Search results for: accessible
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 700

Search results for: accessible

10 Harnessing the Power of Artificial Intelligence: Advancements and Ethical Considerations in Psychological and Behavioral Sciences

Authors: Nayer Mofidtabatabaei

Abstract:

Advancements in artificial intelligence (AI) have transformed various fields, including psychology and behavioral sciences. This paper explores the diverse ways in which AI is applied to enhance research, diagnosis, therapy, and understanding of human behavior and mental health. We discuss the potential benefits and challenges associated with AI in these fields, emphasizing the ethical considerations and the need for collaboration between AI researchers and psychological and behavioral science experts. Artificial Intelligence (AI) has gained prominence in recent years, revolutionizing multiple industries, including healthcare, finance, and entertainment. One area where AI holds significant promise is the field of psychology and behavioral sciences. AI applications in this domain range from improving the accuracy of diagnosis and treatment to understanding complex human behavior patterns. This paper aims to provide an overview of the various AI applications in psychological and behavioral sciences, highlighting their potential impact, challenges, and ethical considerations. Mental Health Diagnosis AI-driven tools, such as natural language processing and sentiment analysis, can analyze large datasets of text and speech to detect signs of mental health issues. For example, chatbots and virtual therapists can provide initial assessments and support to individuals suffering from anxiety or depression. Autism Spectrum Disorder (ASD) Diagnosis AI algorithms can assist in early ASD diagnosis by analyzing video and audio recordings of children's behavior. These tools help identify subtle behavioral markers, enabling earlier intervention and treatment. Personalized Therapy AI-based therapy platforms use personalized algorithms to adapt therapeutic interventions based on an individual's progress and needs. These platforms can provide continuous support and resources for patients, making therapy more accessible and effective. Virtual Reality Therapy Virtual reality (VR) combined with AI can create immersive therapeutic environments for treating phobias, PTSD, and social anxiety. AI algorithms can adapt VR scenarios in real-time to suit the patient's progress and comfort level. Data Analysis AI aids researchers in processing vast amounts of data, including survey responses, brain imaging, and genetic information. Privacy Concerns Collecting and analyzing personal data for AI applications in psychology and behavioral sciences raise significant privacy concerns. Researchers must ensure the ethical use and protection of sensitive information. Bias and Fairness AI algorithms can inherit biases present in training data, potentially leading to biased assessments or recommendations. Efforts to mitigate bias and ensure fairness in AI applications are crucial. Transparency and Accountability AI-driven decisions in psychology and behavioral sciences should be transparent and subject to accountability. Patients and practitioners should understand how AI algorithms operate and make decisions. AI applications in psychological and behavioral sciences have the potential to transform the field by enhancing diagnosis, therapy, and research. However, these advancements come with ethical challenges that require careful consideration. Collaboration between AI researchers and psychological and behavioral science experts is essential to harness AI's full potential while upholding ethical standards and privacy protections. The future of AI in psychology and behavioral sciences holds great promise, but it must be navigated with caution and responsibility.

Keywords: artificial intelligence, psychological sciences, behavioral sciences, diagnosis and therapy, ethical considerations

Procedia PDF Downloads 69
9 Speeding Up Lenia: A Comparative Study Between Existing Implementations and CUDA C++ with OpenGL Interop

Authors: L. Diogo, A. Legrand, J. Nguyen-Cao, J. Rogeau, S. Bornhofen

Abstract:

Lenia is a system of cellular automata with continuous states, space and time, which surprises not only with the emergence of interesting life-like structures but also with its beauty. This paper reports ongoing research on a GPU implementation of Lenia using CUDA C++ and OpenGL Interoperability. We demonstrate how CUDA as a low-level GPU programming paradigm allows optimizing performance and memory usage of the Lenia algorithm. A comparative analysis through experimental runs with existing implementations shows that the CUDA implementation outperforms the others by one order of magnitude or more. Cellular automata hold significant interest due to their ability to model complex phenomena in systems with simple rules and structures. They allow exploring emergent behavior such as self-organization and adaptation, and find applications in various fields, including computer science, physics, biology, and sociology. Unlike classic cellular automata which rely on discrete cells and values, Lenia generalizes the concept of cellular automata to continuous space, time and states, thus providing additional fluidity and richness in emerging phenomena. In the current literature, there are many implementations of Lenia utilizing various programming languages and visualization libraries. However, each implementation also presents certain drawbacks, which serve as motivation for further research and development. In particular, speed is a critical factor when studying Lenia, for several reasons. Rapid simulation allows researchers to observe the emergence of patterns and behaviors in more configurations, on bigger grids and over longer periods without annoying waiting times. Thereby, they enable the exploration and discovery of new species within the Lenia ecosystem more efficiently. Moreover, faster simulations are beneficial when we include additional time-consuming algorithms such as computer vision or machine learning to evolve and optimize specific Lenia configurations. We developed a Lenia implementation for GPU using the C++ and CUDA programming languages, and CUDA/OpenGL Interoperability for immediate rendering. The goal of our experiment is to benchmark this implementation compared to the existing ones in terms of speed, memory usage, configurability and scalability. In our comparison we focus on the most important Lenia implementations, selected for their prominence, accessibility and widespread use in the scientific community. The implementations include MATLAB, JavaScript, ShaderToy GLSL, Jupyter, Rust and R. The list is not exhaustive but provides a broad view of the principal current approaches and their respective strengths and weaknesses. Our comparison primarily considers computational performance and memory efficiency, as these factors are critical for large-scale simulations, but we also investigate the ease of use and configurability. The experimental runs conducted so far demonstrate that the CUDA C++ implementation outperforms the other implementations by one order of magnitude or more. The benefits of using the GPU become apparent especially with larger grids and convolution kernels. However, our research is still ongoing. We are currently exploring the impact of several software design choices and optimization techniques, such as convolution with Fast Fourier Transforms (FFT), various GPU memory management scenarios, and the trade-off between speed and accuracy using single versus double precision floating point arithmetic. The results will give valuable insights into the practice of parallel programming of the Lenia algorithm, and all conclusions will be thoroughly presented in the conference paper. The final version of our CUDA C++ implementation will be published on github and made freely accessible to the Alife community for further development.

Keywords: artificial life, cellular automaton, GPU optimization, Lenia, comparative analysis.

Procedia PDF Downloads 40
8 Design of DNA Origami Structures Using LAMP Products as a Combined System for the Detection of Extended Spectrum B-Lactamases

Authors: Kalaumari Mayoral-Peña, Ana I. Montejano-Montelongo, Josué Reyes-Muñoz, Gonzalo A. Ortiz-Mancilla, Mayrin Rodríguez-Cruz, Víctor Hernández-Villalobos, Jesús A. Guzmán-López, Santiago García-Jacobo, Iván Licona-Vázquez, Grisel Fierros-Romero, Rosario Flores-Vallejo

Abstract:

The group B-lactamic antibiotics include some of the most frequently used small drug molecules against bacterial infections. Nevertheless, an alarming decrease in their efficacy has been reported due to the emergence of antibiotic-resistant bacteria. Infections caused by bacteria expressing extended Spectrum B-lactamases (ESBLs) are difficult to treat and account for higher morbidity and mortality rates, delayed recovery, and high economic burden. According to the Global Report on Antimicrobial Resistance Surveillance, it is estimated that mortality due to resistant bacteria will ascend to 10 million cases per year worldwide. These facts highlight the importance of developing low-cost and readily accessible detection methods of drug-resistant ESBLs bacteria to prevent their spread and promote accurate and fast diagnosis. Bacterial detection is commonly done using molecular diagnostic techniques, where PCR stands out for its high performance. However, this technique requires specialized equipment not available everywhere, is time-consuming, and has a high cost. Loop-Mediated Isothermal Amplification (LAMP) is an alternative technique that works at a constant temperature, significantly decreasing the equipment cost. It yields double-stranded DNA of several lengths with repetitions of the target DNA sequence as a product. Although positive and negative results from LAMP can be discriminated by colorimetry, fluorescence, and turbidity, there is still a large room for improvement in the point-of-care implementation. DNA origami is a technique that allows the formation of 3D nanometric structures by folding a large single-stranded DNA (scaffold) into a determined shape with the help of short DNA sequences (staples), which hybridize with the scaffold. This research aimed to generate DNA origami structures using LAMP products as scaffolds to improve the sensitivity to detect ESBLs in point-of-care diagnosis. For this study, the coding sequence of the CTM-X-15 ESBL of E. coli was used to generate the LAMP products. The set of LAMP primers were designed using PrimerExplorerV5. As a result, a target sequence of 200 nucleotides from CTM-X-15 ESBL was obtained. Afterward, eight different DNA origami structures were designed using the target sequence in the SDCadnano and analyzed with CanDo to evaluate the stability of the 3D structures. The designs were constructed minimizing the total number of staples to reduce costs and complexity for point-of-care applications. After analyzing the DNA origami designs, two structures were selected. The first one was a zig-zag flat structure, while the second one was a wall-like shape. Given the sequence repetitions in the scaffold sequence, both were able to be assembled with only 6 different staples each one, ranging between 18 to 80 nucleotides. Simulations of both structures were performed using scaffolds of different sizes yielding stable structures in all the cases. The generation of the LAMP products were tested by colorimetry and electrophoresis. The formation of the DNA structures was analyzed using electrophoresis and colorimetry. The modeling of novel detection methods through bioinformatics tools allows reliable control and prediction of results. To our knowledge, this is the first study that uses LAMP products and DNA-origami in combination to delect ESBL-producing bacterial strains, which represent a promising methodology for diagnosis in the point-of-care.

Keywords: beta-lactamases, antibiotic resistance, DNA origami, isothermal amplification, LAMP technique, molecular diagnosis

Procedia PDF Downloads 219
7 Towards Dynamic Estimation of Residential Building Energy Consumption in Germany: Leveraging Machine Learning and Public Data from England and Wales

Authors: Philipp Sommer, Amgad Agoub

Abstract:

The construction sector significantly impacts global CO₂ emissions, particularly through the energy usage of residential buildings. To address this, various governments, including Germany's, are focusing on reducing emissions via sustainable refurbishment initiatives. This study examines the application of machine learning (ML) to estimate energy demands dynamically in residential buildings and enhance the potential for large-scale sustainable refurbishment. A major challenge in Germany is the lack of extensive publicly labeled datasets for energy performance, as energy performance certificates, which provide critical data on building-specific energy requirements and consumption, are not available for all buildings or require on-site inspections. Conversely, England and other countries in the European Union (EU) have rich public datasets, providing a viable alternative for analysis. This research adapts insights from these English datasets to the German context by developing a comprehensive data schema and calibration dataset capable of predicting building energy demand effectively. The study proposes a minimal feature set, determined through feature importance analysis, to optimize the ML model. Findings indicate that ML significantly improves the scalability and accuracy of energy demand forecasts, supporting more effective emissions reduction strategies in the construction industry. Integrating energy performance certificates into municipal heat planning in Germany highlights the transformative impact of data-driven approaches on environmental sustainability. The goal is to identify and utilize key features from open data sources that significantly influence energy demand, creating an efficient forecasting model. Using Extreme Gradient Boosting (XGB) and data from energy performance certificates, effective features such as building type, year of construction, living space, insulation level, and building materials were incorporated. These were supplemented by data derived from descriptions of roofs, walls, windows, and floors, integrated into three datasets. The emphasis was on features accessible via remote sensing, which, along with other correlated characteristics, greatly improved the model's accuracy. The model was further validated using SHapley Additive exPlanations (SHAP) values and aggregated feature importance, which quantified the effects of individual features on the predictions. The refined model using remote sensing data showed a coefficient of determination (R²) of 0.64 and a mean absolute error (MAE) of 4.12, indicating predictions based on efficiency class 1-100 (G-A) may deviate by 4.12 points. This R² increased to 0.84 with the inclusion of more samples, with wall type emerging as the most predictive feature. After optimizing and incorporating related features like estimated primary energy consumption, the R² score for the training and test set reached 0.94, demonstrating good generalization. The study concludes that ML models significantly improve prediction accuracy over traditional methods, illustrating the potential of ML in enhancing energy efficiency analysis and planning. This supports better decision-making for energy optimization and highlights the benefits of developing and refining data schemas using open data to bolster sustainability in the building sector. The study underscores the importance of supporting open data initiatives to collect similar features and support the creation of comparable models in Germany, enhancing the outlook for environmental sustainability.

Keywords: machine learning, remote sensing, residential building, energy performance certificates, data-driven, heat planning

Procedia PDF Downloads 55
6 Introducing Global Navigation Satellite System Capabilities into IoT Field-Sensing Infrastructures for Advanced Precision Agriculture Services

Authors: Savvas Rogotis, Nikolaos Kalatzis, Stergios Dimou-Sakellariou, Nikolaos Marianos

Abstract:

As precision holds the key for the introduction of distinct benefits in agriculture (e.g., energy savings, reduced labor costs, optimal application of inputs, improved products, and yields), it steadily becomes evident that new initiatives should focus on rendering Precision Agriculture (PA) more accessible to the average farmer. PA leverages on technologies such as the Internet of Things (IoT), earth observation, robotics and positioning systems (e.g., the Global Navigation Satellite System – GNSS - as well as individual positioning systems like GPS, Glonass, Galileo) that allow: from simple data georeferencing to optimal navigation of agricultural machinery to even more complex tasks like Variable Rate Applications. An identified customer pain point is that, from one hand, typical triangulation-based positioning systems are not accurate enough (with errors up to several meters), while on the other hand, high precision positioning systems reaching centimeter-level accuracy, are very costly (up to thousands of euros). Within this paper, a Ground-Based Augmentation System (GBAS) is introduced, that can be adapted to any existing IoT field-sensing station infrastructure. The latter should cover a minimum set of requirements, and in particular, each station should operate as a fixed, obstruction-free towards the sky, energy supplying unit. Station augmentation will allow them to function in pairs with GNSS rovers following the differential GNSS base-rover paradigm. This constitutes a key innovation element for the proposed solution that encompasses differential GNSS capabilities into an IoT field-sensing infrastructure. Integrating this kind of information supports the provision of several additional PA beneficial services such as spatial mapping, route planning, and automatic field navigation of unmanned vehicles (UVs). Right at the heart of the designed system, there is a high-end GNSS toolkit with base-rover variants and Real-Time Kinematic (RTK) capabilities. The GNSS toolkit had to tackle all availability, performance, interfacing, and energy-related challenges that are faced for a real-time, low-power, and reliable in the field operation. Specifically, in terms of performance, preliminary findings exhibit a high rover positioning precision that can even reach less than 10-centimeters. As this precision is propagated to the full dataset collection, it enables tractors, UVs, Android-powered devices, and measuring units to deal with challenging real-world scenarios. The system is validated with the help of Gaiatrons, a mature network of agro-climatic telemetry stations with presence all over Greece and beyond ( > 60.000ha of agricultural land covered) that constitutes part of “gaiasense” (www.gaiasense.gr) smart farming (SF) solution. Gaiatrons constantly monitor atmospheric and soil parameters, thus, providing exact fit to operational requirements asked from modern SF infrastructures. Gaiatrons are ultra-low-cost, compact, and energy-autonomous stations with a modular design that enables the integration of advanced GNSS base station capabilities on top of them. A set of demanding pilot demonstrations has been initiated in Stimagka, Greece, an area with a diverse geomorphological landscape where grape cultivation is particularly popular. Pilot demonstrations are in the course of validating the preliminary system findings in its intended environment, tackle all technical challenges, and effectively highlight the added-value offered by the system in action.

Keywords: GNSS, GBAS, precision agriculture, RTK, smart farming

Procedia PDF Downloads 112
5 Developing a Place-Name Gazetteer for Singapore by Mining Historical Planning Archives and Selective Crowd-Sourcing

Authors: Kevin F. Hsu, Alvin Chua, Sarah X. Lin

Abstract:

As a multilingual society, Singaporean names for different parts of the city have changed over time. Residents included Indigenous Malays, dialect-speakers from China, European settler-colonists, and Tamil-speakers from South India. Each group would name locations in their own languages. Today, as ancestral tongues are increasingly supplanted by English, contemporary Singaporeans’ understanding of once-common place names is disappearing. After demolition or redevelopment, some urban places will only exist in archival records or in human memory. United Nations conferences on the standardization of geographic names have called attention to how place names relate to identity, well-being, and a sense of belonging. The Singapore Place-Naming Project responds to these imperatives by capturing past and present place names through digitizing historical maps, mining archival records, and applying selective crowd-sourcing to trace the evolution of place names throughout the city. The project ensures that both formal and vernacular geographical names remain accessible to historians, city planners, and the public. The project is compiling a gazetteer, a geospatial archive of placenames, with streets, buildings, landmarks, and other points of interest (POI) appearing in the historic maps and planning documents of Singapore, currently held by the National Archives of Singapore, the National Library Board, university departments, and the Urban Redevelopment Authority. To create a spatial layer of information, the project links each place name to either a geo-referenced point, line segment, or polygon, along with the original source material in which the name appears. This record is supplemented by crowd-sourced contributions from civil service officers and heritage specialists, drawing from their collective memory to (1) define geospatial boundaries of historic places that appear in past documents, but maybe unfamiliar to users today, and (2) identify and record vernacular place names not captured in formal planning documents. An intuitive interface allows participants to demarcate feature classes, vernacular phrasings, time periods, and other knowledge related to historical or forgotten spaces. Participants are stratified into age bands and ethnicity to improve representativeness. Future iterations could allow additional public contributions. Names reveal meanings that communities assign to each place. While existing historical maps of Singapore allow users to toggle between present-day and historical raster files, this project goes a step further by adding layers of social understanding and planning documents. Tracking place names illuminates linguistic, cultural, commercial, and demographic shifts in Singapore, in the context of transformations of the urban environment. The project also demonstrates how a moderated, selectively crowd-sourced effort can solicit useful geospatial data at scale, sourced from different generations, and at higher granularity than traditional surveys, while mitigating negative impacts of unmoderated crowd-sourcing. Stakeholder agencies believe the project will achieve several objectives, including Supporting heritage conservation and public education; Safeguarding intangible cultural heritage; Providing historical context for street, place or development-renaming requests; Enhancing place-making with deeper historical knowledge; Facilitating emergency and social services by tagging legal addresses to vernacular place names; Encouraging public engagement with heritage by eliciting multi-stakeholder input.

Keywords: collective memory, crowd-sourced, digital heritage, geospatial, geographical names, linguistic heritage, place-naming, Singapore, Southeast Asia

Procedia PDF Downloads 128
4 SEAWIZARD-Multiplex AI-Enabled Graphene Based Lab-On-Chip Sensing Platform for Heavy Metal Ions Monitoring on Marine Water

Authors: M. Moreno, M. Alique, D. Otero, C. Delgado, P. Lacharmoise, L. Gracia, L. Pires, A. Moya

Abstract:

Marine environments are increasingly threatened by heavy metal contamination, including mercury (Hg), lead (Pb), and cadmium (Cd), posing significant risks to ecosystems and human health. Traditional monitoring techniques often fail to provide the spatial and temporal resolution needed for real-time detection of these contaminants, especially in remote or harsh environments. SEAWIZARD addresses these challenges by leveraging the flexibility, adaptability, and cost-effectiveness of printed electronics, with the integration of microfluidics to develop a compact, portable, and reusable sensor platform designed specifically for real-time monitoring of heavy metal ions in seawater. The SEAWIZARD sensor is a multiparametric Lab-on-Chip (LoC) device, a miniaturized system that integrates several laboratory functions into a single chip, drastically reducing sample volumes and improving adaptability. This platform integrates three printed graphene electrodes for the simultaneous detection of Hg, Cd and Pb via square wave voltammetry. These electrodes share the reference and the counter electrodes to improve space efficiency. Additionally, it integrates printed pH and temperature sensors to correct environmental interferences that may impact the accuracy of metal detection. The pH sensor is based on a carbon electrode with iridium oxide electrodeposited while the temperature sensor is graphene based. A protective dielectric layer is printed on top of the sensor to safeguard it in harsh marine conditions. The use of flexible polyethylene terephthalate (PET) as the substrate enables the sensor to conform to various surfaces and operate in challenging environments. One of the key innovations of SEAWIZARD is its integrated microfluidic layer, fabricated from cyclic olefin copolymer (COC). This microfluidic component allows a controlled flow of seawater over the sensing area, allowing for significant improved detection limits compared to direct water sampling. The system’s dual-channel design separates the detection of heavy metals from the measurement of pH and temperature, ensuring that each parameter is measured under optimal conditions. In addition, the temperature sensor is finely tuned with a serpentine-shaped microfluidic channel to ensure precise thermal measurements. SEAWIZARD also incorporates custom electronics that allow for wireless data transmission via Bluetooth, facilitating rapid data collection and user interface integration. Embedded artificial intelligence further enhances the platform by providing an automated alarm system, capable of detecting predefined metal concentration thresholds and issuing warnings when limits are exceeded. This predictive feature enables early warnings of potential environmental disasters, such as industrial spills or toxic levels of heavy metal pollutants, making SEAWIZARD not just a detection tool, but a comprehensive monitoring and early intervention system. In conclusion, SEAWIZARD represents a significant advancement in printed electronics applied to environmental sensing. By combining flexible, low-cost materials with advanced microfluidics, custom electronics, and AI-driven intelligence, SEAWIZARD offers a highly adaptable and scalable solution for real-time, high-resolution monitoring of heavy metals in marine environments. Its compact and portable design makes it an accessible, user-friendly tool with the potential to transform water quality monitoring practices and provide critical data to protect marine ecosystems from contamination-related risks.

Keywords: lab-on-chip, printed electronics, real-time monitoring, microfluidics, heavy metal contamination

Procedia PDF Downloads 27
3 Remote Building: An Integrated Approach to Domestic Rainwater Harvesting System Implementation in a Rural Village in Himachal Pradesh, India

Authors: Medha Iyer, Anshul Paul, Aunnesha Bhowmick, Anahita Banerjee, Sana Prasad, Anoushka Singal, Lauren Sinopoli, Pooja Bapat, Shivi Jain

Abstract:

In Himachal Pradesh, India, a majority of the population lives in rural villages spread throughout its hilly regions; many of these households rely on subsistence farming as their main source of livelihood. The student-run non-profit organization affiliated with this study, Project RISHI (Rural India Social and Health Improvement), works to promote sustainable development practices in Bharog Baneri, a gram panchayat, or union, of villages in Himachal Pradesh. In 2017, an established rainwater harvesting (RWH) project group within Project RISHI had surveyed many families, finding that the most common issue regarding food and water access was a lack of accessible water sources for agricultural use in the dry season. After a prototype build in 2018, the group built 6 systems for eligible residents that demonstrated need in 2019. Subsequently, the project went through an evaluation period, including self-evaluation of project goals and post-impact surveying of system recipients. The group used the social impact assessment model to optimize the implementation of domestic RWH systems in Bharog Baneri. Assessing implementation after in-person builds produced three pillars of focus — system design, equitable recipient selection, and community involvement. After two years of remote involvement during COVID-19, the group prepared to visit Bharog Baneri to build 10 new systems in the Summer 2022. First, the group created a more durable and cost-effective design that could withstand debris and heavy rains to prevent gutter failure. The domestic system design is a rooftop RWH catchment system with two tanks attached, an overflow pipe, debris filtration, and a spigot for accessibility. The group also developed a needs-based eligibility methodology with assistance from village leaders and surveying in Bharog Baneri and set up the groundwork for a future community board. COVID-19 has strengthened remote work, telecommunications, and other organizational support systems. As sustainable development evolves to encompass these practices in a post-pandemic world, the potential for new RWH system design and implementation processes has emerged as well. This raises the question: how can a social impact assessment of rural RWH projects inform an integrated approach to post-pandemic RWH system practices? The objective of this exploratory study is to investigate and evaluate a novel remote build infrastructure that brings access to reliable and sustainable sources of water for agricultural use. To construct the remote build approach, the group identified and assigned a point of contact who was experienced with previous RWH system builds. The recipients were selected based on demonstrated need and ease of building. The contact visited each of the houses and coordinated supplier relations and transportation of the materials in accordance with the participatory approach to sustainable development. Over the course of two months, the group completed four system builds with the resulting infrastructure. The infrastructure adhered to the social impact assessment model by centering supplier relations, material transportation, and construction logistics within the community. The conclusion of this exploration is that post-pandemic rural RWH practices should be rooted in strengthening villager communication and utilizing local assets. Through this, non-profit organizations can incorporate remote build strategies into their long-term goals.

Keywords: capturing run-off from rooftops, domestic rainwater harvesting, Implementation approaches and strategies, rainwater harvesting and management in rural sectors

Procedia PDF Downloads 86
2 The Integration of Digital Humanities into the Sociology of Knowledge Approach to Discourse Analysis

Authors: Gertraud Koch, Teresa Stumpf, Alejandra Tijerina García

Abstract:

Discourse analysis research approaches belong to the central research strategies applied throughout the humanities; they focus on the countless forms and ways digital texts and images shape present-day notions of the world. Despite the constantly growing number of relevant digital, multimodal discourse resources, digital humanities (DH) methods are thus far not systematically developed and accessible for discourse analysis approaches. Specifically, the significance of multimodality and meaning plurality modelling are yet to be sufficiently addressed. In order to address this research gap, the D-WISE project aims to develop a prototypical working environment as digital support for the sociology of knowledge approach to discourse analysis and new IT-analysis approaches for the use of context-oriented embedding representations. Playing an essential role throughout our research endeavor is the constant optimization of hermeneutical methodology in the use of (semi)automated processes and their corresponding epistemological reflection. Among the discourse analyses, the sociology of knowledge approach to discourse analysis is characterised by the reconstructive and accompanying research into the formation of knowledge systems in social negotiation processes. The approach analyses how dominant understandings of a phenomenon develop, i.e., the way they are expressed and consolidated by various actors in specific arenas of discourse until a specific understanding of the phenomenon and its socially accepted structure are established. This article presents insights and initial findings from D-WISE, a joint research project running since 2021 between the Institute of Anthropological Studies in Culture and History and the Language Technology Group of the Department of Informatics at the University of Hamburg. As an interdisciplinary team, we develop central innovations with regard to the availability of relevant DH applications by building up a uniform working environment, which supports the procedure of the sociology of knowledge approach to discourse analysis within open corpora and heterogeneous, multimodal data sources for researchers in the humanities. We are hereby expanding the existing range of DH methods by developing contextualized embeddings for improved modelling of the plurality of meaning and the integrated processing of multimodal data. The alignment of this methodological and technical innovation is based on the epistemological working methods according to grounded theory as a hermeneutic methodology. In order to systematically relate, compare, and reflect the approaches of structural-IT and hermeneutic-interpretative analysis, the discourse analysis is carried out both manually and digitally. Using the example of current discourses on digitization in the healthcare sector and the associated issues regarding data protection, we have manually built an initial data corpus of which the relevant actors and discourse positions are analysed in conventional qualitative discourse analysis. At the same time, we are building an extensive digital corpus on the same topic based on the use and further development of entity-centered research tools such as topic crawlers and automated newsreaders. In addition to the text material, this consists of multimodal sources such as images, video sequences, and apps. In a blended reading process, the data material is filtered, annotated, and finally coded with the help of NLP tools such as dependency parsing, named entity recognition, co-reference resolution, entity linking, sentiment analysis, and other project-specific tools that are being adapted and developed. The coding process is carried out (semi-)automated by programs that propose coding paradigms based on the calculated entities and their relationships. Simultaneously, these can be specifically trained by manual coding in a closed reading process and specified according to the content issues. Overall, this approach enables purely qualitative, fully automated, and semi-automated analyses to be compared and reflected upon.

Keywords: entanglement of structural IT and hermeneutic-interpretative analysis, multimodality, plurality of meaning, sociology of knowledge approach to discourse analysis

Procedia PDF Downloads 224
1 Open Science Philosophy, Research and Innovation

Authors: C.Ardil

Abstract:

Open Science translates the understanding and application of various theories and practices in open science philosophy, systems, paradigms and epistemology. Open Science originates with the premise that universal scientific knowledge is a product of a collective scholarly and social collaboration involving all stakeholders and knowledge belongs to the global society. Scientific outputs generated by public research are a public good that should be available to all at no cost and without barriers or restrictions. Open Science has the potential to increase the quality, impact and benefits of science and to accelerate advancement of knowledge by making it more reliable, more efficient and accurate, better understandable by society and responsive to societal challenges, and has the potential to enable growth and innovation through reuse of scientific results by all stakeholders at all levels of society, and ultimately contribute to growth and competitiveness of global society. Open Science is a global movement to improve accessibility to and reusability of research practices and outputs. In its broadest definition, it encompasses open access to publications, open research data and methods, open source, open educational resources, open evaluation, and citizen science. The implementation of open science provides an excellent opportunity to renegotiate the social roles and responsibilities of publicly funded research and to rethink the science system as a whole. Open Science is the practice of science in such a way that others can collaborate and contribute, where research data, lab notes and other research processes are freely available, under terms that enable reuse, redistribution and reproduction of the research and its underlying data and methods. Open Science represents a novel systematic approach to the scientific process, shifting from the standard practices of publishing research results in scientific publications towards sharing and using all available knowledge at an earlier stage in the research process, based on cooperative work and diffusing scholarly knowledge with no barriers and restrictions. Open Science refers to efforts to make the primary outputs of publicly funded research results (publications and the research data) publicly accessible in digital format with no limitations. Open Science is about extending the principles of openness to the whole research cycle, fostering, sharing and collaboration as early as possible, thus entailing a systemic change to the way science and research is done. Open Science is the ongoing transition in how open research is carried out, disseminated, deployed, and transformed to make scholarly research more open, global, collaborative, creative and closer to society. Open Science involves various movements aiming to remove the barriers for sharing any kind of output, resources, methods or tools, at any stage of the research process. Open Science embraces open access to publications, research data, source software, collaboration, peer review, notebooks, educational resources, monographs, citizen science, or research crowdfunding. The recognition and adoption of open science practices, including open science policies that increase open access to scientific literature and encourage data and code sharing, is increasing in the open science philosophy. Revolutionary open science policies are motivated by ethical, moral or utilitarian arguments, such as the right to access digital research literature for open source research or science data accumulation, research indicators, transparency in the field of academic practice, and reproducibility. Open science philosophy is adopted primarily to demonstrate the benefits of open science practices. Researchers use open science applications for their own advantage in order to get more offers, increase citations, attract media attention, potential collaborators, career opportunities, donations and funding opportunities. In open science philosophy, open data findings are evidence that open science practices provide significant benefits to researchers in scientific research creation, collaboration, communication, and evaluation according to more traditional closed science practices. Open science considers concerns such as the rigor of peer review, common research facts such as financing and career development, and the sacrifice of author rights. Therefore, researchers are recommended to implement open science research within the framework of existing academic evaluation and incentives. As a result, open science research issues are addressed in the areas of publishing, financing, collaboration, resource management and sharing, career development, discussion of open science questions and conclusions.

Keywords: Open Science, Open Science Philosophy, Open Science Research, Open Science Data

Procedia PDF Downloads 129