jie Liu, Yong Yin, Zi-Qi Ju, Yu-Yao Wu
Abstract:
Increase in travel fare and station’s failure will have huge impact on passengers’ travel. The Urban Rail Transit (URT) station’s accessibility reliability under increasing travel fare and station failure are analyzed in this paper. Firstly, the passenger’s travel path is resumed based on stochastic user equilibrium and Automatic Fare Collection (AFC) data. Secondly, calculating station’s importance by combining LeaderRank algorithm and Ratio of Station Affected Passenger Volume (RSAPV), and then the station’s accessibility evaluation indicators are proposed based on the analysis of passenger’s travel characteristic. Thirdly, station’s accessibility under different scenarios are measured and rate of accessibility change is proposed as station’s accessibility reliability indicator. Finally, the accessibility of Hangzhou metro stations is analyzed by the formulated models. The result shows that Jinjiang station and Liangzhu station are the most important and convenient station in the Hangzhou metro, respectively. Station failure and increase in travel fare and station failure have huge impact on station’s accessibility, except for increase in travel fare. Stations in Hangzhou metro Line 1 have relatively worse accessibility reliability and Fengqi Road station’s accessibility reliability is weakest. For Hangzhou metro operational department, constructing new metro line around Line 1 and protecting Line 1’s station preferentially can effective improve the accessibility reliability of Hangzhou metro.Keywords: automatic fare collection data, AFC, station’s accessibility reliability, stochastic user equilibrium, urban rail transit, URT
Procedia PDF Downloads 13312672 Fapitow: An Advanced AI Agent for Travel Agent Competition
Authors: Faiz Ul Haque Zeya
Abstract:
In this paper, Fapitow’s bidding strategy and approach to participate in Travel Agent Competition (TAC) is described. Previously, Fapitow is designed using the agents provided by the TAC Team and mainly used their modification for developing our strategy. But later, by observing the behavior of the agent, it is decided to come up with strategies that will be the main cause of improved utilities of the agent, and by theoretical examination, it is evident that the strategies will provide a significant improvement in performance which is later proved by agent’s performance in the games. The techniques and strategies for further possible improvement are also described. TAC provides a real-time, uncertain environment for learning, experimenting, and implementing various AI techniques. Some lessons learned about handling uncertain environments are also presented.Keywords: agent, travel agent competition, bidding, TAC
Procedia PDF Downloads 10512671 Value-Based Management Education Need of the Hour
Authors: Surendar Vaddepalli
Abstract:
Management education plays a crucial role to enable industry to cope with emerging challenges. It has spread in the last fifteen-twenty years in India and gained popularity as it was aimed at imbibing versatility and multi-tasking abilities in student community. Several management institutions started looking at upgrading their competencies in terms of faculty, research and industry interaction. The competitive business environment has been one of the drivers that paved the way for growing demand for management graduates in the employment market. Industry expects their executives to be engaged in a constant learning process. The ever-increasing demand for managers has led to establish more management institutions; however, the growth was not in line with the expectations from the industry. While top Business Schools are continuously changing the contents and delivery methodologies, academic standards of most of the other Business Schools are not up to the mark and quality of service provided by these institutes has opened various issues for discussion. On this back ground it is important to address the concerns of Indian management education experiencing with time and we have to rethink about the management education and efforts should be made to create a dynamic environment. This paper ties to study the current trends and tries to find out need for value based management education in India to rejuvenate it.Keywords: management education, management, value based management education, business school, India
Procedia PDF Downloads 37812670 Super Mario Guide: An Updated Roadmap on Research with Travel Subjective Well-Being
Authors: Wu Hu
Abstract:
There is an increasing amount of research bridging the gap between transportation and subjective well-being (SWB). However, travel SWB research in this area is still sporadic. Therefore, we are in need of a more systematic body of work that examines travel SWB considering various work occupations, working conditions, commuting variabilities, and other related variables, and develops updated qualitative and quantitative methods to inform the transportation design. In this Super Mario Guide, the author reflects on the related elements involved with travel SWB under four categories (having Super Mario as the protagonist): 1. the starting point including variables like living conditions; 2. the commuter including the commuter’s age, gender, occupation, and others; 3. the commuting including commuting environment, vehicles, commuting time, commuting vehicles flexibility and variability and others; 4. destination including the workplace conditions, the corporate culture on working flexibility, the employer supportiveness and others. In addition, with the rise of new vehicles such as auto-driving, this research can play a significant role to better understand travel SWB and to guide the design of more efficient travelling systems so as to improve worker performance and general SWB. The author also shares thoughts on promising areas for future research.Keywords: transportation, subjective well-being (SWB), commuting, happiness
Procedia PDF Downloads 14112669 A Longitudinal Survey Study of Izmir Commuter Rail System (IZBAN)
Authors: Samet Sen, Yalcin Alver
Abstract:
Before Izmir Commuter Rail System (IZBAN), most of the respondents along the railway were making their trips by city buses, minibuses or private cars. After IZBAN was put into service, some people changed their previous trip behaviors and they started travelling by IZBAN. Therefore a big travel demand in IZBAN occurred. In this study, the characteristics of passengers and their trip behaviors are found out based on the longitudinal data conducted via two wave trip surveys. Just after one year from IZBAN's opening, the first wave of the surveys was carried out among 539 passengers at six stations during morning peak hours between 07.00 am-09.30 am. The second wave was carried out among 669 passengers at the same six stations two years after the first wave during the same morning peak hours. As a result of this study, the respondents' socio-economic specifications, the distribution of trips by region, the impact of IZBAN on transport modes, the changes in travel time and travel cost and satisfaction data were obtained. These data enabled to compare two waves and explain the changes in socio-economic factors and trip behaviors. In both waves, 10 % of the respondents stopped driving their own cars and they started to take IZBAN. This is an important development in solving traffic problems. More public transportation means less traffic congestion.Keywords: commuter rail system, comparative study, longitudinal survey, public transportation
Procedia PDF Downloads 43312668 Using AI to Advance Factory Planning: A Case Study to Identify Success Factors of Implementing an AI-Based Demand Planning Solution
Authors: Ulrike Dowie, Ralph Grothmann
Abstract:
Rational planning decisions are based upon forecasts. Precise forecasting has, therefore, a central role in business. The prediction of customer demand is a prime example. This paper introduces recurrent neural networks to model customer demand and combines the forecast with uncertainty measures to derive decision support of the demand planning department. It identifies and describes the keys to the successful implementation of an AI-based solution: bringing together data with business knowledge, AI methods, and user experience, and applying agile software development practices.Keywords: agile software development, AI project success factors, deep learning, demand forecasting, forecast uncertainty, neural networks, supply chain management
Procedia PDF Downloads 188