Search results for: influence propagation
12 Transforming Emergency Care: Revolutionizing Obstetrics and Gynecology Operations for Enhanced Excellence
Authors: Lolwa Alansari, Hanen Mrabet, Kholoud Khaled, Abdelhamid Azhaghdani, Sufia Athar, Aska Kaima, Zaineb Mhamdia, Zubaria Altaf, Almunzer Zakaria, Tamara Alshadafat
Abstract:
Introduction: The Obstetrics and Gynecology Emergency Department at Alwakra Hospital has faced significant challenges, which have been further worsened by the impact of the COVID-19 pandemic. These challenges involve issues such as overcrowding, extended wait times, and a notable surge in demand for emergency care services. Moreover, prolonged waiting times have emerged as a primary factor contributing to situations where patients leave without receiving attention, known as left without being seen (LWBS), and unexpectedly abscond. Addressing the issue of insufficient patient mobility in the obstetrics and gynecology emergency department has brought about substantial improvements in patient care, healthcare administration, and overall departmental efficiency. These changes have not only alleviated overcrowding but have also elevated the quality of emergency care, resulting in higher patient satisfaction, better outcomes, and operational rewards. Methodology: The COVID-19 pandemic has served as a catalyst for substantial transformations in the obstetrics and gynecology emergency, aligning seamlessly with the strategic direction of Hamad Medical Corporation (HMC). The fundamental aim of this initiative is to revolutionize the operational efficiency of the OB-GYN ED. To accomplish this mission, a range of transformations has been initiated, focusing on essential areas such as digitizing systems, optimizing resource allocation, enhancing budget efficiency, and reducing overall costs. The project utilized the Plan-Do-Study-Act (PDSA) model, involving a diverse team collecting baseline data and introducing throughput improvements. Post-implementation data and feedback were analysed, leading to the integration of effective interventions into standard procedures. These interventions included optimized space utilization, real-time communication, bedside registration, technology integration, pre-triage screening, enhanced communication and patient education, consultant presence, and a culture of continuous improvement. These strategies significantly reduced waiting times, enhancing both patient care and operational efficiency. Results: Results demonstrated a substantial reduction in overall average waiting time, dropping from 35 to approximately 14 minutes by August 2023. The wait times for priority 1 cases have been reduced from 22 to 0 minutes, and for priority 2 cases, the wait times have been reduced from 32 to approximately 13.6 minutes. The proportion of patients spending less than 8 hours in the OB ED observation beds rose from 74% in January 2022 to over 98% in 2023. Notably, there was a remarkable decrease in LWBS and absconded patient rates from 2020 to 2023. Conclusion: The project initiated a profound change in the department's operational environment. Efficiency became deeply embedded in the unit's culture, promoting teamwork among staff that went beyond the project's original focus and had a positive influence on operations in other departments. This effectiveness not only made processes more efficient but also resulted in significant cost reductions for the hospital. These cost savings were achieved by reducing wait times, which in turn led to fewer prolonged patient stays and reduced the need for additional treatments. These continuous improvement initiatives have now become an integral part of the Obstetrics and Gynecology Division's standard operating procedures, ensuring that the positive changes brought about by the project persist and evolve over time.Keywords: overcrowding, waiting time, person centered care, quality initiatives
Procedia PDF Downloads 6511 Optimizing AI Voice for Adolescent Health Education: Preferences and Trustworthiness Across Teens and Parent
Authors: Yu-Lin Chen, Kimberly Koester, Marissa Raymond-Flesh, Anika Thapar, Jay Thapar
Abstract:
Purpose: Effectively communicating adolescent health topics to teens and their parents is crucial. This study emphasizes critically evaluating the optimal use of artificial intelligence tools (AI), which are increasingly prevalent in disseminating health information. By fostering a deeper understanding of AI voice preference in the context of health, the research aspires to have a ripple effect, enhancing the collective health literacy and decision-making capabilities of both teenagers and their parents. This study explores AI voices' potential within health learning modules for annual well-child visits. We aim to identify preferred voice characteristics and understand factors influencing perceived trustworthiness, ultimately aiming to improve health literacy and decision-making in both demographics. Methods: A cross-sectional study assessed preferences and trust perceptions of AI voices in learning modules among teens (11-18) and their parents/guardians in Northern California. The study involved the development of four distinct learning modules covering various adolescent health-related topics, including general communication, sexual and reproductive health communication, parental monitoring, and well-child check-ups. Participants were asked to evaluate eight AI voices across the modules, considering a set of six factors such as intelligibility, naturalness, prosody, social impression, trustworthiness, and overall appeal, using Likert scales ranging from 1 to 10 (the higher, the better). They were also asked to select their preferred choice of voice for each module. Descriptive statistics summarized participant demographics. Chi-square/t-tests explored differences in voice preferences between groups. Regression models identified factors impacting the perceived trustworthiness of the top-selected voice per module. Results: Data from 104 participants (teen=63; adult guardian = 41) were included in the analysis. The mean age is 14.9 for teens (54% male) and 41.9 for the parent/guardian (12% male). At the same time, similar voice quality ratings were observed across groups, and preferences varied by topic. For instance, in general communication, teens leaned towards young female voices, while parents preferred mature female tones. Interestingly, this trend reversed for parental monitoring, with teens favoring mature male voices and parents opting for mature female ones. Both groups, however, converged on mature female voices for sexual and reproductive health topics. Beyond preferences, the study delved into factors influencing perceived trustworthiness. Interestingly, social impression and sound appeal emerged as the most significant contributors across all modules, jointly explaining 71-75% of the variance in trustworthiness ratings. Conclusion: The study emphasizes the importance of catering AI voices to specific audiences and topics. Social impression and sound appeal emerged as critical factors influencing perceived trustworthiness across all modules. These findings highlight the need to tailor AI voices by age and the specific health information being delivered. Ensuring AI voices resonate with both teens and their parents can foster their engagement and trust, ultimately leading to improved health literacy and decision-making for both groups. Limitations and future research: This study lays the groundwork for understanding AI voice preferences for teenagers and their parents in healthcare settings. However, limitations exist. The sample represents a specific geographic location, and cultural variations might influence preferences. Additionally, the modules focused on topics related to well-child visits, and preferences might differ for more sensitive health topics. Future research should explore these limitations and investigate the long-term impact of AI voice on user engagement, health outcomes, and health behaviors.Keywords: artificial intelligence, trustworthiness, voice, adolescent
Procedia PDF Downloads 5510 Moths of Indian Himalayas: Data Digging for Climate Change Monitoring
Authors: Angshuman Raha, Abesh Kumar Sanyal, Uttaran Bandyopadhyay, Kaushik Mallick, Kamalika Bhattacharyya, Subrata Gayen, Gaurab Nandi Das, Mohd. Ali, Kailash Chandra
Abstract:
Indian Himalayan Region (IHR), due to its sheer latitudinal and altitudinal expanse, acts as a mixing ground for different zoogeographic faunal elements. The innumerable unique and distributional restricted rare species of IHR are constantly being threatened with extinction by the ongoing climate change scenario. Many of which might have faced extinction without even being noticed or discovered. Monitoring the community dynamics of a suitable taxon is indispensable to assess the effect of this global perturbation at micro-habitat level. Lepidoptera, particularly moths are suitable for this purpose due to their huge diversity and strict herbivorous nature. The present study aimed to collate scattered historical records of moths from IHR and spatially disseminate the same in Geographic Information System (GIS) domain. The study also intended to identify moth species with significant altitudinal shifts which could be prioritised for monitoring programme to assess the effect of climate change on biodiversity. A robust database on moths recorded from IHR was prepared from voluminous secondary literature and museum collections. Historical sampling points were transformed into richness grids which were spatially overlaid on altitude, annual precipitation and vegetation layers separately to show moth richness patterns along major environmental gradients. Primary samplings were done by setting standard light traps at 11 Protected Areas representing five Indian Himalayan biogeographic provinces. To identify significant altitudinal shifts, past and present altitudinal records of the identified species from primary samplings were compared. A consolidated list of 4107 species belonging to 1726 genera of 62 families of moths was prepared from a total of 10,685 historical records from IHR. Family-wise assemblage revealed Erebidae to be the most speciose family with 913 species under 348 genera, followed by Geometridae with 879 species under 309 genera and Noctuidae with 525 species under 207 genera. Among biogeographic provinces, Central Himalaya represented maximum records with 2248 species, followed by Western and North-western Himalaya with 1799 and 877 species, respectively. Spatial analysis revealed species richness was more or less uniform (up to 150 species record per cell) across IHR. Throughout IHR, the middle elevation zones between 1000-2000m encompassed high species richness. Temperate coniferous forest associated with 1500-2000mm rainfall zone showed maximum species richness. Total 752 species of moths were identified representing 23 families from the present sampling. 13 genera were identified which were restricted to specialized habitats of alpine meadows over 3500m. Five historical localities with high richness of >150 species were selected which could be considered for repeat sampling to assess climate change influence on moth assemblage. Of the 7 species exhibiting significant altitudinal ascend of >2000m, Trachea auriplena, Diphtherocome fasciata (Noctuidae) and Actias winbrechlini (Saturniidae) showed maximum range shift of >2500m, indicating intensive monitoring of these species. Great Himalayan National Park harbours most diverse assemblage of high-altitude restricted species and should be a priority site for habitat conservation. Among the 13 range restricted genera, Arichanna, Opisthograptis, Photoscotosia (Geometridae), Phlogophora, Anaplectoides and Paraxestia (Noctuidae) were dominant and require rigorous monitoring, as they are most susceptible to climatic perturbations.Keywords: altitudinal shifts, climate change, historical records, Indian Himalayan region, Lepidoptera
Procedia PDF Downloads 1709 Computational Fluid Dynamics Simulation of a Nanofluid-Based Annular Solar Collector with Different Metallic Nano-Particles
Authors: Sireetorn Kuharat, Anwar Beg
Abstract:
Motivation- Solar energy constitutes the most promising renewable energy source on earth. Nanofluids are a very successful family of engineered fluids, which contain well-dispersed nanoparticles suspended in a stable base fluid. The presence of metallic nanoparticles (e.g. gold, silver, copper, aluminum etc) significantly improves the thermo-physical properties of the host fluid and generally results in a considerable boost in thermal conductivity, density, and viscosity of nanofluid compared with the original base (host) fluid. This modification in fundamental thermal properties has profound implications in influencing the convective heat transfer process in solar collectors. The potential for improving solar collector direct absorber efficiency is immense and to gain a deeper insight into the impact of different metallic nanoparticles on efficiency and temperature enhancement, in the present work, we describe recent computational fluid dynamics simulations of an annular solar collector system. The present work studies several different metallic nano-particles and compares their performance. Methodologies- A numerical study of convective heat transfer in an annular pipe solar collector system is conducted. The inner tube contains pure water and the annular region contains nanofluid. Three-dimensional steady-state incompressible laminar flow comprising water- (and other) based nanofluid containing a variety of metallic nanoparticles (copper oxide, aluminum oxide, and titanium oxide nanoparticles) is examined. The Tiwari-Das model is deployed for which thermal conductivity, specific heat capacity and viscosity of the nanofluid suspensions is evaluated as a function of solid nano-particle volume fraction. Radiative heat transfer is also incorporated using the ANSYS solar flux and Rosseland radiative models. The ANSYS FLUENT finite volume code (version 18.1) is employed to simulate the thermo-fluid characteristics via the SIMPLE algorithm. Mesh-independence tests are conducted. Validation of the simulations is also performed with a computational Harlow-Welch MAC (Marker and Cell) finite difference method and excellent correlation achieved. The influence of volume fraction on temperature, velocity, pressure contours is computed and visualized. Main findings- The best overall performance is achieved with copper oxide nanoparticles. Thermal enhancement is generally maximized when water is utilized as the base fluid, although in certain cases ethylene glycol also performs very efficiently. Increasing nanoparticle solid volume fraction elevates temperatures although the effects are less prominent in aluminum and titanium oxide nanofluids. Significant improvement in temperature distributions is achieved with copper oxide nanofluid and this is attributed to the superior thermal conductivity of copper compared to other metallic nano-particles studied. Important fluid dynamic characteristics are also visualized including circulation and temperature shoots near the upper region of the annulus. Radiative flux is observed to enhance temperatures significantly via energization of the nanofluid although again the best elevation in performance is attained consistently with copper oxide. Conclusions-The current study generalizes previous investigations by considering multiple metallic nano-particles and furthermore provides a good benchmark against which to calibrate experimental tests on a new solar collector configuration currently being designed at Salford University. Important insights into the thermal conductivity and viscosity with metallic nano-particles is also provided in detail. The analysis is also extendable to other metallic nano-particles including gold and zinc.Keywords: heat transfer, annular nanofluid solar collector, ANSYS FLUENT, metallic nanoparticles
Procedia PDF Downloads 1438 Full Characterization of Heterogeneous Antibody Samples under Denaturing and Native Conditions on a Hybrid Quadrupole-Orbitrap Mass Spectrometer
Authors: Rowan Moore, Kai Scheffler, Eugen Damoc, Jennifer Sutton, Aaron Bailey, Stephane Houel, Simon Cubbon, Jonathan Josephs
Abstract:
Purpose: MS analysis of monoclonal antibodies (mAbs) at the protein and peptide levels is critical during development and production of biopharmaceuticals. The compositions of current generation therapeutic proteins are often complex due to various modifications which may affect efficacy. Intact proteins analyzed by MS are detected in higher charge states that also provide more complexity in mass spectra. Protein analysis in native or native-like conditions with zero or minimal organic solvent and neutral or weakly acidic pH decreases charge state value resulting in mAb detection at higher m/z ranges with more spatial resolution. Methods: Three commercially available mAbs were used for all experiments. Intact proteins were desalted online using size exclusion chromatography (SEC) or reversed phase chromatography coupled on-line with a mass spectrometer. For streamlined use of the LC- MS platform we used a single SEC column and alternately selected specific mobile phases to perform separations in either denaturing or native-like conditions: buffer A (20 % ACN, 0.1 % FA) with Buffer B (100 mM ammonium acetate). For peptide analysis mAbs were proteolytically digested with and without prior reduction and alkylation. The mass spectrometer used for all experiments was a commercially available Thermo Scientific™ hybrid Quadrupole-Orbitrap™ mass spectrometer, equipped with the new BioPharma option which includes a new High Mass Range (HMR) mode that allows for improved high mass transmission and mass detection up to 8000 m/z. Results: We have analyzed the profiles of three mAbs under reducing and native conditions by direct infusion with offline desalting and with on-line desalting via size exclusion and reversed phase type columns. The presence of high salt under denaturing conditions was found to influence the observed charge state envelope and impact mass accuracy after spectral deconvolution. The significantly lower charge states observed under native conditions improves the spatial resolution of protein signals and has significant benefits for the analysis of antibody mixtures, e.g. lysine variants, degradants or sequence variants. This type of analysis requires the detection of masses beyond the standard mass range ranging up to 6000 m/z requiring the extended capabilities available in the new HMR mode. We have compared each antibody sample that was analyzed individually with mixtures in various relative concentrations. For this type of analysis, we observed that apparent native structures persist and ESI is benefited by the addition of low amounts of acetonitrile and formic acid in combination with the ammonium acetate-buffered mobile phase. For analyses on the peptide level we analyzed reduced/alkylated, and non-reduced proteolytic digests of the individual antibodies separated via reversed phase chromatography aiming to retrieve as much information as possible regarding sequence coverage, disulfide bridges, post-translational modifications such as various glycans, sequence variants, and their relative quantification. All data acquired were submitted to a single software package for analysis aiming to obtain a complete picture of the molecules analyzed. Here we demonstrate the capabilities of the mass spectrometer to fully characterize homogeneous and heterogeneous therapeutic proteins on one single platform. Conclusion: Full characterization of heterogeneous intact protein mixtures by improved mass separation on a quadrupole-Orbitrap™ mass spectrometer with extended capabilities has been demonstrated.Keywords: disulfide bond analysis, intact analysis, native analysis, mass spectrometry, monoclonal antibodies, peptide mapping, post-translational modifications, sequence variants, size exclusion chromatography, therapeutic protein analysis, UHPLC
Procedia PDF Downloads 3627 Sandstone Petrology of the Kolhan Basin, Eastern India: Implications for the Tectonic Evolution of a Half-Graben
Authors: Rohini Das, Subhasish Das, Smruti Rekha Sahoo, Shagupta Yesmin
Abstract:
The Paleoproterozoic Kolhan Group (Purana) ensemble constitutes the youngest lithostratigraphic 'outlier' in the Singhbhum Archaean craton. The Kolhan unconformably overlies both the Singhbhum granite and the Iron Ore Group (IOG). Representing a typical sandstone-shale ( +/- carbonates) sequence, the Kolhan is characterized by the development of thin and discontinuous patches of basal conglomerates draped by sandstone beds. The IOG-fault limits the western 'distal' margin of the Kolhan basin showing evidence of passive subsidence subsequent to the initial rifting stage. The basin evolved as a half-graben under the influence of an extensional stress regime. The assumption of a tectonic setting for the NE-SW trending Kolhan basin possibly relates to the basin opening to the E-W extensional stress system that prevailed during the development of the Newer Dolerite dyke. The Paleoproterozoic age of the Kolhan basin is based on the consideration of the conformable stress pattern responsible both for the basin opening and the development of the conjugate fracture system along which the Newer Dolerite dykes intruded the Singhbhum Archaean craton. The Kolhan sandstones show progressive change towards greater textural and mineralogical maturity in its upbuilding. The trend of variations in different mineralogical and textural attributes, however, exhibits inflections at different lithological levels. Petrological studies collectively indicate that the sandstones were dominantly derived from a weathered granitic crust under a humid climatic condition. Provenance-derived variations in sandstone compositions are therefore a key in unraveling regional tectonic histories. The basin axis controlled the progradation direction which was likely driven by climatically induced sediment influx, a eustatic fall, or both. In the case of the incongruent shift, increased sediment supply permitted the rivers to cross the basinal deep. Temporal association of the Kolhan with tectonic structures in the belt indicates that syn-tectonic thrust uplift, not isostatic uplift or climate, caused the influx of quartz. The sedimentation pattern in the Kolhan reflects a change from braided fluvial-ephemeral pattern to a fan-delta-lacustrine type. The channel geometries and the climate exerted a major control on the processes of sediment transfer. Repeated fault controlled uplift of the source followed by subsidence and forced regression, generated multiple sediment cyclicity that led to the fluvial-fan delta sedimentation pattern. Intermittent uplift of the faulted blocks exposed fresh bedrock to mechanical weathering that generated a large amount of detritus and resulted to forced regressions, repeatedly disrupting the cycles which may reflect a stratigraphic response of connected rift basins at the early stage of extension. The marked variations in the thickness of the fan delta succession and the stacking pattern in different measured profiles reflect the overriding tectonic controls on fan delta evolution. The accumulated fault displacement created higher accommodation and thicker delta sequences. Intermittent uplift of fault blocks exposed fresh bedrock to mechanical weathering, generated a large amount of detritus, and resulted in forced closure of the land-locked basin, repeatedly disrupting the fining upward pattern. The control of source rock lithology or climate was of secondary importance to tectonic effects. Such a retrograding fan delta could be a stratigraphic response of connected rift basins at the early stage of extension.Keywords: Kolhan basin, petrology, sandstone, tectonics
Procedia PDF Downloads 5046 Research on a Digital Basketball Sports Game (DBSG) Framework Based on the Female Perspective
Authors: Ran Yue, Zhejing Li
Abstract:
Context: The context of this study is the field of Digital Basketball Sports Games (DBSG). The existing DBSGs often prioritize competitiveness and confrontation, neglecting the narrative and progressive expression, especially from a female standpoint. This study aims to address this gap by analyzing existing DBSGs and proposing a comprehensive framework tailored to meet the needs and desires of women in basketball. Research Aim: The aim of this research is to examine the narrative perspectives of women in basketball and understand their desires and expectations within the sport. It also seeks to investigate methods to seamlessly integrate women's basketball stories into gameplay, addressing their specific needs and expectations. Additionally, the study aims to develop a digital basketball sports game framework that combines narrative richness and entertainment, with a focus on the female audience. Methodology: The study utilizes affective-arousal theories as a psychological framework to explore how emotional arousal influences player engagement and responses in the digital basketball sports game. It employs in-depth case studies to examine specific instances and gain insights into the implementation and impact of narrative elements and educational features in existing DBSGs. Comparative studies are conducted to analyze different DBSGs, identifying effective strategies and shortcomings. Findings: The research findings contribute to the development of a digital basketball game framework from a female perspective. This framework enhances the completeness, diversity, and inclusivity of digital basketball sports games. By addressing the specific needs of women in basketball, including fundamental knowledge, sports skills, safety awareness, and rehabilitation training methods, the framework provides a foundational reservoir for a broader range of basketball participation. It enriches the gaming experience by enhancing enjoyment, narrative, and diversity. It also acts as a catalyst to encourage more women to engage with basketball stories, participate in the sport, persevere, and derive greater enjoyment while benefiting their physical fitness and health. Theoretical Importance: The study contributes to the existing literature by incorporating game motivation psychology theories and proposing a comprehensive framework that caters to the specific needs of women in basketball. It emphasizes the importance of considering the narrative and progressive expression in DBSGs, especially from a female perspective. The research explores affective-arousal theories and provides insights into how emotional arousal can influence player engagement and responses in digital basketball sports games. Data Collection and Analysis Procedures: The study collects data through in-depth case studies of existing DBSGs, examining specific instances to uncover insights into the implementation and impact of narrative elements and educational features. Comparative studies are conducted to contrast and analyze various DBSGs, identifying effective strategies and shortcomings. The analysis procedures involve identifying commonalities, differences, strengths, and weaknesses among the DBSGs, guiding the development of a female-centric perspective in the proposed framework. Questions Addressed: The study addresses the following questions: What are the narrative perspectives of women in basketball? How can women's basketball stories be seamlessly integrated into gameplay? What are the specific needs and expectations of women in basketball? What effective strategies and shortcomings exist in current DBSGs? How can a digital basketball game framework be developed to cater to the female audience? Conclusion: In conclusion, this study contributes to the field of DBSGs by proposing a comprehensive digital basketball game framework from a female perspective. The framework enhances the inclusivity, diversity, and enjoyment of DBSGs by addressing the specific needs and desires of women in basketball. It provides a foundation for a broader range of basketball participation, enriching the gaming experience and benefiting women's physical fitness and health. The research, using affective-arousal theories and in-depth case studies, provides valuable insights into the implementation and impact of narrative elements and educational features in existing DBSGs, guiding the development of the proposed female-centric framework.Keywords: digital basketball game, game framework, female perspective, game narratives
Procedia PDF Downloads 655 Influence of Oil Prices on the Central Caucasus State of Georgia
Authors: Charaia Vakhtang
Abstract:
Global oil prices are seeing new bottoms every day. The prices have already collapsed beneath the psychological verge of 30 USD. This tendency would be fully acceptable for the Georgian consumers, but there is one detail: two our neighboring countries (one friendly and one hostile) largely depend on resources of these hydrocarbons. Namely, the ratio of Azerbaijan in Georgia’s total FDI inflows in 2014 marked 20%. The ratio reached 40% in the January to September 2015. Azerbaijan is Georgia’s leading exports market. Namely, in 2014 Georgia’s exports to Azerbaijan constituted 544 million USD, i.e. 19% in Georgia’s total experts. In the January to November period of 2015, the ratio exceeded 11%. Moreover, Azerbaijan is Georgia’s strategic partner country as part of many regional projects that are designated for long-term perspectives. For example, the Baku-Tbilisi-Karsi railroad, the Black Sea terminal, preferential gas tariffs for Georgia and so on. The Russian economic contribution to the Georgian economy is also considerable, despite the losses the Russian hostile policy has inflicted to our country. Namely, Georgian emigrants are mainly employed in the Russian Federation and this category of Georgian citizens transfers considerable funds to Georgia every year. These transfers account for about 1 billion USD and consequently, these funds previously equalized to total FDI inflows. Moreover, despite the difficulties in the Russian market, Russia still remains a leader in terms of money transfers to Georgia. According to the last reports, money transfers from Russia to Georgia slipped by 276 million USD in 2015 compared to 2014 (-39%). At the same time, the total money transfers to Georgia in 2015 marked 1.08 billion USD, down 25% from 1.44 billion USD in 2014. This signifies the contraction in money transfers is by ¾ dependent on the Russian factor (in this case, contraction in oil prices and the Russian Ruble devaluation directly make negative impact on money transfers to Georgia). As to other countries, it is interesting that money transfers have also slipped from Italy (to 109 million USD from 121 million USD). Nevertheless, the country’s ratio in total money transfers to Georgia has increased to 10% from 8%. Money transfers to Georgia have increased by 22% (+18 million USD) from the USA. Money transfers have halved from Greece to 117 million USD from 205 million USD. As to Turkey, money transfers to Georgia from Turkey have increased by 1% to 69 million USD. Moreover, the problems with the national currencies of Russia and Azerbaijan, along with the above-mentioned developments, outline unfavorable perspectives for the Georgian economy. The depreciation of the national currencies of Azerbaijan and Russia is expected to bring unfavorable results for the Georgian economy. Even more so, the statement released by the Russian Finance Ministry on expected default is in direct relation to the welfare of the whole region and these tendencies will make direct and indirect negative impacts on Georgia’s economic indicators. Amid the economic slowdown in Armenia, Turkey and Ukraine, Georgia should try to enhance economic ties with comparatively stronger and flexible economies such as EU and USA. In other case, the Georgian economy will enter serious turbulent zone. We should make maximum benefit from the EU association agreement. It should be noted that the Russian economy slowdown that causes both regretful and happy moods in Georgia, will make negative impact on the Georgian economy. The same forecasts are made in relation to Azerbaijan. However, Georgia has many partner countries. Enhancement and development of the economic relations with these countries may maximally alleviate negative impacts from the declining economies. First of all, the EU association agreement should be mentioned as a main source for Georgia’s economic stabilization. It is the Georgian government‘s responsibility to successfully fulfill the EU association agreement requirements. In any case the imports must be replaced by domestic products and the exports should be stimulated through government support programs. The Authorities should ensure drawing more foreign investments and money resources, accumulating more tourism revenues and reducing external debts, budget expenditures should be balanced and the National Bank should carry out strict monetary policy. Moreover, the Government should develop a long-term state economic policy and carry out this policy at various Ministries. It is also of crucial importance to carry out constitutive policy and promote perspective directions on the domestic level.Keywords: oil prices, economic growth, foreign direct investments, international trade
Procedia PDF Downloads 2704 Revolutionizing Financial Forecasts: Enhancing Predictions with Graph Convolutional Networks (GCN) - Long Short-Term Memory (LSTM) Fusion
Authors: Ali Kazemi
Abstract:
Those within the volatile and interconnected international economic markets, appropriately predicting market trends, hold substantial fees for traders and financial establishments. Traditional device mastering strategies have made full-size strides in forecasting marketplace movements; however, monetary data's complicated and networked nature calls for extra sophisticated processes. This observation offers a groundbreaking method for monetary marketplace prediction that leverages the synergistic capability of Graph Convolutional Networks (GCNs) and Long Short-Term Memory (LSTM) networks. Our suggested algorithm is meticulously designed to forecast the traits of inventory market indices and cryptocurrency costs, utilizing a comprehensive dataset spanning from January 1, 2015, to December 31, 2023. This era, marked by sizable volatility and transformation in financial markets, affords a solid basis for schooling and checking out our predictive version. Our algorithm integrates diverse facts to construct a dynamic economic graph that correctly reflects market intricacies. We meticulously collect opening, closing, and high and low costs daily for key inventory marketplace indices (e.g., S&P 500, NASDAQ) and widespread cryptocurrencies (e.g., Bitcoin, Ethereum), ensuring a holistic view of marketplace traits. Daily trading volumes are also incorporated to seize marketplace pastime and liquidity, providing critical insights into the market's shopping for and selling dynamics. Furthermore, recognizing the profound influence of the monetary surroundings on financial markets, we integrate critical macroeconomic signs with hobby fees, inflation rates, GDP increase, and unemployment costs into our model. Our GCN algorithm is adept at learning the relational patterns amongst specific financial devices represented as nodes in a comprehensive market graph. Edges in this graph encapsulate the relationships based totally on co-movement styles and sentiment correlations, enabling our version to grasp the complicated community of influences governing marketplace moves. Complementing this, our LSTM algorithm is trained on sequences of the spatial-temporal illustration discovered through the GCN, enriched with historic fee and extent records. This lets the LSTM seize and expect temporal marketplace developments accurately. Inside the complete assessment of our GCN-LSTM algorithm across the inventory marketplace and cryptocurrency datasets, the version confirmed advanced predictive accuracy and profitability compared to conventional and opportunity machine learning to know benchmarks. Specifically, the model performed a Mean Absolute Error (MAE) of 0.85%, indicating high precision in predicting day-by-day charge movements. The RMSE was recorded at 1.2%, underscoring the model's effectiveness in minimizing tremendous prediction mistakes, which is vital in volatile markets. Furthermore, when assessing the model's predictive performance on directional market movements, it achieved an accuracy rate of 78%, significantly outperforming the benchmark models, averaging an accuracy of 65%. This high degree of accuracy is instrumental for techniques that predict the course of price moves. This study showcases the efficacy of mixing graph-based totally and sequential deep learning knowledge in economic marketplace prediction and highlights the fee of a comprehensive, records-pushed evaluation framework. Our findings promise to revolutionize investment techniques and hazard management practices, offering investors and economic analysts a powerful device to navigate the complexities of cutting-edge economic markets.Keywords: financial market prediction, graph convolutional networks (GCNs), long short-term memory (LSTM), cryptocurrency forecasting
Procedia PDF Downloads 663 An Intelligent Search and Retrieval System for Mining Clinical Data Repositories Based on Computational Imaging Markers and Genomic Expression Signatures for Investigative Research and Decision Support
Authors: David J. Foran, Nhan Do, Samuel Ajjarapu, Wenjin Chen, Tahsin Kurc, Joel H. Saltz
Abstract:
The large-scale data and computational requirements of investigators throughout the clinical and research communities demand an informatics infrastructure that supports both existing and new investigative and translational projects in a robust, secure environment. In some subspecialties of medicine and research, the capacity to generate data has outpaced the methods and technology used to aggregate, organize, access, and reliably retrieve this information. Leading health care centers now recognize the utility of establishing an enterprise-wide, clinical data warehouse. The primary benefits that can be realized through such efforts include cost savings, efficient tracking of outcomes, advanced clinical decision support, improved prognostic accuracy, and more reliable clinical trials matching. The overarching objective of the work presented here is the development and implementation of a flexible Intelligent Retrieval and Interrogation System (IRIS) that exploits the combined use of computational imaging, genomics, and data-mining capabilities to facilitate clinical assessments and translational research in oncology. The proposed System includes a multi-modal, Clinical & Research Data Warehouse (CRDW) that is tightly integrated with a suite of computational and machine-learning tools to provide insight into the underlying tumor characteristics that are not be apparent by human inspection alone. A key distinguishing feature of the System is a configurable Extract, Transform and Load (ETL) interface that enables it to adapt to different clinical and research data environments. This project is motivated by the growing emphasis on establishing Learning Health Systems in which cyclical hypothesis generation and evidence evaluation become integral to improving the quality of patient care. To facilitate iterative prototyping and optimization of the algorithms and workflows for the System, the team has already implemented a fully functional Warehouse that can reliably aggregate information originating from multiple data sources including EHR’s, Clinical Trial Management Systems, Tumor Registries, Biospecimen Repositories, Radiology PAC systems, Digital Pathology archives, Unstructured Clinical Documents, and Next Generation Sequencing services. The System enables physicians to systematically mine and review the molecular, genomic, image-based, and correlated clinical information about patient tumors individually or as part of large cohorts to identify patterns that may influence treatment decisions and outcomes. The CRDW core system has facilitated peer-reviewed publications and funded projects, including an NIH-sponsored collaboration to enhance the cancer registries in Georgia, Kentucky, New Jersey, and New York, with machine-learning based classifications and quantitative pathomics, feature sets. The CRDW has also resulted in a collaboration with the Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC) at the U.S. Department of Veterans Affairs to develop algorithms and workflows to automate the analysis of lung adenocarcinoma. Those studies showed that combining computational nuclear signatures with traditional WHO criteria through the use of deep convolutional neural networks (CNNs) led to improved discrimination among tumor growth patterns. The team has also leveraged the Warehouse to support studies to investigate the potential of utilizing a combination of genomic and computational imaging signatures to characterize prostate cancer. The results of those studies show that integrating image biomarkers with genomic pathway scores is more strongly correlated with disease recurrence than using standard clinical markers.Keywords: clinical data warehouse, decision support, data-mining, intelligent databases, machine-learning.
Procedia PDF Downloads 1272 Municipal Solid Waste Management in Ethiopia: Systematic Review of Physical and Chemical Compositions and Generation Rate
Authors: Tsegay Kahsay Gebrekidan, Gebremariam Gebrezgabher Gebremedhin, Abraha Kahsay Weldemariam, Meaza Kidane Teferi
Abstract:
Municipal solid waste management (MSWM) in Ethiopia is a complex issue with institutional, social, political, environmental, and economic dimensions, impacting sustainable development. Effective MSWM planning necessitates understanding the generation rate and composition of waste. This systematic review synthesizes qualitative and quantitative data from various sources to aggregate current knowledge, identify gaps, and provide a comprehensive understanding of municipal solid waste management in Ethiopia. The findings reveal that the generation rate of municipal solid waste in Ethiopia is 0.38 kg/ca/day, with the waste composition being predominantly food waste, followed by ash, dust, and sand, and yard waste. Over 85% of this MSW is either reusable or recyclable, with a significant portion being organic matter (73.13% biodegradable) and 11.78% recyclable materials. Physicochemical analyses reveal that Ethiopian MSW is suitable for composting and biogas production, offering opportunities to reduce environmental pollution, and GHGs, support urban agriculture, and create job opportunities. However; challenges persist, including a lack of political will, weak municipal planning, limited community awareness, and inadequate waste management infrastructure, and only 31.8% of MSW is collected legally, leading to inefficient and harmful disposal practices. To improve MSWM, Ethiopia should focus on public awareness; increased funding, infrastructure investment, private sector partnerships, and implementing the 4 R principles (reduce, reuse, and recycle). An integrated approach involving government, industry, and civil society is essential. Further research on the physicochemical properties and strategic uses of MSW is needed to enhance management practices. Implications: The comprehensive study of municipal solid waste management (MSWM) in Ethiopia reveals the intricate interplay of institutional, social, political, environmental, and economic factors that influence the nation’s sustainable development. The findings underscore the urgent need for tailored, integrated waste management strategies that are informed by a thorough understanding of MSW generation rates, composition, and current management practices. Ethiopia’s lower per capita MSW generation compared to developed countries and the predominantly organic composition of its waste present significant opportunities for sustainable waste management practices such as composting and recycling. These practices can not only minimize the environmental impact but also support urban greening, agriculture, and renewable energy production. The high organic content, suitable physicochemical properties of MSW for composting, and potential for biogas and briquette production highlight pathways for creating employment, reducing waste, and enhancing soil fertility. Despite these opportunities, Ethiopia faces substantial challenges due to inadequate political will, weak municipal planning, limited community awareness, insufficient waste management infrastructure, and poor policy implementation. The high rate of illegal waste disposal further exacerbates environmental and health issues, emphasizing the need for a more effective and integrated MSWM approach. To address these challenges and harness the potential of MSW, Ethiopia must prioritize increasing public awareness; investing in infrastructure, fostering private sector partnerships, and implementing the principles of reduce, reuse, and recycle (3 R). Developing strategies that involve all stakeholders and turning waste into valuable resources is crucial. Government, industry, and civil society must collaborate to implement integrated MSWM systems that focus on waste reduction at the source, alternative material use, and advanced recycling technologies. Further research at both federal and regional levels is essential to optimize the physicochemical analysis and strategic use of MSW. Prompt action is required to transform waste management into a pillar of sustainable urban development, ultimately improving environmental quality and human health in Ethiopia.Keywords: biodegradable, healthy environment, integrated solid waste management, municipal
Procedia PDF Downloads 151 A Study on the Use Intention of Smart Phone
Authors: Zhi-Zhong Chen, Jun-Hao Lu, Jr., Shih-Ying Chueh
Abstract:
Based on Unified Theory of Acceptance and Use of Technology (UTAUT), the study investigates people’s intention on using smart phones. The study additionally incorporates two new variables: 'self-efficacy' and 'attitude toward using'. Samples are collected by questionnaire survey, in which 240 are valid. After Correlation Analysis, Reliability Test, ANOVA, t-test and Multiple Regression Analysis, the study finds that social impact and self-efficacy have positive effect on use intentions, and the use intentions also have positive effect on use behavior.Keywords: [1] Ajzen & Fishbein (1975), “Belief, attitude, intention and behavior: An introduction to theory and research”, Reading MA: Addison-Wesley. [2] Bandura (1977) Self-efficacy: toward a unifying theory of behavioural change. Psychological Review , 84, 191–215. [3] Bandura( 1986) A. Bandura, Social foundations of though and action, Prentice-Hall. Englewood Cliffs. [4] Ching-Hui Huang (2005). The effect of Regular Exercise on Elderly Optimism: The Self-efficacy and Theory of Reasoned Action Perspectives.(Master's dissertation, National Taiwan Sport University, 2005).National Digital Library of Theses and Dissertations in Taiwan。 [5] Chun-Mo Wu (2007).The Effects of Perceived Risk and Service Quality on Purchase Intention - an Example of Taipei City Long-Term Care Facilities. (Master's dissertation, Ming Chuan University, 2007).National Digital Library of Theses and Dissertations in Taiwan. [6] Compeau, D.R., and Higgins, C.A., (1995) “Application of social cognitive theory to training for computer skills.”, Information Systems Research, 6(2), pp.118-143. [7] computer-self-efficacy and mediators of the efficacy-performance relationship. International Journal of Human-Computer Studies, 62, 737-758. [8] Davis et al(1989), “User acceptance of computer technology: A comparison of two theoretical models ”, Management Science, 35(8), p.982-1003. [9] Davis et al(1989), “User acceptance of computer technology:A comparison of two theoretical models ”, Management Science, 35(8), p.982-1003. [10] Davis, F.D. (1989). Perceived Usefulness, Perceived Ease of Use and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340。 [11] Davis. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319–340. doi:10.2307/249008 [12] Johnson, R. D. (2005). An empirical investigation of sources of application-specific [13] Mei-yin Hsu (2010).The Study on Attitude and Satisfaction of Electronic Documents System for Administrators of Elementary Schools in Changhua County.(Master's dissertation , Feng Chia University, 2010).National Digital Library of Theses and Dissertations in Taiwan. [14] Ming-Chun Hsieh (2010). Research on Parents’ Attitudes Toward Electronic Toys: The case of Taichung City.(Master's dissertation, Chaoyang University of Technology,2010).National Digital Library of Theses and Dissertations in Taiwan. [15] Moon and Kim(2001). Extending the TAM for a World-Wide-Web context, Information and Management, v.38 n.4, p.217-230. [16] Shang-Yi Hu (2010).The Impacts of Knowledge Management on Customer Relationship Management – Enterprise Characteristicsand Corporate Governance as a Moderator.(Master's dissertation, Leader University, 2010)。National Digital Library of Theses and Dissertations in Taiwan. [17] Sheng-Yi Hung (2013, September10).Worldwide sale of smartphones to hit one billion IDC:Android dominate the market. ETtoday. Retrieved data form the available protocol:2013/10/3. [18] Thompson, R.L., Higgins, C.A., and Howell, J.M.(1991), “Personal Computing: Toward a Conceptual Model of Utilization”, MIS Quarterly(15:1), pp. 125-143. [19] Venkatesh, V., M.G. Morris, G.B. Davis, and F. D. Davis (2003), “User acceptance of information technology: Toward a unified view, ” MIS Quarterly, 27, No. 3, pp.425-478. [20] Vijayasarathy, L. R. (2004), Predicting Consumer Intentions to Use On-Line Shopping: The Case for an Augmented Technology Acceptance Model, Information and Management, Vol.41, No.6, pp.747-762. [21] Wikipedia - smartphone (http://zh.wikipedia.org/zh-tw/%E6%99%BA%E8%83%BD%E6%89%8B%E6%9C%BA)。 [22] Wu-Minsan (2008).The impacts of self-efficacy, social support on work adjustment with hearing impaired. (Master's dissertation, Southern Taiwan University of Science and Technology, 2008).National Digital Library of Theses and Dissertations in Taiwan. [23] Yu-min Lin (2006). The Influence of Business Employee’s MSN Self-efficacy On Instant Messaging Usage Behavior and Communicaiton Satisfaction.(Master's dissertation, National Taiwan University of Science and Technology, 2006).National Digital Library of Theses and Dissertations in Taiwan.
Procedia PDF Downloads 410