Search results for: Saeid Rabiei Majd
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 80

Search results for: Saeid Rabiei Majd

20 Effect of Concurrent Training and Detraining on Insulin Resistance in Obese Children

Authors: Kaveh Azadeh, Saeid Fazelifar

Abstract:

The main purpose of the present study was to examine the effect of 12 weeks (3 days/week) concurrent training followed by 4 weeks detraining on insulin resistance in obese boys without dietary intervention. Methods: 24 obese children boys (body mass index> 28, age= 11- 13year old) voluntarily participated in the study. Biochemical factors, body composition, and functional physical fitness were assessed in three stages [baseline, after 12 week’s combined endurance and resistance training and 4 week’s detraining in the experimental group (n=12); baseline and after 12 weeks in control group (n=12)]. Results: Indepented - Sample T test revealed that in experimental group after 12weeks trainings the insulin resistance, and body fat mass were significantly declined, whereas endurance and strength of abdominal muscles significantly increased compared to control group (p<0/05). One-way ANOVA for three different periods showed that insulin resistance, body fat mass, strength of abdominal muscles after 12week training was significantly improved in the experimental group compared with the baseline. Following 4weeks detraining insulin resistance again significantly increased (p<0/05). After detraining disturbances of physiological adaptation in obese children have more rapid course in comparison with those anthropological and functional indices. Conclusion: Results showed that participation in the regular concurrent trainings provides a decrease of insulin resistance in obese children. It may serve as a strategy in treatment of obesity and management on insulin resistance, as well as to increase endurance and strength muscles in obese children. Adaptations resulting from regular exercises following detraining are reversible.

Keywords: endurance and resistance trainings, detraining, insulin resistance, obese children

Procedia PDF Downloads 195
19 Rrelationship Between Intrauterine Growth Retardation and TORCH Infections in Neonates

Authors: Seyed Saeid Nabavi

Abstract:

Background: Many infants with intrauterine growth disorder are screened for TORCH infections. This action has no economic justification in terms of the imposed costs. In this regard, due to the research gap in this field, this study aimed to investigate the relationship between intrauterine growth disorder and TORCH infection in neonates referred to Milad hospital in 2019 and 2020. Materials and Methods: In this cross-sectional study, 41IUGR newborns were selected and evaluated based on diagnostic and clinical studies in Milad Hospital in 2019 and 2020. TORCH results found in IgG and IgM antibody titer assay were tested in mother and infant. Antibody titers of toxoplasmosis, rubella, cytomegalovirus, herpes, and syphilis were determined in cases, and other variables were compared. The collected data were entered in SPSS software 25 and analyzed at a significant level of 0.05 using the statistical tests of Kolmogorov–Smirnov, Shapiro–Wilk, chi-square, and Mann–Whitney. Results: Most of the IUGR infants studied were girls (68.3%), Gravida and Parity were reported to be 68.3% and 80%, respectively, in the study. Mean weight, APGAR score, and neonatal gestational age are reported as 1710.62±334.43 g, 7.71±1.47, and 35.7+ 1.98 weeks, respectively. Most of the newborns were born by cesarean section (92.7%). TORCH infection was reported in three patients, 7.3%. The mean gestational age of IUGR infants with TORCH infection was reported to be less than other babies with IUGR. Therefore, the mean gestational age of subjects with TORCH infection was 33±1.4 weeks and in others 35.94±1.91 weeks (p-value = 0.038). No significant relationship between TORCH infection and gender, gravidity, and parity of newborns was found (p-value > 0.05). Conclusion: TORCH infection was reported in 3 patients( 7.3%). No significant relationship between TORCH infection and gender, gravidity, and parity of newborns was found. p-value > 0.05

Keywords: congenital infection, intrauterine growth restriction, TORCH infections, neonates

Procedia PDF Downloads 133
18 Investigation of Heat Transfer Mechanism Inside Shell and Tube Latent Heat Thermal Energy Storage Systems

Authors: Saeid Seddegh, Xiaolin Wang, Alan D. Henderson, Dong Chen, Oliver Oims

Abstract:

The main objective of this research is to study the heat transfer processes and phase change behaviour of a phase change material (PCM) in shell and tube latent heat thermal energy storage (LHTES) systems. The thermal behaviour in a vertical and horizontal shell-and-tube heat energy storage system using a pure thermal conduction model and a combined conduction-convection heat transfer model is compared in this paper. The model is first validated using published experimental data available in literature and then used to study the temperature variation, solid-liquid interface, phase distribution, total melting and solidification time during melting and solidification processes of PCMs. The simulated results show that the combined convection and conduction model can better describe the energy transfer in PCMs during melting process. In contrast, heat transfer by conduction is more significant during the solidification process since the two models show little difference. Also, it was concluded that during the charging process for the horizontal orientation, convective heat transfer has a strong effect on melting of the upper part of the solid PCM and is less significant during melting of the lower half of the solid PCM. However, in the vertical orientation, convective heat transfer is the same active during the entire charging process. In the solidification process, the thermal behavior does not show any difference between horizontal and vertical systems.

Keywords: latent heat thermal energy storage, phase change material, natural convection, melting, shell and tube heat exchanger, melting, solidification

Procedia PDF Downloads 554
17 Improving Fake News Detection Using K-means and Support Vector Machine Approaches

Authors: Kasra Majbouri Yazdi, Adel Majbouri Yazdi, Saeid Khodayi, Jingyu Hou, Wanlei Zhou, Saeed Saedy

Abstract:

Fake news and false information are big challenges of all types of media, especially social media. There is a lot of false information, fake likes, views and duplicated accounts as big social networks such as Facebook and Twitter admitted. Most information appearing on social media is doubtful and in some cases misleading. They need to be detected as soon as possible to avoid a negative impact on society. The dimensions of the fake news datasets are growing rapidly, so to obtain a better result of detecting false information with less computation time and complexity, the dimensions need to be reduced. One of the best techniques of reducing data size is using feature selection method. The aim of this technique is to choose a feature subset from the original set to improve the classification performance. In this paper, a feature selection method is proposed with the integration of K-means clustering and Support Vector Machine (SVM) approaches which work in four steps. First, the similarities between all features are calculated. Then, features are divided into several clusters. Next, the final feature set is selected from all clusters, and finally, fake news is classified based on the final feature subset using the SVM method. The proposed method was evaluated by comparing its performance with other state-of-the-art methods on several specific benchmark datasets and the outcome showed a better classification of false information for our work. The detection performance was improved in two aspects. On the one hand, the detection runtime process decreased, and on the other hand, the classification accuracy increased because of the elimination of redundant features and the reduction of datasets dimensions.

Keywords: clustering, fake news detection, feature selection, machine learning, social media, support vector machine

Procedia PDF Downloads 176
16 Evaluating the Understanding of the University Students (Basic Sciences and Engineering) about the Numerical Representation of the Average Rate of Change

Authors: Saeid Haghjoo, Ebrahim Reyhani, Fahimeh Kolahdouz

Abstract:

The present study aimed to evaluate the understanding of the students in Tehran universities (Iran) about the numerical representation of the average rate of change based on the Structure of Observed Learning Outcomes (SOLO). In the present descriptive-survey research, the statistical population included undergraduate students (basic sciences and engineering) in the universities of Tehran. The samples were 604 students selected by random multi-stage clustering. The measurement tool was a task whose face and content validity was confirmed by math and mathematics education professors. Using Cronbach's Alpha criterion, the reliability coefficient of the task was obtained 0.95, which verified its reliability. The collected data were analyzed by descriptive statistics and inferential statistics (chi-squared and independent t-tests) under SPSS-24 software. According to the SOLO model in the prestructural, unistructural, and multistructural levels, basic science students had a higher percentage of understanding than that of engineering students, although the outcome was inverse at the relational level. However, there was no significant difference in the average understanding of both groups. The results indicated that students failed to have a proper understanding of the numerical representation of the average rate of change, in addition to missconceptions when using physics formulas in solving the problem. In addition, multiple solutions were derived along with their dominant methods during the qualitative analysis. The current research proposed to focus on the context problems with approximate calculations and numerical representation, using software and connection common relations between math and physics in the teaching process of teachers and professors.

Keywords: average rate of change, context problems, derivative, numerical representation, SOLO taxonomy

Procedia PDF Downloads 92
15 Hedgerow Detection and Characterization Using Very High Spatial Resolution SAR DATA

Authors: Saeid Gharechelou, Stuart Green, Fiona Cawkwell

Abstract:

Hedgerow has an important role for a wide range of ecological habitats, landscape, agriculture management, carbon sequestration, wood production. Hedgerow detection accurately using satellite imagery is a challenging problem in remote sensing techniques, because in the special approach it is very similar to line object like a road, from a spectral viewpoint, a hedge is very similar to a forest. Remote sensors with very high spatial resolution (VHR) recently enable the automatic detection of hedges by the acquisition of images with enough spectral and spatial resolution. Indeed, recently VHR remote sensing data provided the opportunity to detect the hedgerow as line feature but still remain difficulties in monitoring the characterization in landscape scale. In this research is used the TerraSAR-x Spotlight and Staring mode with 3-5 m resolution in wet and dry season in the test site of Fermoy County, Ireland to detect the hedgerow by acquisition time of 2014-2015. Both dual polarization of Spotlight data in HH/VV is using for detection of hedgerow. The varied method of SAR image technique with try and error way by integration of classification algorithm like texture analysis, support vector machine, k-means and random forest are using to detect hedgerow and its characterization. We are applying the Shannon entropy (ShE) and backscattering analysis in single and double bounce in polarimetric analysis for processing the object-oriented classification and finally extracting the hedgerow network. The result still is in progress and need to apply the other method as well to find the best method in study area. Finally, this research is under way to ahead to get the best result and here just present the preliminary work that polarimetric image of TSX potentially can detect the hedgerow.

Keywords: TerraSAR-X, hedgerow detection, high resolution SAR image, dual polarization, polarimetric analysis

Procedia PDF Downloads 230
14 Bioinformatics Identification of Rare Codon Clusters in Proteins Structure of HBV

Authors: Abdorrasoul Malekpour, Mohammad Ghorbani Mojtaba Mortazavi, Mohammadreza Fattahi, Mohammad Hassan Meshkibaf, Ali Fakhrzad, Saeid Salehi, Saeideh Zahedi, Amir Ahmadimoghaddam, Parviz Farzadnia Dr., Mohammadreza Hajyani Asl Bs

Abstract:

Hepatitis B as an infectious disease has eight main genotypes (A–H). The aim of this study is to Bioinformatically identify Rare Codon Clusters (RCC) in proteins structure of HBV. For detection of protein family accession numbers (Pfam) of HBV proteins; used of uni-prot database and Pfam search tool were used. Obtained Pfam IDs were analyzed in Sherlocc program and RCCs in HBV proteins were detected. In further, the structures of TrEMBL entries proteins studied in PDB database and 3D structures of the HBV proteins and locations of RCCs were visualized and studied using Swiss PDB Viewer software. Pfam search tool have found nine significant hits and 0 insignificant hits in 3 frames. Results of Pfams studied in the Sherlocc program show this program not identified RCCs in the external core antigen (PF08290) and truncated HBeAg protein (PF08290). By contrast the RCCs become identified in Hepatitis core antigen (PF00906) Large envelope protein S (PF00695), X protein (PF00739), DNA polymerase (viral) N-terminal domain (PF00242) and Protein P (Pf00336). In HBV genome, seven RCC identified that found in hepatitis core antigen, large envelope protein S and DNA polymerase proteins and proteins structures of TrEMBL entries sequences that reported in Sherlocc program outputs are not complete. Based on situation of RCC in structure of HBV proteins, it suggested those RCCs are important in HBV life cycle. We hoped that this study provide a new and deep perspective in protein research and drug design for treatment of HBV.

Keywords: rare codon clusters, hepatitis B virus, bioinformatic study, infectious disease

Procedia PDF Downloads 488
13 Major Dietary Patterns in Relationship with Anthropometric Indices in North West of Iran

Authors: Arezou Rezazadeh, Nasrin Omidvar, Hassan Eini-Zinab, Mahmoud Ghazi-Tabatabaie, Reza Majdzadeh, Saeid Ghavamzadeh, Sakineh Nouri-Saeidlou

Abstract:

Dietary pattern analysis method can reflect more information about the nutritional etiology of chronic diseases such as obesity. The aim of this study was to determine the relationship between major dietary patterns and anthropometric measures in men and women living in the city of Urmia. In this cross-sectional study, 723 participants (427 women and 296 men), aged 20–64 in Urmia city were selected from all four zones of Urmia city, in the north-west of Iran. Anthropometrics (weight, height, waist and hip circumference) were measured with standard methods. Body Mass Index (BMI) was calculated by dividing weight (in kilograms) by the square of height (in meter). Dietary intake information was collected by a semi-quantitative food frequency questionnaire in the last year. Dietary patterns were determined using principal component analysis. The relationship between dietary patterns and obesity was analyzed by logistic regression. Three major dietary patterns (DPs) were identified that were named ‘Traditional Higher SES (THS)’, ‘Traditional Low SES (TLS)’ and ‘Transitional’. THS DP was positively and Transitional DP was negatively associated with BMI and waist circumference (W.C), however, after adjusting for confounding variables (age, gender, ethnicity, energy intake, physical activity and SES), the associations were not significant. The TLS was not significantly associated with BMI, but after adjusting for confounders, a significant positive association was detected with W.C and Waist to hip ratio (WHR). Findings showed that both traditional patterns were positively and the western type transitional pattern was reversely associated with anthropometric indices. But this relationship was highly affected by demographic, socioeconomic and energy input and output determinants. The results indicate the inevitable effect of environmental factors on the relationship between dietary patterns and anthropometric indices.

Keywords: anthropometric indices, dietary pattern, Iran, North-west

Procedia PDF Downloads 165
12 La₀.₈Ba₀.₂FeO₃ Perovskite as an Additive in the Three-Way Catalyst (TWCs) for Reduction of PGMs Loading

Authors: Mahshid Davoodpoor, Zahra Shamohammadi Ghahsareh, Saeid Razfar, Alaleh Dabbaghi

Abstract:

Nowadays, air pollution has become a topic of great concern all over the world. One of the main sources of air pollution is automobile exhaust gas, which introduces a large number of toxic gases, including CO, unburned hydrocarbons (HCs), NOx, and non-methane hydrocarbons (NMHCs), into the air. The application of three-way catalysts (TWCs) is still the most effective strategy to mitigate the emission of these pollutants. Due to the stringent environmental regulations which continuously become stricter, studies on the TWCs are ongoing despite several years of research and development. This arises from the washcoat complexity and the several numbers of parameters involved in the redox reactions. The main objectives of these studies are the optimization of washcoat formulation and the investigation of different coating modes. Perovskite (ABO₃), as a promising class of materials, has unique features that make it versatile to use as an alternative to commonly mixed oxides in washcoats. High catalytic activity for oxidation reactions and its relatively high oxygen storage capacity are important properties of perovskites in catalytic applications. Herein, La₀.₈Ba₀.₂FeO₃ perovskite material was synthesized using the co-precipitation method and characterized by XRD, ICP, and BET analysis. The effect of synthesis conditions, including B site metal (Fe and Co), metal precursor concentration, and dopant (Ba), were examined on the phase purity of the products. The selected perovskite sample was used as one of the components in the TWC formulation to evaluate its catalytic performance through Light-off, oxygen storage capacity, and emission analysis. Results showed a remarkable increment in oxygen storage capacity and also revealed that T50 and emission of CO, HC, and NOx reduced in the presence of perovskite structure which approves the enhancement of catalytic performance for the new washcoat formulation. This study shows the brilliant future of advanced oxide structures in the TWCs.

Keywords: Perovskite, three-way catalyst, PGMs, PGMs reduction

Procedia PDF Downloads 66
11 Land Lots and Shannon-Winner Index in Sarpolzahab Agro Ecosystems-Western Iran

Authors: Ashkan Asgari, Korous Khoshbakht, Saeid Soufizadeh

Abstract:

Various factors including land lots can affect biodiversity indices in Agricultural systems. Field study conducted to evaluate factors affecting crop diversity in Sarpolzahab in 2012. Required data were collected through direct observation of farms and filling questionnaires. Total numbers of 140 questionnaires were filled, SAS Software was used to analyse data and Ecological Methodology Program was applied to calculate Shannon-Winner index, subsequently. Results of study indicated that average number of land lots for each farmer was 2.78 and various from 2.2 in Rikhak Olia Village to 4.31 in Golam Kaboud Olia Village which shows small size of land lots due to separating larger lots by children of deceased farmers. The correlation between number of land lots and species biodiversity (0.308**) was significant and Shannon-Winner index was (0.262**). Therefore, according to the mentioned results one can assume that increase in number of land lots results in improving of the target index. Multiple land lots allow farmers to cultivate various crops which results in increasing biodiversity of crops in agro ecosystem. Subsequently, this increase will facilitate economic sustainability of the farmers and distribution of work force in the region throughout the year. The correlation of seasonal workers with biodiversity of crop species (0.256**) and Shannon-Winner (0.286**) was statistically significant and increasing number of seasonal work forces had resulted in improving crop biodiversity and decreasing dominant species or single crop farming systems. Vegetable farms which have a significant diversity, require a significant number of work forces which describes correlation between number of workers and diversity of species.

Keywords: agricultural systems, biodiversity indices, Shannon-Winner index, sustainability, rural

Procedia PDF Downloads 538
10 Blockchain Is Facilitating Intercultural Entrepreneurship: Memoir of a Persian Non-Fungible Tokens Collection

Authors: Mohammad Afkhami, Saeid Reza Ameli Ranani

Abstract:

Since the bitcoin invention in 2008, blockchain technology surpassed so many innovations that the pioneer networks such as Ethereum are adaptable to host a decentral bunch of information containing pictures, audio, video, domains, etc., or even a metaverse versatile avatar. Transformation of tangible goods into virtual assets, known as AR-utility of luxury products, and the intermixture of reality and virtuality organized a worldwide, semi-regulated, and decentralized marketplace for digital goods. Non-fungible tokens (NFTs) are doing a great help to artists worldwide, sharing diverse cultural outlooks by setting up a remote cross-cultural corporation potential and, at the same time, metamorphosizing the middleman role and ceasing the necessity of having a SWIFT-connected bank account. Under critical sanctions, a group of artists in Tehran did not take for granted such an opportunity to show off their artworks undisturbed, offering an introspective attitude, exerting Iranian motifs while intermingling westernized symbols. The cryptocurrency market has already acquired allocation, and interest in the global domain, paving the way for a flourishing enthusiasm among entrepreneurs who have been preoccupied with high-tech start-ups before. In a project found by Iranian female artists, we decipher the ups and downs of the new cyberculture and the environment it provides to fairly promote the artwork and obstacles it put forward in the way of interested entrepreneurs as we get through the details of starting up an NFT collection. An in-depth interview and empirical encounters with diverse Social Network Sites (SNS) and the strategies that other successful projects deploy to sell their artworks in an international and, at the same time, an anonymous market is the main focus, which shapes the paper fieldwork perspective. In conclusion, we discuss strategies for promoting an NFT project.

Keywords: NFT, metaverse, intercultural, art, illustration, start-up, entrepreneurship

Procedia PDF Downloads 101
9 Data-Driven Surrogate Models for Damage Prediction of Steel Liquid Storage Tanks under Seismic Hazard

Authors: Laura Micheli, Majd Hijazi, Mahmoud Faytarouni

Abstract:

The damage reported by oil and gas industrial facilities revealed the utmost vulnerability of steel liquid storage tanks to seismic events. The failure of steel storage tanks may yield devastating and long-lasting consequences on built and natural environments, including the release of hazardous substances, uncontrolled fires, and soil contamination with hazardous materials. It is, therefore, fundamental to reliably predict the damage that steel liquid storage tanks will likely experience under future seismic hazard events. The seismic performance of steel liquid storage tanks is usually assessed using vulnerability curves obtained from the numerical simulation of a tank under different hazard scenarios. However, the computational demand of high-fidelity numerical simulation models, such as finite element models, makes the vulnerability assessment of liquid storage tanks time-consuming and often impractical. As a solution, this paper presents a surrogate model-based strategy for predicting seismic-induced damage in steel liquid storage tanks. In the proposed strategy, the surrogate model is leveraged to reduce the computational demand of time-consuming numerical simulations. To create the data set for training the surrogate model, field damage data from past earthquakes reconnaissance surveys and reports are collected. Features representative of steel liquid storage tank characteristics (e.g., diameter, height, liquid level, yielding stress) and seismic excitation parameters (e.g., peak ground acceleration, magnitude) are extracted from the field damage data. The collected data are then utilized to train a surrogate model that maps the relationship between tank characteristics, seismic hazard parameters, and seismic-induced damage via a data-driven surrogate model. Different types of surrogate algorithms, including naïve Bayes, k-nearest neighbors, decision tree, and random forest, are investigated, and results in terms of accuracy are reported. The model that yields the most accurate predictions is employed to predict future damage as a function of tank characteristics and seismic hazard intensity level. Results show that the proposed approach can be used to estimate the extent of damage in steel liquid storage tanks, where the use of data-driven surrogates represents a viable alternative to computationally expensive numerical simulation models.

Keywords: damage prediction , data-driven model, seismic performance, steel liquid storage tanks, surrogate model

Procedia PDF Downloads 143
8 Rapid Monitoring of Earthquake Damages Using Optical and SAR Data

Authors: Saeid Gharechelou, Ryutaro Tateishi

Abstract:

Earthquake is an inevitable catastrophic natural disaster. The damages of buildings and man-made structures, where most of the human activities occur are the major cause of casualties from earthquakes. A comparison of optical and SAR data is presented in the case of Kathmandu valley which was hardly shaken by 2015-Nepal Earthquake. Though many existing researchers have conducted optical data based estimated or suggested combined use of optical and SAR data for improved accuracy, however finding cloud-free optical images when urgently needed are not assured. Therefore, this research is specializd in developing SAR based technique with the target of rapid and accurate geospatial reporting. Should considers that limited time available in post-disaster situation offering quick computation exclusively based on two pairs of pre-seismic and co-seismic single look complex (SLC) images. The InSAR coherence pre-seismic, co-seismic and post-seismic was used to detect the change in damaged area. In addition, the ground truth data from field applied to optical data by random forest classification for detection of damaged area. The ground truth data collected in the field were used to assess the accuracy of supervised classification approach. Though a higher accuracy obtained from the optical data then integration by optical-SAR data. Limitation of cloud-free images when urgently needed for earthquak evevent are and is not assured, thus further research on improving the SAR based damage detection is suggested. Availability of very accurate damage information is expected for channelling the rescue and emergency operations. It is expected that the quick reporting of the post-disaster damage situation quantified by the rapid earthquake assessment should assist in channeling the rescue and emergency operations, and in informing the public about the scale of damage.

Keywords: Sentinel-1A data, Landsat-8, earthquake damage, InSAR, rapid damage monitoring, 2015-Nepal earthquake

Procedia PDF Downloads 172
7 Offline Parameter Identification and State-of-Charge Estimation for Healthy and Aged Electric Vehicle Batteries Based on the Combined Model

Authors: Xiaowei Zhang, Min Xu, Saeid Habibi, Fengjun Yan, Ryan Ahmed

Abstract:

Recently, Electric Vehicles (EVs) have received extensive consideration since they offer a more sustainable and greener transportation alternative compared to fossil-fuel propelled vehicles. Lithium-Ion (Li-ion) batteries are increasingly being deployed in EVs because of their high energy density, high cell-level voltage, and low rate of self-discharge. Since Li-ion batteries represent the most expensive component in the EV powertrain, accurate monitoring and control strategies must be executed to ensure their prolonged lifespan. The Battery Management System (BMS) has to accurately estimate parameters such as the battery State-of-Charge (SOC), State-of-Health (SOH), and Remaining Useful Life (RUL). In order for the BMS to estimate these parameters, an accurate and control-oriented battery model has to work collaboratively with a robust state and parameter estimation strategy. Since battery physical parameters, such as the internal resistance and diffusion coefficient change depending on the battery state-of-life (SOL), the BMS has to be adaptive to accommodate for this change. In this paper, an extensive battery aging study has been conducted over 12-months period on 5.4 Ah, 3.7 V Lithium polymer cells. Instead of using fixed charging/discharging aging cycles at fixed C-rate, a set of real-world driving scenarios have been used to age the cells. The test has been interrupted every 5% capacity degradation by a set of reference performance tests to assess the battery degradation and track model parameters. As battery ages, the combined model parameters are optimized and tracked in an offline mode over the entire batteries lifespan. Based on the optimized model, a state and parameter estimation strategy based on the Extended Kalman Filter (EKF) and the relatively new Smooth Variable Structure Filter (SVSF) have been applied to estimate the SOC at various states of life.

Keywords: lithium-ion batteries, genetic algorithm optimization, battery aging test, parameter identification

Procedia PDF Downloads 267
6 Designing of Induction Motor Efficiency Monitoring System

Authors: Ali Mamizadeh, Ires Iskender, Saeid Aghaei

Abstract:

Energy is one of the important issues with high priority property in the world. Energy demand is rapidly increasing depending on the growing population and industry. The useable energy sources in the world will be insufficient to meet the need for energy. Therefore, the efficient and economical usage of energy sources is getting more importance. In a survey conducted among electric consuming machines, the electrical machines are consuming about 40% of the total electrical energy consumed by electrical devices and 96% of this consumption belongs to induction motors. Induction motors are the workhorses of industry and have very large application areas in industry and urban systems like water pumping and distribution systems, steel and paper industries and etc. Monitoring and the control of the motors have an important effect on the operating performance of the motor, driver selection and replacement strategy management of electrical machines. The sensorless monitoring system for monitoring and calculating efficiency of induction motors are studied in this study. The equivalent circuit of IEEE is used in the design of this study. The terminal current and voltage of induction motor are used in this motor to measure the efficiency of induction motor. The motor nameplate information and the measured current and voltage are used in this system to calculate accurately the losses of induction motor to calculate its input and output power. The efficiency of the induction motor is monitored online in the proposed method without disconnecting the motor from the driver and without adding any additional connection at the motor terminal box. The proposed monitoring system measure accurately the efficiency by including all losses without using torque meter and speed sensor. The monitoring system uses embedded architecture and does not need to connect to a computer to measure and log measured data. The conclusion regarding the efficiency, the accuracy and technical and economical benefits of the proposed method are presented. The experimental verification has been obtained on a 3 phase 1.1 kW, 2-pole induction motor. The proposed method can be used for optimal control of induction motors, efficiency monitoring and motor replacement strategy.

Keywords: induction motor, efficiency, power losses, monitoring, embedded design

Procedia PDF Downloads 347
5 The Effects of Orally Administered Bacillus Coagulans and Inulin on Prevention and Progression of Rheumatoid Arthritis in Rats

Authors: Khadijeh Abhari, Seyed Shahram Shekarforoush, Saeid Hosseinzadeh

Abstract:

Probiotics have been considered as an approach to treat and prevent a wide range of inflammatory diseases. The spore forming probiotic strain Bacillus coagulans has demonstrated anti-inflammatory and immune-modulating effects in both animals and humans. The prebiotic, inulin, also potentially affects the immune system as a result of the change in the composition or fermentation profile of the gastrointestinal microbiota. An in vivo trial was conducted to evaluate the effects of probiotic B. coagulans, and inulin, either separately or in combination, on down regulate immune responses and progression of rheumatoid arthritis using induced arthritis rat model. Forty-eight male Wistar rats were randomly divided into 6 groups and fed as follow: 1) control: Normal healthy rats fed by standard diet, 2) Disease control (RA): Arthritic induced (RA) rats fed by standard diet, 3) Prebiotic (PRE): RA+ 5% w/w long chain inulin, 4) Probiotic (PRO): RA+ 109 spores/day B. coagulans by orogastric gavage, 5) Synbiotic (SYN): RA+ 5% w/w long chain inulin and 109 spores/day B. coagulans and 6) Treatment control: (INDO): RA+ 3 mg/kg/day indomethacin by orogastric gavage. Feeding with mentioned diets started on day 0 and continued to the end of study. On day 14, rats were injected with complete Freund’s adjuvant (CFA) to induce arthritis. Arthritis activity was evaluated by biochemical parameters and paw thickness. Biochemical assay for Fibrinogen (Fn), Serum Amyloid A (SAA), TNF-α and Alpha-1-acid glycoprotein (α1AGp) was performed on day 21, 28 and 35 (1, 2 and 3 weeks post RA induction). Pretreatment with PRE, PRO and SYN diets significantly inhibit SAA and Fn production in arthritic rats (P < 0.001). A significant decrease in production of pro-inflammatory cytokines, TNF-α, was seen in PRE, PRO and SYN groups (P < 0.001) which was similar to the effect of the anti-inflammatory drug Indomethacin. Further, there were no significant anti-inflammatory effects observed following different treatments using α1AGp as a RA indicator. Pretreatment with all supplied diets significantly inhibited the development of paw swelling induced by CFA (P < 0.001). Conclusion: Results of this study support that oral intake of probiotic B. coagulans and inulin are able to improve biochemical and clinical parameters of induced RA in rat.

Keywords: rheumatoid arthritis, bacillus coagulans, inulin, animal model

Procedia PDF Downloads 356
4 The Effect and Durability of Functional Exercises on Balance Evaluation Systems Test (Bestest) in Intellectual Disabilities: A Preliminary Report

Authors: Saeid Bahiraei, Hassan Daneshmandi , Ali Asghar Norasteh

Abstract:

The present study aims at the effects of 8 weeks of selected corrective exercise training in stable and unstable levels on the postural control people with ID. Problems and limitations of movement in individuals with intellectual disability (ID) are highly common, which particularly may cause the loss of basic performance and limitation of the person's independence in doing their daily activities. In the present study, thirty-four young adult intellectual disabilities were selected randomly and divided into three groups. In order to measure the balance variable indicators, BESTest was used. The intervention group did the selected performance exercise in 8 weeks (3 times of 45 to 50 minutes a week). Meanwhile, the control group did not experience any kind of exercise. Statistical analysis was performed in SPSS on a significant level (p<0/05). The results showed the compromise between time and the group in all the BESTest tests is significant (P=0/001). The results of the research test compared to the studied groups with time measurements showed that there is a significant difference in the unstable group in Biomechanical constraints (P<0/05). And also, a significant difference exists in the stable and unstable level instability limits/Vertically, Postural responses, and Anticipatory postural adjustment variables (except for the follow-up and pre-test levels), Stability in Gait and Sensory Orientation in the pre-test, post-test, and follow up- pre-test stage of the test (P<0/05). In the comparison between the times of measurement with the groups under study, the results showed that Biomechanical Constraints, Anticipatory Postural adjustment and Postural responses at the pre-test-follow upstage, there was a significant difference between unstable-stable and unstable-control groups (P<0/05), it was also significant between all groups in Stability Limits/Vertically, Sensory Orientation, Stability in Gait and Overall stability index variables (P<0/05). The findings showed that the practice group at an unstable level has move improvement compared to the practice group at a stable level. In conclusion, this study presents evidence that shows selected performative practices can be recognized as a comprehensive and effective mediator in the betterment and improvement of the balance in intellectually disabled people and also affect the performative and moving activities.

Keywords: intellectual disability, BSETest, rehabilitation, postural control

Procedia PDF Downloads 177
3 Artificial Intelligence Models for Detecting Spatiotemporal Crop Water Stress in Automating Irrigation Scheduling: A Review

Authors: Elham Koohi, Silvio Jose Gumiere, Hossein Bonakdari, Saeid Homayouni

Abstract:

Water used in agricultural crops can be managed by irrigation scheduling based on soil moisture levels and plant water stress thresholds. Automated irrigation scheduling limits crop physiological damage and yield reduction. Knowledge of crop water stress monitoring approaches can be effective in optimizing the use of agricultural water. Understanding the physiological mechanisms of crop responding and adapting to water deficit ensures sustainable agricultural management and food supply. This aim could be achieved by analyzing and diagnosing crop characteristics and their interlinkage with the surrounding environment. Assessments of plant functional types (e.g., leaf area and structure, tree height, rate of evapotranspiration, rate of photosynthesis), controlling changes, and irrigated areas mapping. Calculating thresholds of soil water content parameters, crop water use efficiency, and Nitrogen status make irrigation scheduling decisions more accurate by preventing water limitations between irrigations. Combining Remote Sensing (RS), the Internet of Things (IoT), Artificial Intelligence (AI), and Machine Learning Algorithms (MLAs) can improve measurement accuracies and automate irrigation scheduling. This paper is a review structured by surveying about 100 recent research studies to analyze varied approaches in terms of providing high spatial and temporal resolution mapping, sensor-based Variable Rate Application (VRA) mapping, the relation between spectral and thermal reflectance and different features of crop and soil. The other objective is to assess RS indices formed by choosing specific reflectance bands and identifying the correct spectral band to optimize classification techniques and analyze Proximal Optical Sensors (POSs) to control changes. The innovation of this paper can be defined as categorizing evaluation methodologies of precision irrigation (applying the right practice, at the right place, at the right time, with the right quantity) controlled by soil moisture levels and sensitiveness of crops to water stress, into pre-processing, processing (retrieval algorithms), and post-processing parts. Then, the main idea of this research is to analyze the error reasons and/or values in employing different approaches in three proposed parts reported by recent studies. Additionally, as an overview conclusion tried to decompose different approaches to optimizing indices, calibration methods for the sensors, thresholding and prediction models prone to errors, and improvements in classification accuracy for mapping changes.

Keywords: agricultural crops, crop water stress detection, irrigation scheduling, precision agriculture, remote sensing

Procedia PDF Downloads 71
2 Revolutionizing Product Packaging: The Impact of Transparent Graded Lanes on Ketchup and Edible Oils Containers on Consumer Behavior

Authors: Saeid Asghari

Abstract:

The growing interest in sustainability and healthy lifestyles has stimulated the development of solutions that promote mindful consumption and healthier choices. One such solution is the use of transparent graded lanes in product packaging, which enables consumers to visually track their product consumption and encourages portion control. However, the extent to which this packaging affects consumer behavior, trust, and loyalty towards a product or brand, as well as the effectiveness of messaging on the graded lanes, remains unclear. The research aims to examine the impact of transparent graded lanes on consumer behavior, trust, and loyalty towards products or brands in the context of the Janbo chain supermarket in Tehran, Iran, focusing on Ketchup and edible oils containers. A representative sample of 720 respondents is selected using quota sampling based on sex, age, and financial status. The study assesses the effect of messaging on the graded lanes in enhancing consumer recall and recognition of the product at the time of purchase, increasing repeat purchases, and fostering long-term relationships with customers. Furthermore, the potential outcomes of using transparent graded lanes, including the promotion of healthy consumption habits and the reduction of food waste, are also considered. The findings and results can inform the development of effective messaging strategies for graded lanes and suggest ways to enhance consumer engagement with product packaging. Moreover, the study's outcomes can contribute to the broader discourse on sustainable consumption and healthy lifestyles, highlighting the potential role of packaging innovations in promoting these values. We used four theories (social cognitive theory, self-perception theory, nudge theory, and marketing and consumer behavior) to examine the effect of these transparent graded lanes on consumer behavior. The conceptual model integrates the use of transparent graded lanes, consumer behavior, trust and loyalty, messaging, and promotion of healthy consumption habits. The study aims to provide insights into how transparent graded lanes can promote mindful consumption, increase consumer recognition and recall of the product, and foster long-term relationships with customers. Findings suggest that the use of transparent graded lanes on Ketchup and edible oils containers can have a positive impact on consumer behavior, trust, and loyalty towards a product or brand, as well as promote mindful consumption and healthier choices. The messaging on the graded lanes is also found to be effective in promoting recall and recognition of the product at the time of purchase and encouraging repeat purchases. However, the impact of transparent graded lanes may be limited by factors such as cultural norms, personal values, and financial status. Broadly speaking, the investigation provides valuable insights into the potential benefits and challenges of using transparent graded lanes in product packaging, as well as effective strategies for promoting healthy consumption habits and building long-term relationships with customers.

Keywords: packaging customer behavior, purchase, brand loyalty, healthy consumption

Procedia PDF Downloads 252
1 Integration of Rapid Generation Technology in Pulse Crop Breeding

Authors: Saeid H. Mobini, Monika Lulsdorf, Thomas D. Warkentin

Abstract:

The length of the breeding cycle from seed to seed is a limiting factor in the development of improved homozygous lines for breeding or recombinant inbred lines (RILs) for genetic analysis. The objective of this research was to accelerate the production of field pea RILs through application of rapid generation technology (RGT). RGT is based on the principle of growing miniature plants in an artificial medium under controlled conditions, and allowing them to produce a few flowers which develop seeds that are harvested prior to normal seed maturity. We aimed to maintain population size and genetic diversity in regeneration cycles. The effects of flurprimidol (a gibberellin synthesis inhibitor), plant density, hydroponic system, scheduled fertilizer applications, artificial light spectrum, photoperiod, and light/dark temperature were evaluated in the development of RILs from a cross between cultivars CDC Dakota and CDC Amarillo. The main goal was to accelerate flowering while reducing maintenance and space costs. In addition, embryo rescue of immature seeds was tested for shortening the seed fill period. Data collected over seven generations included plant height, the percentage of plant survival, flowering rate, seed setting rate, the number of seeds per plant, and time from seed to seed. Applying 0.6 µM flurprimidol reduced the internode length. Plant height was decreased to approximately 32 cm allowing for higher plant density without a delay in flowering and seed setting rate. The three light systems (T5 fluorescent bulbs, LEDs, and High Pressure Sodium +Metal-halide lamp) evaluated did not differ significantly in terms of flowering time in field pea. Collectively, the combination of 0.6 µM flurprimidol, 217 plant. m-2, 20 h photoperiod, 21/16 oC light/dark temperature in a hydroponic system with vermiculite substrate, applying scheduled fertilizer application based on growth stage, and 500 µmole.m-2.s-1 light intensity using T5 bulbs resulted in 100% of plants flowering within 34 ± 3 days and 96.5% of plants completed seed setting in 68.2 ± 3.6 days, i.e., 30-45 days/generation faster than conventional single seed descent (SSD) methods. These regeneration cycles were reproducible consistently. Hence, RGT could double (5.3) generations per year, using 3% occupying space, compared to SSD (2-3 generation/year). Embryo rescue of immature seeds at 7-8 mm stage, using commercial fertilizer solutions (Holland’s Secret™) showed seed setting rate of 95%, while younger embryos had lower germination rate. Mature embryos had a seed setting rate of 96.5% without either hormones or sugar added. So, considering the higher cost of embryo rescue using a procedure which requires skill, additional materials, and expenses, it could be removed from RGT with a further cost saving, and the process could be stopped between generations if required.

Keywords: field pea, flowering, rapid regeneration, recombinant inbred lines, single seed descent

Procedia PDF Downloads 362