Search results for: social network dynamics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15499

Search results for: social network dynamics

14719 Cyber Security Enhancement via Software Defined Pseudo-Random Private IP Address Hopping

Authors: Andre Slonopas, Zona Kostic, Warren Thompson

Abstract:

Obfuscation is one of the most useful tools to prevent network compromise. Previous research focused on the obfuscation of the network communications between external-facing edge devices. This work proposes the use of two edge devices, external and internal facing, which communicate via private IPv4 addresses in a software-defined pseudo-random IP hopping. This methodology does not require additional IP addresses and/or resources to implement. Statistical analyses demonstrate that the hopping surface must be at least 1e3 IP addresses in size with a broad standard deviation to minimize the possibility of coincidence of monitored and communication IPs. The probability of breaking the hopping algorithm requires a collection of at least 1e6 samples, which for large hopping surfaces will take years to collect. The probability of dropped packets is controlled via memory buffers and the frequency of hops and can be reduced to levels acceptable for video streaming. This methodology provides an impenetrable layer of security ideal for information and supervisory control and data acquisition systems.

Keywords: moving target defense, cybersecurity, network security, hopping randomization, software defined network, network security theory

Procedia PDF Downloads 167
14718 Evaluation of Security and Performance of Master Node Protocol in the Bitcoin Peer-To-Peer Network

Authors: Muntadher Sallal, Gareth Owenson, Mo Adda, Safa Shubbar

Abstract:

Bitcoin is a digital currency based on a peer-to-peer network to propagate and verify transactions. Bitcoin is gaining wider adoption than any previous crypto-currency. However, the mechanism of peers randomly choosing logical neighbors without any knowledge about underlying physical topology can cause a delay overhead in information propagation, which makes the system vulnerable to double-spend attacks. Aiming at alleviating the propagation delay problem, this paper introduces proximity-aware extensions to the current Bitcoin protocol, named Master Node Based Clustering (MNBC). The ultimate purpose of the proposed protocol, that are based on how clusters are formulated and how nodes can define their membership, is to improve the information propagation delay in the Bitcoin network. In MNBC protocol, physical internet connectivity increases, as well as the number of hops between nodes, decreases through assigning nodes to be responsible for maintaining clusters based on physical internet proximity. We show, through simulations, that the proposed protocol defines better clustering structures that optimize the performance of the transaction propagation over the Bitcoin protocol. The evaluation of partition attacks in the MNBC protocol, as well as the Bitcoin network, was done in this paper. Evaluation results prove that even though the Bitcoin network is more resistant against the partitioning attack than the MNBC protocol, more resources are needed to be spent to split the network in the MNBC protocol, especially with a higher number of nodes.

Keywords: Bitcoin network, propagation delay, clustering, scalability

Procedia PDF Downloads 101
14717 Global Stability Analysis of a Coupled Model for Healthy and Cancerous Cells Dynamics in Acute Myeloid Leukemia

Authors: Abdelhafid Zenati, Mohamed Tadjine

Abstract:

The mathematical formulation of biomedical problems is an important phase to understand and predict the dynamic of the controlled population. In this paper we perform a stability analysis of a coupled model for healthy and cancerous cells dynamics in Acute Myeloid Leukemia, this represents our first aim. Second, we illustrate the effect of the interconnection between healthy and cancer cells. The PDE-based model is transformed to a nonlinear distributed state space model (delay system). For an equilibrium point of interest, necessary and sufficient conditions of global asymptotic stability are given. Thus, we came up to give necessary and sufficient conditions of global asymptotic stability of the origin and the healthy situation and control of the dynamics of normal hematopoietic stem cells and cancerous during myelode Acute leukemia. Simulation studies are given to illustrate the developed results.

Keywords: distributed delay, global stability, modelling, nonlinear models, PDE, state space

Procedia PDF Downloads 242
14716 Latency-Based Motion Detection in Spiking Neural Networks

Authors: Mohammad Saleh Vahdatpour, Yanqing Zhang

Abstract:

Understanding the neural mechanisms underlying motion detection in the human visual system has long been a fascinating challenge in neuroscience and artificial intelligence. This paper presents a spiking neural network model inspired by the processing of motion information in the primate visual system, particularly focusing on the Middle Temporal (MT) area. In our study, we propose a multi-layer spiking neural network model to perform motion detection tasks, leveraging the idea that synaptic delays in neuronal communication are pivotal in motion perception. Synaptic delay, determined by factors like axon length and myelin insulation, affects the temporal order of input spikes, thereby encoding motion direction and speed. Overall, our spiking neural network model demonstrates the feasibility of capturing motion detection principles observed in the primate visual system. The combination of synaptic delays, learning mechanisms, and shared weights and delays in SMD provides a promising framework for motion perception in artificial systems, with potential applications in computer vision and robotics.

Keywords: neural network, motion detection, signature detection, convolutional neural network

Procedia PDF Downloads 63
14715 Apple in the Big Tech Oligopoly: An Analysis of Disruptive Innovation Trends and Their Influence on the Capacity of Conserving a Positive Social Impact as Primary Purpose

Authors: E. Loffi Borghese

Abstract:

In this comprehensive study, we delve into the intricate dynamics of the big tech oligopoly, focusing particularly on Apple as a case study. The core objective is to scrutinize the evolving relationship between a firm's commitment to positive social impact as its primary purpose and its resilience in the face of disruptive innovations within the big tech market. Our exploration begins with a theoretical framework, emphasizing the significance of distinguishing between corporate social responsibility and social impact as a primary purpose. Drawing on insights from Drumwright and Bartkus and Glassman, we underscore the transformative potential when a firm aligns its core business with a social mission, transcending mere side activities. Examining successful firms, such as Apple, we adopt Sinek's perspective on inspirational leadership and the "golden circle." This framework sheds light on why some organizations, like Apple, succeed in making positive social impact their primary purpose. Apple's early-stage life cycle is dissected, revealing a profound commitment to challenging the status quo and promoting simpler alternatives that resonate with its users' lives. The study then navigates through industry life cycles, drawing on Klepper's stages and Christensen's disruptive innovations. Apple's dominance in the big tech oligopoly is contrasted with companies like Harley Davidson and Polaroid, illustrating the consequences of failing to adapt to disruptive innovations. The data and methods employed encompass a qualitative approach, leveraging sources like ECB, Forbes, World in Data, and scientific articles. A secondary data analysis probes Apple's market evolution within the big tech oligopoly, emphasizing the shifts in market context and innovation trends that demand strategic adaptations. The subsequent sections scrutinize Apple's present innovation strategies, highlighting its diversified product portfolio and intensified focus on big data. We examine the implications of these shifts on Apple's capacity to maintain positive social impact as its primary purpose, pondering potential consequences on its brand perception. The study culminates in a reflection on the broader implications of the big tech oligopoly's dominance. It contemplates the diminishing competitiveness in the market and the potential sidelining of positive social impact as a competitive advantage. The expansion of tech firms into diverse sectors raises concerns about negative societal impacts, prompting a call for increased regulatory attention and awareness. In conclusion, this research serves as a catalyst for heightened awareness and discussion on the intricate interplay between firms' social impact goals, disruptive innovations, and the broader societal implications within the evolving landscape of the big tech oligopoly. Despite limitations, this study aims to stimulate further research, urging a conscious and responsible approach to shaping the future economic system.

Keywords: innovation trends, market dynamics, social impact, tech oligopoly

Procedia PDF Downloads 55
14714 Integrated Location-Allocation Planning in Multi Product Multi Echelon Single Period Closed Loop Supply Chain Network Design

Authors: Santhosh Srinivasan, Vipul Garhiya, Shahul Hamid Khan

Abstract:

Environmental performance along with social performance is becoming vital factors for industries to achieve global standards. With a good environmental policy global industries are differentiating them from their competitors. This paper concentrates on multi stage, multi product and multi period manufacturing network. Single objective mathematical models for a total cost for the entire forward supply chain and reverse chain are considered. Here five different problems are considered by varying the number of facilities for illustration. M-MOGA, Shuffle Frog Leaping algorithm (SFLA) and CPLEX are used for finding the optimal solution for the mathematical model.

Keywords: closed loop supply chain, genetic algorithm, random search, multi period, green supply chain

Procedia PDF Downloads 376
14713 Social Enterprises in Rural Canada

Authors: Prescott C. Ensign

Abstract:

Social enterprises play a vital role in Canada’s rural and northern communities. Most operate as non-profit organizations, use market approaches, and generate revenue from services or goods to support goals that address social, cultural, and environmental issues. As provincial and federal governments make reductions to programs providing social services to local communities, rural and northern residents who already have fewer resources from which to draw will be especially affected. Social enterprises will be called on to take up the slack. The aim of this paper is to provide a more comprehensive picture of the social enterprise as an organization and to understand the impact that context/ecosystem has on a social enterprise as it develops.

Keywords: social enterprises, structuration, embeddedness, ecosystem

Procedia PDF Downloads 110
14712 Proposal of Data Collection from Probes

Authors: M. Kebisek, L. Spendla, M. Kopcek, T. Skulavik

Abstract:

In our paper we describe the security capabilities of data collection. Data are collected with probes located in the near and distant surroundings of the company. Considering the numerous obstacles e.g. forests, hills, urban areas, the data collection is realized in several ways. The collection of data uses connection via wireless communication, LAN network, GSM network and in certain areas data are collected by using vehicles. In order to ensure the connection to the server most of the probes have ability to communicate in several ways. Collected data are archived and subsequently used in supervisory applications. To ensure the collection of the required data, it is necessary to propose algorithms that will allow the probes to select suitable communication channel.

Keywords: communication, computer network, data collection, probe

Procedia PDF Downloads 341
14711 A Novel Solution Methodology for Transit Route Network Design Problem

Authors: Ghada Moussa, Mamoud Owais

Abstract:

Transit Route Network Design Problem (TrNDP) is the most important component in Transit planning, in which the overall cost of the public transportation system highly depends on it. The main purpose of this study is to develop a novel solution methodology for the TrNDP, which goes beyond pervious traditional sophisticated approaches. The novelty of the solution methodology, adopted in this paper, stands on the deterministic operators which are tackled to construct bus routes. The deterministic manner of the TrNDP solution relies on using linear and integer mathematical formulations that can be solved exactly with their standard solvers. The solution methodology has been tested through Mandl’s benchmark network problem. The test results showed that the methodology developed in this research is able to improve the given network solution in terms of number of constructed routes, direct transit service coverage, transfer directness and solution reliability. Although the set of routes resulted from the methodology would stand alone as a final efficient solution for TrNDP, it could be used as an initial solution for meta-heuristic procedures to approach global optimal. Based on the presented methodology, a more robust network optimization tool would be produced for public transportation planning purposes.

Keywords: integer programming, transit route design, transportation, urban planning

Procedia PDF Downloads 247
14710 Three-Stage Least Squared Models of a Station-Level Subway Ridership: Incorporating an Analysis on Integrated Transit Network Topology Measures

Authors: Jungyeol Hong, Dongjoo Park

Abstract:

The urban transit system is a critical part of a solution to the economic, energy, and environmental challenges. Furthermore, it ultimately contributes the improvement of people’s quality of lives. For taking these kinds of advantages, the city of Seoul has tried to construct an integrated transit system including both subway and buses. The effort led to the fact that approximately 6.9 million citizens use the integrated transit system every day for their trips. Diagnosing the current transit network is a significant task to provide more convenient and pleasant transit environment. Therefore, the critical objective of this study is to establish a methodological framework for the analysis of an integrated bus-subway network and to examine the relationship between subway ridership and parameters such as network topology measures, bus demand, and a variety of commercial business facilities. Regarding a statistical approach to estimate subway ridership at a station level, many previous studies relied on Ordinary Least Square regression, but there was lack of studies considering the endogeneity issues which might show in the subway ridership prediction model. This study focused on both discovering the impacts of integrated transit network topology measures and endogenous effect of bus demand on subway ridership. It could ultimately contribute to developing more accurate subway ridership estimation accounting for its statistical bias. The spatial scope of the study covers Seoul city in South Korea, and it includes 243 subway stations and 10,120 bus stops with the temporal scope set during twenty-four hours with one-hour interval time panels each. The subway and bus ridership information in detail was collected from the Seoul Smart Card data in 2015 and 2016. First, integrated subway-bus network topology measures which have characteristics regarding connectivity, centrality, transitivity, and reciprocity were estimated based on the complex network theory. The results of integrated transit network topology analysis were compared to subway-only network topology. Also, the non-recursive approach which is Three-Stage Least Square was applied to develop the daily subway ridership model as capturing the endogeneity between bus and subway demands. Independent variables included roadway geometry, commercial business characteristics, social-economic characteristics, safety index, transit facility attributes, and dummies for seasons and time zone. Consequently, it was found that network topology measures were significant size effect. Especially, centrality measures showed that the elasticity was a change of 4.88% for closeness centrality, 24.48% for betweenness centrality while the elasticity of bus ridership was 8.85%. Moreover, it was proved that bus demand and subway ridership were endogenous in a non-recursive manner as showing that predicted bus ridership and predicted subway ridership is statistically significant in OLS regression models. Therefore, it shows that three-stage least square model appears to be a plausible model for efficient subway ridership estimation. It is expected that the proposed approach provides a reliable guideline that can be used as part of the spectrum of tools for evaluating a city-wide integrated transit network.

Keywords: integrated transit system, network topology measures, three-stage least squared, endogeneity, subway ridership

Procedia PDF Downloads 158
14709 Prioritization of Mutation Test Generation with Centrality Measure

Authors: Supachai Supmak, Yachai Limpiyakorn

Abstract:

Mutation testing can be applied for the quality assessment of test cases. Prioritization of mutation test generation has been a critical element of the industry practice that would contribute to the evaluation of test cases. The industry generally delivers the product under the condition of time to the market and thus, inevitably sacrifices software testing tasks, even though many test cases are required for software verification. This paper presents an approach of applying a social network centrality measure, PageRank, to prioritize mutation test generation. The source code with the highest values of PageRank will be focused first when developing their test cases as these modules are vulnerable to defects or anomalies which may cause the consequent defects in many other associated modules. Moreover, the approach would help identify the reducible test cases in the test suite, still maintaining the same criteria as the original number of test cases.

Keywords: software testing, mutation test, network centrality measure, test case prioritization

Procedia PDF Downloads 88
14708 Genetic Algorithm Based Node Fault Detection and Recovery in Distributed Sensor Networks

Authors: N. Nalini, Lokesh B. Bhajantri

Abstract:

In Distributed Sensor Networks, the sensor nodes are prone to failure due to energy depletion and some other reasons. In this regard, fault tolerance of network is essential in distributed sensor environment. Energy efficiency, network or topology control and fault-tolerance are the most important issues in the development of next-generation Distributed Sensor Networks (DSNs). This paper proposes a node fault detection and recovery using Genetic Algorithm (GA) in DSN when some of the sensor nodes are faulty. The main objective of this work is to provide fault tolerance mechanism which is energy efficient and responsive to network using GA, which is used to detect the faulty nodes in the network based on the energy depletion of node and link failure between nodes. The proposed fault detection model is used to detect faults at node level and network level faults (link failure and packet error). Finally, the performance parameters for the proposed scheme are evaluated.

Keywords: distributed sensor networks, genetic algorithm, fault detection and recovery, information technology

Procedia PDF Downloads 433
14707 Advancing Power Network Maintenance: The Development and Implementation of a Robotic Cable Splicing Machine

Authors: Ali Asmari, Alex Symington, Htaik Than, Austin Caradonna, John Senft

Abstract:

This paper presents the collaborative effort between ULC Technologies and Con Edison in developing a groundbreaking robotic cable splicing machine. The focus is on the machine's design, which integrates advanced robotics and automation to enhance safety and efficiency in power network maintenance. The paper details the operational steps of the machine, including cable grounding, cutting, and removal of different insulation layers, and discusses its novel technological approach. The significant benefits over traditional methods, such as improved worker safety and reduced outage times, are highlighted based on the field data collected during the validation phase of the project. The paper also explores the future potential and scalability of this technology, emphasizing its role in transforming the landscape of power network maintenance.

Keywords: cable splicing machine, power network maintenance, electric distribution, electric transmission, medium voltage cable

Procedia PDF Downloads 48
14706 Experimental and Numerical Determination of the Freeze Point Depression of a Multi-Phase Flow in a Scraped Surface Heat Exchanger

Authors: Carlos A. Acosta, Amar Bhalla, Ruyan Guo

Abstract:

Scraped surface heat exchangers (SSHE) use a rotor shaft assembly with scraping blades to homogenize viscous fluids during the heat transfer process. Obtaining in-situ measurements is difficult because the rotor and scraping blades spin continuously inside the mixing chamber, obstructing the instrumentation pathway. Computational fluid dynamics simulations provide useful insight into the flow behavior around the scraper blades for a variety of fluids and blade geometries. However, numerical solutions often focus on the fluid dynamics and heat transfer phenomena of rotating flow, ignoring the glass-transition temperature and freezing point depression. This research studies the multi-phase fluid dynamics and freezing point depression inside the SSHE with non-isothermal conditions in a time dependent process using an aqueous solution that contains 13.5 wt.% high fructose corn syrup and CO₂. The computational results were validated with in-situ pressure, temperature, and optical spectroscopy measurements. Results from the numerical model show good quantitatively agreement with experimental values.

Keywords: computational fluid dynamics, freezing point depression, phase-transition temperature, multi-phase flow

Procedia PDF Downloads 133
14705 Navigating Complex Communication Dynamics in Qualitative Research

Authors: Kimberly M. Cacciato, Steven J. Singer, Allison R. Shapiro, Julianna F. Kamenakis

Abstract:

This study examines the dynamics of communication among researchers and participants who have various levels of hearing, use multiple languages, have various disabilities, and who come from different social strata. This qualitative methodological study focuses on the strategies employed in an ethnographic research study examining the communication choices of six sets of parents who have Deaf-Disabled children. The participating families varied in their communication strategies and preferences including the use of American Sign Language (ASL), visual-gestural communication, multiple spoken languages, and pidgin forms of each of these. The research team consisted of two undergraduate students proficient in ASL and a Deaf principal investigator (PI) who uses ASL and speech as his main modes of communication. A third Hard-of-Hearing undergraduate student fluent in ASL served as an objective facilitator of the data analysis. The team created reflexive journals by audio recording, free writing, and responding to team-generated prompts. They discussed interactions between the members of the research team, their evolving relationships, and various social and linguistic power differentials. The researchers reflected on communication during data collection, their experiences with one another, and their experiences with the participating families. Reflexive journals totaled over 150 pages. The outside research assistant reviewed the journals and developed follow up open-ended questions and prods to further enrich the data. The PI and outside research assistant used NVivo qualitative research software to conduct open inductive coding of the data. They chunked the data individually into broad categories through multiple readings and recognized recurring concepts. They compared their categories, discussed them, and decided which they would develop. The researchers continued to read, reduce, and define the categories until they were able to develop themes from the data. The research team found that the various communication backgrounds and skills present greatly influenced the dynamics between the members of the research team and with the participants of the study. Specifically, the following themes emerged: (1) students as communication facilitators and interpreters as barriers to natural interaction, (2) varied language use simultaneously complicated and enriched data collection, and (3) ASL proficiency and professional position resulted in a social hierarchy among researchers and participants. In the discussion, the researchers reflected on their backgrounds and internal biases of analyzing the data found and how social norms or expectations affected the perceptions of the researchers in writing their journals. Through this study, the research team found that communication and language skills require significant consideration when working with multiple and complex communication modes. The researchers had to continually assess and adjust their data collection methods to meet the communication needs of the team members and participants. In doing so, the researchers aimed to create an accessible research setting that yielded rich data but learned that this often required compromises from one or more of the research constituents.

Keywords: American Sign Language, complex communication, deaf-disabled, methodology

Procedia PDF Downloads 100
14704 Use of Personal Rhythm to Authenticate Encrypted Messages

Authors: Carlos Gonzalez

Abstract:

When communicating using private and secure keys, there is always the doubt as to the identity of the message creator. We introduce an algorithm that uses the personal typing rhythm (keystroke dynamics) of the message originator to increase the trust of the authenticity of the message originator by the message recipient. The methodology proposes the use of a Rhythm Certificate Authority (RCA) to validate rhythm information. An illustrative example of the communication between Bob and Alice and the RCA is included. An algorithm of how to communicate with the RCA is presented. This RCA can be an independent authority or an enhanced Certificate Authority like the one used in public key infrastructure (PKI).

Keywords: authentication, digital signature, keystroke dynamics, personal rhythm, public-key encryption

Procedia PDF Downloads 281
14703 Simulation of Human Heart Activation Based on Diffusion Tensor Imaging

Authors: Ihab Elaff

Abstract:

Simulating the heart’s electrical stimulation is essential in modeling and evaluating the electrophysiology behavior of the heart. For achieving that, there are two structures in concern: the ventricles’ Myocardium, and the ventricles’ Conduction Network. Ventricles’ Myocardium has been modeled as anisotropic material from Diffusion Tensor Imaging (DTI) scan, and the Conduction Network has been extracted from DTI as a case-based structure based on the biological properties of the heart tissues and the working methodology of the Magnetic Resonance Imaging (MRI) scanner. Results of the produced activation were much similar to real measurements of the reference model that was presented in the literature.

Keywords: diffusion tensor, DTI, heart, conduction network, excitation propagation

Procedia PDF Downloads 235
14702 Voltage Sag Characteristics during Symmetrical and Asymmetrical Faults

Authors: Ioannis Binas, Marios Moschakis

Abstract:

Electrical faults in transmission and distribution networks can have great impact on the electrical equipment used. Fault effects depend on the characteristics of the fault as well as the network itself. It is important to anticipate the network’s behavior during faults when planning a new equipment installation, as well as troubleshooting. Moreover, working backwards, we could be able to estimate the characteristics of the fault when checking the perceived effects. Different transformer winding connections dominantly used in the Greek power transfer and distribution networks and the effects of 1-phase to neutral, phase-to-phase, 2-phases to neutral and 3-phase faults on different locations of the network were simulated in order to present voltage sag characteristics. The study was performed on a generic network with three steps down transformers on two voltage level buses (one 150 kV/20 kV transformer and two 20 kV/0.4 kV). We found that during faults, there are significant changes both on voltage magnitudes and on phase angles. The simulations and short-circuit analysis were performed using the PSCAD simulation package. This paper presents voltage characteristics calculated for the simulated network, with different approaches on the transformer winding connections during symmetrical and asymmetrical faults on various locations.

Keywords: Phase angle shift, power quality, transformer winding connections, voltage sag propagation

Procedia PDF Downloads 117
14701 New Approach for Minimizing Wavelength Fragmentation in Wavelength-Routed WDM Networks

Authors: Sami Baraketi, Jean Marie Garcia, Olivier Brun

Abstract:

Wavelength Division Multiplexing (WDM) is the dominant transport technology used in numerous high capacity backbone networks, based on optical infrastructures. Given the importance of costs (CapEx and OpEx) associated to these networks, resource management is becoming increasingly important, especially how the optical circuits, called “lightpaths”, are routed throughout the network. This requires the use of efficient algorithms which provide routing strategies with the lowest cost. We focus on the lightpath routing and wavelength assignment problem, known as the RWA problem, while optimizing wavelength fragmentation over the network. Wavelength fragmentation poses a serious challenge for network operators since it leads to the misuse of the wavelength spectrum, and then to the refusal of new lightpath requests. In this paper, we first establish a new Integer Linear Program (ILP) for the problem based on a node-link formulation. This formulation is based on a multilayer approach where the original network is decomposed into several network layers, each corresponding to a wavelength. Furthermore, we propose an efficient heuristic for the problem based on a greedy algorithm followed by a post-treatment procedure. The obtained results show that the optimal solution is often reached. We also compare our results with those of other RWA heuristic methods.

Keywords: WDM, lightpath, RWA, wavelength fragmentation, optimization, linear programming, heuristic

Procedia PDF Downloads 506
14700 Forecasting Direct Normal Irradiation at Djibouti Using Artificial Neural Network

Authors: Ahmed Kayad Abdourazak, Abderafi Souad, Zejli Driss, Idriss Abdoulkader Ibrahim

Abstract:

In this paper Artificial Neural Network (ANN) is used to predict the solar irradiation in Djibouti for the first Time that is useful to the integration of Concentrating Solar Power (CSP) and sites selections for new or future solar plants as part of solar energy development. An ANN algorithm was developed to establish a forward/reverse correspondence between the latitude, longitude, altitude and monthly solar irradiation. For this purpose the German Aerospace Centre (DLR) data of eight Djibouti sites were used as training and testing in a standard three layers network with the back propagation algorithm of Lavenber-Marquardt. Results have shown a very good agreement for the solar irradiation prediction in Djibouti and proves that the proposed approach can be well used as an efficient tool for prediction of solar irradiation by providing so helpful information concerning sites selection, design and planning of solar plants.

Keywords: artificial neural network, solar irradiation, concentrated solar power, Lavenberg-Marquardt

Procedia PDF Downloads 342
14699 Computational Fluid Dynamics Analysis of Cyclone Separator Performance Using Discrete Phase Model

Authors: Sandeep Mohan Ahuja, Gulshan Kumar Jawa

Abstract:

Cyclone separators are crucial components in various industries tasked with efficiently separating particulate matter from gas streams. Achieving optimal performance hinges on a deep understanding of flow dynamics and particle behaviour within these separators. In this investigation, Computational Fluid Dynamics (CFD) simulations are conducted utilizing the Discrete Phase Model (DPM) to dissect the intricate flow patterns, particle trajectories, and separation efficiency within cyclone separators. The study delves into the influence of pivotal parameters like inlet velocity, particle size distribution, and cyclone geometry on separation efficiency. Through numerical simulations, a comprehensive comprehension of fluid-particle interaction phenomena within cyclone separators is attained, allowing for the assessment of solid collection efficiency across diverse operational conditions and geometrical setups. The insights gleaned from this study promise to advance our understanding of the complex interplay between fluid and particle within cyclone separators, thereby enabling optimization across a wide array of industrial applications. By harnessing the power of CFD simulations and the DPM, this research endeavours to furnish valuable insights for designing, operating, and evaluating the performance of cyclone separators, ultimately fostering greater efficiency and environmental sustainability within industrial processes.

Keywords: cyclone separator, computational fluid dynamics, enhancing efficiency, discrete phase model

Procedia PDF Downloads 23
14698 Preparedness is Overrated: Community Responses to Floods in a Context of (Perceived) Low Probability

Authors: Kim Anema, Matthias Max, Chris Zevenbergen

Abstract:

For any flood risk manager the 'safety paradox' has to be a familiar concept: low probability leads to a sense of safety, which leads to more investments in the area, which leads to higher potential consequences: keeping the aggregated risk (probability*consequences) at the same level. Therefore, it is important to mitigate potential consequences apart from probability. However, when the (perceived) probability is so low that there is no recognizable trend for society to adapt to, addressing the potential consequences will always be the lagging point on the agenda. Preparedness programs fail because of lack of interest and urgency, policy makers are distracted by their day to day business and there's always a more urgent issue to spend the taxpayer's money on. The leading question in this study was how to address the social consequences of flooding in a context of (perceived) low probability. Disruptions of everyday urban life, large or small, can be caused by a variety of (un)expected things - of which flooding is only one possibility. Variability like this is typically addressed with resilience - and we used the concept of Community Resilience as the framework for this study. Drawing on face to face interviews, an extensive questionnaire and publicly available statistical data we explored the 'whole society response' to two recent urban flood events; the Brisbane Floods (AUS) in 2011 and the Dresden Floods (GE) in 2013. In Brisbane, we studied how the societal impacts of the floods were counteracted by both authorities and the public, and in Dresden we were able to validate our findings. A large part of the reactions, both public as institutional, to these two urban flood events were not fuelled by preparedness or proper planning. Instead, more important success factors in counteracting social impacts like demographic changes in neighborhoods and (non-)economic losses were dynamics like community action, flexibility and creativity from authorities, leadership, informal connections and a shared narrative. These proved to be the determining factors for the quality and speed of recovery in both cities. The resilience of the community in Brisbane was good, due to (i) the approachability of (local) authorities, (ii) a big group of ‘secondary victims’ and (iii) clear leadership. All three of these elements were amplified by the use of social media and/ or web 2.0 by both the communities and the authorities involved. The numerous contacts and social connections made through the web were fast, need driven and, in their own way, orderly. Similarly in Dresden large groups of 'unprepared', ad hoc organized citizens managed to work together with authorities in a way that was effective and speeded up recovery. The concept of community resilience is better fitted than 'social adaptation' to deal with the potential consequences of an (im)probable flood. Community resilience is built on capacities and dynamics that are part of everyday life and which can be invested in pre-event to minimize the social impact of urban flooding. Investing in these might even have beneficial trade-offs in other policy fields.

Keywords: community resilience, disaster response, social consequences, preparedness

Procedia PDF Downloads 336
14697 Impact of Node Density and Transmission Range on the Performance of OLSR and DSDV Routing Protocols in VANET City Scenarios

Authors: Yassine Meraihi, Dalila Acheli, Rabah Meraihi

Abstract:

Vehicular Ad hoc Network (VANET) is a special case of Mobile Ad hoc Network (MANET) used to establish communications and exchange information among nearby vehicles and between vehicles and nearby fixed infrastructure. VANET is seen as a promising technology used to provide safety, efficiency, assistance and comfort to the road users. Routing is an important issue in Vehicular Ad Hoc Network to find and maintain communication between vehicles due to the highly dynamic topology, frequently disconnected network and mobility constraints. This paper evaluates the performance of two most popular proactive routing protocols OLSR and DSDV in real city traffic scenario on the basis of three metrics namely Packet delivery ratio, throughput and average end to end delay by varying vehicles density and transmission range.

Keywords: DSDV, OLSR, quality of service, routing protocols, VANET

Procedia PDF Downloads 454
14696 Estimating Anthropometric Dimensions for Saudi Males Using Artificial Neural Networks

Authors: Waleed Basuliman

Abstract:

Anthropometric dimensions are considered one of the important factors when designing human-machine systems. In this study, the estimation of anthropometric dimensions has been improved by using Artificial Neural Network (ANN) model that is able to predict the anthropometric measurements of Saudi males in Riyadh City. A total of 1427 Saudi males aged 6 to 60 years participated in measuring 20 anthropometric dimensions. These anthropometric measurements are considered important for designing the work and life applications in Saudi Arabia. The data were collected during eight months from different locations in Riyadh City. Five of these dimensions were used as predictors variables (inputs) of the model, and the remaining 15 dimensions were set to be the measured variables (Model’s outcomes). The hidden layers varied during the structuring stage, and the best performance was achieved with the network structure 6-25-15. The results showed that the developed Neural Network model was able to estimate the body dimensions of Saudi male population in Riyadh City. The network's mean absolute percentage error (MAPE) and the root mean squared error (RMSE) were found to be 0.0348 and 3.225, respectively. These results were found less, and then better, than the errors found in the literature. Finally, the accuracy of the developed neural network was evaluated by comparing the predicted outcomes with regression model. The ANN model showed higher coefficient of determination (R2) between the predicted and actual dimensions than the regression model.

Keywords: artificial neural network, anthropometric measurements, back-propagation

Procedia PDF Downloads 468
14695 Cultural Regeneration and Social Impacts of Industrial Heritage Transformation: The Case of Westergasfabriek Cultural Park, Netherland

Authors: Hsin Hua He

Abstract:

The purpose of this study is to strengthen the social cohesion of the local community by injecting the cultural and creative concept into the industrial heritage transformation. The paradigms of industrial heritage research tend to explore from the perspective of space analysis, which concerned less about the cultural regeneration and the development of local culture. The paradigms of cultural quarter research use to from the perspective of creative economy and urban planning, concerned less about the social impacts and the interaction between residents and industrial sites. This research combines these two research areas of industrial heritage and cultural quarter, and focus on the social and cultural aspects. The transformation from the industrial heritage into a cultural park not only enhances the cultural capital and the quality of residents’ lives, but also preserves the unique local values. Internally it shapes the local identity, while externally establishes the image of the city. This paper uses Westergasfabriek Cultural Park in Amsterdam as the case study, through literature analysis, field work, and depth interview to explore how the cultural regeneration transforms industrial heritage. In terms of the planners’ and residents’ point of view adopt the theory of community participation, social capital, and sense of place to analyze the social impact of the industrial heritage transformation. The research finding is through cultural regeneration policies like holding cultural activities, building up public space, social network and public-private partnership, and adopting adaptive reuse to fulfil the people’s need and desire and reach the social cohesion. Finally, the study will examine the transformation of Taiwan's industrial heritage into cultural and creative quarters. The results are expected to use the operating experience of the Amsterdam cases and provide directions for Taiwan’s industrial heritage management to meet the cultural, social, economic symbiosis.

Keywords: cultural regeneration, community participation, social capital, sense of place, industrial heritage transformation

Procedia PDF Downloads 477
14694 Centrality and Patent Impact: Coupled Network Analysis of Artificial Intelligence Patents Based on Co-Cited Scientific Papers

Authors: Xingyu Gao, Qiang Wu, Yuanyuan Liu, Yue Yang

Abstract:

In the era of the knowledge economy, the relationship between scientific knowledge and patents has garnered significant attention. Understanding the intricate interplay between the foundations of science and technological innovation has emerged as a pivotal challenge for both researchers and policymakers. This study establishes a coupled network of artificial intelligence patents based on co-cited scientific papers. Leveraging centrality metrics from network analysis offers a fresh perspective on understanding the influence of information flow and knowledge sharing within the network on patent impact. The study initially obtained patent numbers for 446,890 granted US AI patents from the United States Patent and Trademark Office’s artificial intelligence patent database for the years 2002-2020. Subsequently, specific information regarding these patents was acquired using the Lens patent retrieval platform. Additionally, a search and deduplication process was performed on scientific non-patent references (SNPRs) using the Web of Science database, resulting in the selection of 184,603 patents that cited 37,467 unique SNPRs. Finally, this study constructs a coupled network comprising 59,379 artificial intelligence patents by utilizing scientific papers co-cited in patent backward citations. In this network, nodes represent patents, and if patents reference the same scientific papers, connections are established between them, serving as edges within the network. Nodes and edges collectively constitute the patent coupling network. Structural characteristics such as node degree centrality, betweenness centrality, and closeness centrality are employed to assess the scientific connections between patents, while citation count is utilized as a quantitative metric for patent influence. Finally, a negative binomial model is employed to test the nonlinear relationship between these network structural features and patent influence. The research findings indicate that network structural features such as node degree centrality, betweenness centrality, and closeness centrality exhibit inverted U-shaped relationships with patent influence. Specifically, as these centrality metrics increase, patent influence initially shows an upward trend, but once these features reach a certain threshold, patent influence starts to decline. This discovery suggests that moderate network centrality is beneficial for enhancing patent influence, while excessively high centrality may have a detrimental effect on patent influence. This finding offers crucial insights for policymakers, emphasizing the importance of encouraging moderate knowledge flow and sharing to promote innovation when formulating technology policies. It suggests that in certain situations, data sharing and integration can contribute to innovation. Consequently, policymakers can take measures to promote data-sharing policies, such as open data initiatives, to facilitate the flow of knowledge and the generation of innovation. Additionally, governments and relevant agencies can achieve broader knowledge dissemination by supporting collaborative research projects, adjusting intellectual property policies to enhance flexibility, or nurturing technology entrepreneurship ecosystems.

Keywords: centrality, patent coupling network, patent influence, social network analysis

Procedia PDF Downloads 39
14693 Structural Correlates of Reduced Malicious Pleasure in Huntington's Disease

Authors: Sandra Baez, Mariana Pino, Mildred Berrio, Hernando Santamaria-Garcia, Lucas Sedeno, Adolfo Garcia, Sol Fittipaldi, Agustin Ibanez

Abstract:

Schadenfreude refers to the perceiver’s experience of pleasure at another’s misfortune. This is a multidetermined emotion which can be evoked by hostile feelings and envy. The experience of Schadenfreude engages mechanisms implicated in diverse social cognitive processes. For instance, Schadenfreude involves heightened reward processing, accompanied by increased striatal engagement and it interacts with mentalizing and perspective-taking abilities. Patients with Huntington's disease (HD) exhibit reductions of Schadenfreude experience, suggesting a role of striatal degeneration in such an impairment. However, no study has directly assessed the relationship between regional brain atrophy in HD and reduced Schadenfreude. This study investigated whether gray matter (GM) atrophy in HD patients correlates with ratings of Schadenfreude. First, we compared the performance of 20 HD patients and 23 controls on an experimental task designed to trigger Schadenfreude and envy (another social emotion acting as a control condition). Second, we compared GM volume between groups. Third, we examined brain regions where atrophy might be associated with specific impairments in the patients. Results showed that while both groups showed similar ratings of envy, HD patients reported lower Schadenfreude. The latter pattern was related to atrophy in regions of the reward system (ventral striatum) and the mentalizing network (precuneus and superior parietal lobule). Our results shed light on the intertwining of reward and socioemotional processes in Schadenfreude, while offering novel evidence about their neural correlates. In addition, our results open the door to future studies investigating social emotion processing in other clinical populations characterized by striatal or mentalizing network impairments (e.g., Parkinson’s disease, schizophrenia, autism spectrum disorders).

Keywords: envy, Gray matter atrophy, Huntigton's disease, Schadenfreude, social emotions

Procedia PDF Downloads 316
14692 Translation Quality Assessment in Fansubbed English-Chinese Swearwords: A Corpus-Based Study of the Big Bang Theory

Authors: Qihang Jiang

Abstract:

Fansubbing, the combination of fan and subtitling, is one of the main branches of Audiovisual Translation (AVT) having kindled more and more interest of researchers into the AVT field in recent decades. In particular, the quality of so-called non-professional translation seems questionable due to the non-transparent qualification of subtitlers in a huge community network. This paper attempts to figure out how YYeTs aka 'ZiMuZu', the largest fansubbing group in China, translates swearwords from English to Chinese for its fans of the prevalent American sitcom The Big Bang Theory, taking cultural, social and political elements into account in the context of China. By building a bilingual corpus containing both the source and target texts, this paper found that most of the original swearwords were translated in a toned-down manner, probably due to Chinese audiences’ cultural and social network features as well as the strict censorship under the Chinese government. Additionally, House (2015)’s newly revised model of Translation Quality Assessment (TQA) was applied and examined. Results revealed that most of the subtitled swearwords achieved their pragmatic functions and exerted a communicative effect for audiences. In conclusion, this paper enriches the empirical research concerning House’s new TQA model, gives a full picture of the subtitling of swearwords in AVT field and provides a practical guide for the practitioners in their career of subtitling.

Keywords: corpus-based approach, fansubbing, pragmatic functions, swearwords, translation quality assessment

Procedia PDF Downloads 133
14691 Neural Network Analysis Applied to Risk Prediction of Early Neonatal Death

Authors: Amanda R. R. Oliveira, Caio F. F. C. Cunha, Juan C. L. Junior, Amorim H. P. Junior

Abstract:

Children deaths are traumatic events that most often can be prevented. The technology of prevention and intervention in cases of infant deaths is available at low cost and with solid evidence and favorable results, however, with low access cover. Weight is one of the main factors related to death in the neonatal period, so the newborns of low birth weight are a population at high risk of death in the neonatal period, especially early neonatal period. This paper describes the development of a model based in neural network analysis to predict the mortality risk rating in the early neonatal period for newborns of low birth weight to identify the individuals of this population with increased risk of death. The neural network applied was trained with a set of newborns data obtained from Brazilian health system. The resulting network presented great success rate in identifying newborns with high chances of death, which demonstrates the potential for using this tool in an integrated manner to the health system, in order to direct specific actions for improving prognosis of newborns.

Keywords: low birth weight, neonatal death risk, neural network, newborn

Procedia PDF Downloads 430
14690 Exploring the Connectedness of Ad Hoc Mesh Networks in Rural Areas

Authors: Ibrahim Obeidat

Abstract:

Reaching a fully-connected network of mobile nodes in rural areas got a great attention between network researchers. This attention rose due to the complexity and high costs while setting up the needed infrastructures for these networks, in addition to the low transmission range these nodes has. Terranet technology, as an example, employs ad-hoc mesh network where each node has a transmission range not exceed one kilometer, this means that every two nodes are able to communicate with each other if they are just one kilometer far from each other, otherwise a third-party will play the role of the “relay”. In Terranet, and as an idea to reduce network setup cost, every node in the network will be considered as a router that is responsible of forwarding data between other nodes which result in a decentralized collaborative environment. Most researches on Terranet presents the idea of how to encourage mobile nodes to become more cooperative by letting their devices in “ON” state as long as possible while accepting to play the role of relay (router). This research presents the issue of finding the percentage of nodes in ad-hoc mesh network within rural areas that should play the role of relay at every time slot, relating to what is the actual area coverage of nodes in order to have the network reach the fully-connectivity. Far from our knowledge, till now there is no current researches discussed this issue. The research is done by making an implementation that depends on building adjacency matrix as an indicator to the connectivity between network members. This matrix is continually updated until each value in it refers to the number of hubs that should be followed to reach from one node to another. After repeating the algorithm on different area sizes, different coverage percentages for each size, and different relay percentages for several times, results extracted shows that for area coverage less than 5% we need to have 40% of the nodes to be relays, where 10% percentage is enough for areas with node coverage greater than 5%.

Keywords: ad-hoc mesh networks, network connectivity, mobile ad-hoc networks, Terranet, adjacency matrix, simulator, wireless sensor networks, peer to peer networks, vehicular Ad hoc networks, relay

Procedia PDF Downloads 254