Search results for: facade performance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13034

Search results for: facade performance

6254 Reconfigurable Efficient IIR Filter Design Using MAC Algorithm

Authors: Rajesh Mehra

Abstract:

In this paper an IIR filter has been designed and simulated on an FPGA. The implementation is based on MAC algorithm which uses multiply-and-accumulate operations IIR filter design implementation. Parallel Pipelined structure is used to implement the proposed IIR Filter taking optimal advantage of the look up table of the FPGA device. The designed filter has been synthesized on DSP slice based FPGA to perform multiplier function of MAC unit. The DSP slices are useful to enhance the speed performance. The developed IIR filter is designed and simulated with MATLAB and synthesized with Xilinx Synthesis Tool (XST), and implemented on Virtex 5 and Spartan 3 ADSP FPGA devices. The IIR filter implemented on Virtex 5 FPGA can operate at an estimated frequency of 81.5 MHz as compared to 40.5 MHz in case of Spartan 3 ADSP FPGA. The Virtex 5 based implementation also consumes less slices and slice flip flops of target FPGA in comparison to Spartan 3 ADSP based implementation to provide cost effective solution for signal processing applications.

Keywords: butterworth, DSP, IIR, MAC, FPGA

Procedia PDF Downloads 364
6253 Parameters Affecting the Removal of Copper and Cobalt from Aqueous Solution onto Clinoptilolite by Ion-Exchange Process

Authors: John Kabuba, Hilary Rutto

Abstract:

Ion exchange is one of the methods used to remove heavy metal such as copper and cobalt from wastewaters. Parameters affecting the ion-exchange of copper and cobalt aqueous solutions using clinoptilolite are the objectives of this study. Synthetic solutions were prepared with the concentration of 0.02M, 0.06M and 0.1M. The cobalt solution was maintained to 0.02M while varying the copper solution to the above stated concentrations. The clinoptilolite was activated with HCl and H2SO4 for removal efficiency. The pHs of the solutions were found to be acidic hence enhancing the copper and cobalt removal. The natural clinoptilolite performance was also found to be lower compared to the HCl and H2SO4 activated one for the copper removal ranging from 68% to 78% of Cu2+ uptake with the natural clinoptilolite to 66% to 51% with HCl and H2SO4 respectively. It was found that the activated clinoptilolite removed more copper and cobalt than the natural one and found that the electronegativity of the metal plays a role in the metal removal and the clinoptilolite selectivity.

Keywords: clinoptilolite, cobalt and copper, ion-exchange, mass dosage, pH

Procedia PDF Downloads 301
6252 Distributed Coverage Control by Robot Networks in Unknown Environments Using a Modified EM Algorithm

Authors: Mohammadhosein Hasanbeig, Lacra Pavel

Abstract:

In this paper, we study a distributed control algorithm for the problem of unknown area coverage by a network of robots. The coverage objective is to locate a set of targets in the area and to minimize the robots’ energy consumption. The robots have no prior knowledge about the location and also about the number of the targets in the area. One efficient approach that can be used to relax the robots’ lack of knowledge is to incorporate an auxiliary learning algorithm into the control scheme. A learning algorithm actually allows the robots to explore and study the unknown environment and to eventually overcome their lack of knowledge. The control algorithm itself is modeled based on game theory where the network of the robots use their collective information to play a non-cooperative potential game. The algorithm is tested via simulations to verify its performance and adaptability.

Keywords: distributed control, game theory, multi-agent learning, reinforcement learning

Procedia PDF Downloads 464
6251 Distributed Actor System for Traffic Simulation

Authors: Han Wang, Zhuoxian Dai, Zhe Zhu, Hui Zhang, Zhenyu Zeng

Abstract:

In traditional microscopic traffic simulation, various approaches have been suggested to implement the single-agent behaviors about lane changing and intelligent driver model. However, when it comes to very large metropolitan areas, microscopic traffic simulation requires more resources and become time-consuming, then macroscopic traffic simulation aggregate trends of interests rather than individual vehicle traces. In this paper, we describe the architecture and implementation of the actor system of microscopic traffic simulation, which exploits the distributed architecture of modern-day cloud computing. The results demonstrate that our architecture achieves high-performance and outperforms all the other traditional microscopic software in all tasks. To the best of our knowledge, this the first system that enables single-agent behavior in macroscopic traffic simulation. We thus believe it contributes to a new type of system for traffic simulation, which could provide individual vehicle behaviors in microscopic traffic simulation.

Keywords: actor system, cloud computing, distributed system, traffic simulation

Procedia PDF Downloads 196
6250 Face Sketch Recognition in Forensic Application Using Scale Invariant Feature Transform and Multiscale Local Binary Patterns Fusion

Authors: Gargi Phadke, Mugdha Joshi, Shamal Salunkhe

Abstract:

Facial sketches are used as a crucial clue by criminal investigators for identification of suspects when the description of eyewitness or victims are only available as evidence. A forensic artist develops a sketch as per the verbal description is given by an eyewitness that shows the facial look of the culprit. In this paper, the fusion of Scale Invariant Feature Transform (SIFT) and multiscale local binary patterns (MLBP) are proposed as a feature to recognize a forensic face sketch images from a gallery of mugshot photos. This work focuses on comparative analysis of proposed scheme with existing algorithms in different challenges like illumination change and rotation condition. Experimental results show that proposed scheme can lead to better performance for the defined problem.

Keywords: SIFT feature, MLBP, PCA, face sketch

Procedia PDF Downloads 344
6249 The Impact of Family Involvement in Management on Firm’s Innovation: Evidence From Chinese Family Firms

Authors: Chen Jun

Abstract:

This study investigates the impact of family involvement, a pivotal factor shaping the management structure of family firms, on the firm’s innovation outputs. The independent variable focuses on the percentage number of family members serving as directors, supervisors and senior management. Our hypothesis suggests that family involvement tends to make management more conservative, thereby increasing the likelihood of impeding innovation investments and resulting in adverse effects on innovation output. Our findings reveal that Chinese family firms with high family involvement exhibit poorer innovation outputs compared to those with lower family involvement. Subsample analyses indicate that this negative influence of family involvement on innovation output is strengthened as the firm faces higher industry competition and a low marketization context. The findings of our paper contribute to the literature on family involvement by empirically illustrating how family involvement hinders innovation efforts and performance in Chinese family firms.

Keywords: family firm, family involvement, firm innovation, Chinese family firm

Procedia PDF Downloads 68
6248 Evaluation of Non-Destructive Application to Detect Pesticide Residue on Leaf Mustard Using Spectroscopic Method

Authors: Nazmi Mat Nawi, Muhamad Najib Mohamad Nor, Che Dini Maryani Ishkandar

Abstract:

This study was conducted to evaluate the capability of spectroscopic methods to detect the presence of pesticide residues on leaf mustard. A total of 105 leaf mustard used were divided into five batches, four batches were treated with four different types of pesticides whereas one batch with no pesticide applied. Spectral data were obtained using visible shortwave near infrared spectrometer (VSWNIRS) which is Ocean Optics HR4000 High-resolution Miniature Fiber Optic Spectrometer. Reflectance value was collected to determine the difference between one pesticide to the other. The obtained spectral data were pre-processed for optimum performance. The effective wavelength of approximate 880 nm, 675-710 nm also 550 and 700 nm indicates the overtones -CH stretching vibration, tannin, also chlorophyll content present in the leaf mustard respectively. This study has successfully demonstrated that the spectroscopic method was able to differentiate between leaf mustard sample with and without pesticide residue.

Keywords: detect, leaf mustard, non-destructive, pesticide residue

Procedia PDF Downloads 262
6247 Evaluation of the Role of Advocacy and the Quality of Care in Reducing Health Inequalities for People with Autism, Intellectual and Developmental Disabilities at Sheffield Teaching Hospitals

Authors: Jonathan Sahu, Jill Aylott

Abstract:

Individuals with Autism, Intellectual and Developmental disabilities (AIDD) are one of the most vulnerable groups in society, hampered not only by their own limitations to understand and interact with the wider society, but also societal limitations in perception and understanding. Communication to express their needs and wishes is fundamental to enable such individuals to live and prosper in society. This research project was designed as an organisational case study, in a large secondary health care hospital within the National Health Service (NHS), to assess the quality of care provided to people with AIDD and to review the role of advocacy to reduce health inequalities in these individuals. Methods: The research methodology adopted was as an “insider researcher”. Data collection included both quantitative and qualitative data i.e. a mixed method approach. A semi-structured interview schedule was designed and used to obtain qualitative and quantitative primary data from a wide range of interdisciplinary frontline health care workers to assess their understanding and awareness of systems, processes and evidence based practice to offer a quality service to people with AIDD. Secondary data were obtained from sources within the organisation, in keeping with “Case Study” as a primary method, and organisational performance data were then compared against national benchmarking standards. Further data sources were accessed to help evaluate the effectiveness of different types of advocacy that were present in the organisation. This was gauged by measures of user and carer experience in the form of retrospective survey analysis, incidents and complaints. Results: Secondary data demonstrate near compliance of the Organisation with the current national benchmarking standard (Monitor Compliance Framework). However, primary data demonstrate poor knowledge of the Mental Capacity Act 2005, poor knowledge of organisational systems, processes and evidence based practice applied for people with AIDD. In addition there was poor knowledge and awareness of frontline health care workers of advocacy and advocacy schemes for this group. Conclusions: A significant amount of work needs to be undertaken to improve the quality of care delivered to individuals with AIDD. An operational strategy promoting the widespread dissemination of information may not be the best approach to deliver quality care and optimal patient experience and patient advocacy. In addition, a more robust set of standards, with appropriate metrics, needs to be developed to assess organisational performance which will stand the test of professional and public scrutiny.

Keywords: advocacy, autism, health inequalities, intellectual developmental disabilities, quality of care

Procedia PDF Downloads 223
6246 Thermodynamic Analysis of Cascade Refrigeration System Using R12-R13, R290-R23 and R404A-23

Authors: A. D. Parekh, P. R. Tailor

Abstract:

The Montreal protocol and Kyoto protocol underlined the need of substitution of CFC’s and HCFC’s due to their adverse impact on atmospheric ozone layer which protects earth from U.V rays. The CFCs have been entirely ruled out since 1995 and a long-term basis HCFCs must be replaced by 2020. All this events motivated HFC refrigerants which are harmless to ozone layer. In this paper thermodynamic analysis of cascade refrigeration system has been done using three different refrigerant pairs R13-R12, R290-R23, and R404A-R23. Effect of various operating parameters i.e evaporator temperature, condenser temperature, temperature difference in cascade condenser and low temperature cycle condenser temperature on performance parameters viz. COP, exergetic efficiency and refrigerant mass flow ratio have been studied. Thermodynamic analysis shows that out of three refrigerant pairs R12-R13, R290-R23 and R404A-R23 the COP of R290-R23 refrigerant pair is highest.

Keywords: thermodynamic analysis, cascade refrigeration system, COP, exergetic efficiency

Procedia PDF Downloads 300
6245 Visible-Light Induced Photocatalytic Degradation of Dye Molecules over ZnWO4-Bi2WO6 Composite

Authors: Sudarat Issarapanacheewin, Katcharin Wetchakun, Sukon Phanichphant, Wiyong Kangwansupamonkon, Natda Wetchakun

Abstract:

The photocatalytic degradation of Methylene blue (MB) and Rhodamine B (RhB) in the presence of ZnWO4-Bi2WO6 composite under visible light irradiation (λ ≥ 400 nm) were studied in this research. The structural and photophysical properties of ZnWO4-Bi2WO6 composite on the photocatalytic degradation process were investigated. The as-prepared ZnWO4-Bi2WO6 composite photocatalyst exhibits wide absorption in the visible-light region and display superior visible-light-driven photocatalytic activities in degradation of MB and RhB. The enhanced photocatalytic activity was attributed to electron-hole separation with the appropriate band potential and the physicochemical properties of ZnWO4 and Bi2WO6. The main active species for the degradation of organic dyes were investigated to explain the enhancement of photocatalytic performance of ZnWO4-Bi2WO6 composite. The possible photocatalytic degradation pathway of aqueous MB and RhB dyes and charge transfer of ZnWO4-Bi2WO6 composite was proposed.

Keywords: composite, dyes, photocatalytic activity, ZnWO4-Bi2WO6

Procedia PDF Downloads 303
6244 Progressive Structural Capacity Loss Assessment

Authors: M. Zain, Thaung H. Aung, Naveed Anwar

Abstract:

During the service life, a structure may experience extreme loading conditions. The current study proposes a new methodology that covers the effect of uncertainty involved in gravity loadings on key structural elements of new and complex structures by emphasizing on a very realistic assumption that allows the 'Performance-Based Assessment' to be executed on the structure against the gravity loadings. The methodology does not require the complete removal of an element, instead, it permits the incremental reduction in the capacity of key structural elements and preserves the same stiffness of the member in each case of capacity loss. To demonstrate the application of the proposed methodology, a 13 story complex structure is selected that comprises of a diverse structural configuration. The results ensure the structural integrity against the applied gravity loadings, as well as the effectiveness of the proposed methodology.

Keywords: force-deformation relationship, gravity loading, incremental capacity reduction, multi-linear plastic link element, SAP2000, stiffness

Procedia PDF Downloads 454
6243 Comparison of DPC and FOC Vector Control Strategies on Reducing Harmonics Caused by Nonlinear Load in the DFIG Wind Turbine

Authors: Hamid Havasi, Mohamad Reza Gholami Dehbalaei, Hamed Khorami, Shahram Karimi, Hamdi Abdi

Abstract:

Doubly-fed induction generator (DFIG) equipped with a power converter is an efficient tool for converting mechanical energy of a variable speed system to a fixed-frequency electrical grid. Since electrical energy sources faces with production problems such as harmonics caused by nonlinear loads, so in this paper, compensation performance of DPC and FOC method on harmonics reduction of a DFIG wind turbine connected to a nonlinear load in MATLAB Simulink model has been simulated and effect of each method on nonlinear load harmonic elimination has been compared. Results of the two mentioned control methods shows the advantage of the FOC method on DPC method for harmonic compensation. Also, the fifth and seventh harmonic components of the network and THD greatly reduced.

Keywords: DFIG machine, energy conversion, nonlinear load, THD, DPC, FOC

Procedia PDF Downloads 595
6242 Twitter: The New Marketing Communication Tools

Authors: Mansur Ahmed Kazaure

Abstract:

The emergence of internet-based social media has made it possible for one person to communication with hundreds or even thousands of people about a company goods and services and the companies that provides them. Thus, the impact of customer-to-customer communications has been significantly magnified in the marketplace. Therefore, the essence of this paper is to critically evaluate the literature of social media and their implication for practice, but the author pay attention on twitter as a new marketing communication tools. The author found out that, despite the implication of using social media especially twitter by the companies as part of their marketing communication tool, but still it can enhance the opportunity for the companies to develop and maintain long-term customer relationship. The paper concludes that, using twitter as a marketing communication tool is a market trend and it is the best way for marketers to add value to their customer, however with the Twitter marketers can get a feedback about the performance of their product and its brand in the marketplace. The paper is purely a conceptual discourse based on secondary data.

Keywords: social media, marketing communication, marketing communication tools, Twitter, Facebook

Procedia PDF Downloads 476
6241 Observer-based Robust Diagnosis for Wind Turbine System

Authors: Sarah Odofin, Zhiwei Gao

Abstract:

Operations and maintenance of wind turbine have received much attention by researcher due to rapid expansion of wind farms. This paper explores a novel fault diagnosis that is designed and optimized to be very sensitive to faults and robust to disturbances. The faults considered are the sensor faults of which the augmented observer is considered to enlarge faults and to be robust to disturbance. A qualitative model based analysis is proposed for early fault diagnosis to minimize downtime mostly caused by components breakdown and exploit productivity. Simulation results are computed validating the models provided which demonstrates system performance using practical application of fault type examples. The results demonstrate the effectiveness of the developed techniques investigated in a Matlab/Simulink environment.

Keywords: wind turbine, condition monitoring, genetic algorithm, fault diagnosis, augmented observer, disturbance robustness, fault estimation, sensor monitoring

Procedia PDF Downloads 499
6240 Nutrient Removal and Microalgal Biomass Growth of Chlorella Vulgaris in Response to Centrate Wastewater Loadings

Authors: Lingfeng Wang, Zhipeng Chen, Shuang Qiu, Shijian Ge

Abstract:

The effects of wastewater, with four different nutrient loadings, from synthetic centrate on biomass production of Chlorella vulgaris, nutrient removal, microalgal settling, and lipid production were investigated in photobioreactors under both batches and, subsequently, semi-continuous operations. At higher centrate concentration factors (17.2% and 36.2%), hydraulic retention time and pH adjustments could be employed to sustain acceptable microalgal growth rates and wastewater treatment. Similar nutrient removals efficiencies (>95%) and biomass production (0.42-0.51 g/L) were observed for the four centrate concentrations. Both the lipid productivity and lipid content decreased with increasing nutrient loading in the wastewater. The results also demonstrated that the mass ratio of carbohydrate to protein could provide a good indication of microalgal settling performance, rather than sole component composition or total extracellular polymeric substances.

Keywords: lipid production, microalgae, nutrient removal, wastewater

Procedia PDF Downloads 248
6239 Analytical Approach to Reinsurance in Algeria as an Emerging Market

Authors: Necira Okba, Nesrine Bouzaher

Abstract:

The financial aspect of the Algerian economy is part of all sectors that have undergone great changes these two last decades; the goal is to enable economic mechanisms for real growth. Insurance is an indispensable tool for stabilizing these mechanisms. Therefore, the national economy needs to develop the insurance market in order to support the investments, externally and intern ally; it turns out that reinsurance is one of the area which could prove their performance in several markets mainly emerging ones. The expansion of reinsurance in the domestic market is the preoccupation of this work, focusing on factors that could enhance the demand of reinsurance in the Algerian market. This work will be based on an analytical research of the economic contribution of the reinsurance and it’s collusion with insurance market, then it will be necessary to provide an overview of the product in the national emerging market, finally we will try to investigate on the factors that could enhance the demand in the national reinsurance market so as to determine the potential of Algeria in this area.

Keywords: Algerian reinsurance data, demand trend of Algerian reinsurance, reinsurance, reinsurance market

Procedia PDF Downloads 346
6238 Exploring Distinct Materials for Hydrogen Storage: A Density Functional Theory Approach

Authors: Abdalla Ahmad Obeidat

Abstract:

Developing efficient hydrogen storage materials is critical to advancing clean energy technologies, particularly for applications in fuel cells and renewable energy systems. This study explores materials for hydrogen storage through Density Functional Theory (DFT) calculations, addressing one of the most significant challenges in sustainable energy: the safe and efficient storage and release of hydrogen. Our research provides an in-depth analysis of various candidate compounds' structural and electronic properties, aiming to identify materials with enhanced hydrogen storage capacities. By investigating adsorption mechanisms and optimizing key material properties, we aim to contribute to developing high-performance hydrogen storage solutions. The findings from this work have the potential to impact the field of hydrogen fuel technology significantly, offering insights and advancements that support the transition to sustainable energy systems.

Keywords: hydrogen storage, density functional theory, electronic, thermal stability

Procedia PDF Downloads 22
6237 Approach of Measuring System Analyses for Automotive Part Manufacturing

Authors: S. Homrossukon, S. Sansureerungsigun

Abstract:

This work aims to introduce an efficient and to standardize the measuring system analyses for automotive industrial. The study started by literature reviewing about the management and analyses measurement system. The approach of measuring system management, then, was constructed. Such approach was validated by collecting the current measuring system data using the equipments of interest including vernier caliper and micrometer. Their accuracy and precision of measurements were analyzed. Finally, the measuring system was improved and evaluated. The study showed that vernier did not meet its measuring characteristics based on the linearity whereas all equipment were lacking of the measuring precision characteristics. Consequently, the causes of measuring variation via the equipment of interest were declared. After the improvement, it was found that their measuring performance could be accepted as the standard required. Finally, the standardized approach for analyzing the measuring system of automotive was concluded.

Keywords: automotive part manufacturing measurement, measuring accuracy, measuring precision, measurement system analyses

Procedia PDF Downloads 315
6236 Evaluation of Turbulence Modelling of Gas-Liquid Two-Phase Flow in a Venturi

Authors: Mengke Zhan, Cheng-Gang Xie, Jian-Jun Shu

Abstract:

A venturi flowmeter is a common device used in multiphase flow rate measurement in the upstream oil and gas industry. Having a robust computational model for multiphase flow in a venturi is desirable for understanding the gas-liquid and fluid-pipe interactions and predicting pressure and phase distributions under various flow conditions. A steady Eulerian-Eulerian framework is used to simulate upward gas-liquid flow in a vertical venturi. The simulation results are compared with experimental measurements of venturi differential pressure and chord-averaged gas holdup in the venturi throat section. The choice of turbulence model is nontrivial in the multiphase flow modelling in a venturi. The performance cross-comparison of the k-ϵ model, Reynolds stress model (RSM) and shear-stress transport (SST) k-ω turbulence model is made in the study. In terms of accuracy and computational cost, the SST k-ω turbulence model is observed to be the most efficient.

Keywords: computational fluid dynamics (CFD), gas-liquid flow, turbulence modelling, venturi

Procedia PDF Downloads 177
6235 Comparison Between Fuzzy and P&O Control for MPPT for Photovoltaic System Using Boost Converter

Authors: M. Doumi, A. Miloudi, A. G. Aissaoui, K. Tahir, C. Belfedal, S. Tahir

Abstract:

The studies on the photovoltaic system are extensively increasing because of a large, secure, essentially exhaustible and broadly available resource as a future energy supply. However, the output power induced in the photovoltaic modules is influenced by an intensity of solar cell radiation, temperature of the solar cells and so on. Therefore, to maximize the efficiency of the photovoltaic system, it is necessary to track the maximum power point of the PV array, for this Maximum Power Point Tracking (MPPT) technique is used. Some MPPT techniques are available in that perturbation and observation (P&O) and Fuzzy logic controller (FLC). The fuzzy control method has been compared with perturb and observe (P&O) method as one of the most widely conventional method used in this area. Both techniques have been analyzed and simulated. MPPT using fuzzy logic shows superior performance and more reliable control with respect to the P&O technique for this application.

Keywords: photovoltaic system, MPPT, perturb and observe, fuzzy logic

Procedia PDF Downloads 609
6234 The Response of Optical Properties to Temperature in Three-Layer Micro Device Under Influence of Casimir Force

Authors: Motahare Aali, Fatemeh Tajik

Abstract:

Here, we investigate the sensitivity the Casimir force and consequently dynamical actuation of a three-layer microswitch to some ambient conditions. In fact, we have considered the effect of optical properties on the stable operation of the microswitch for both good (e.g. metals) and poor conductors via a three layer Casimir oscillator. Indeed, gold (Au) has been chosen as a good conductor which is widely used for Casimir force measurements, and highly doped conductive silicon carbide (SiC) has been considered as a poor conductor which is a promising material for device operating under harsh environments. Also, the intervening stratum is considered ethanol or water. It is also supposed that the microswitches are frictionless and autonomous. Using reduction factor diagrams and bifurcation curves, it has been shown how performance of the microswitches is sensitive to temperature and intervening stratum, moreover it is investigated how the conductivity of the components can affect this sensitivity.

Keywords: Casimir force, optical properties, Lifshitz theory, dielectric function

Procedia PDF Downloads 99
6233 Precise Electrochemical Metal Recovery from Emerging Waste Streams

Authors: Wei Jin

Abstract:

Efficient and selective metal recovery from emerging solid waste, such as spent lithium batteries, electronic waste and SCR catalysts, is of great importance from both environmental and resource considerations. In order to overcome the bottlenecks of long flow-sheet and severe secondary pollution in conventional processes, the rational design of 2-electron oxygen reduction reaction (ORR) and capacitive deionization (CDI) nanomaterials were developed for the precise electrochemical metal recovery. It has been demonstrated that the modified carbon nanomaterials can be employed as 2e ORR to produce H2O2 in aqueous solution, in which the metal can be leached out from the solid waste as ions. Moreover, the multi-component metallic solution can be electrochemically extracted with good efficiency and selectivity with the nanoporous aerogel. Each system presents stable performance for long-term operation and can be used in industrial solid waste treatment. This study provides a materials-oriented, cleaner metal recovery approach for strategic metal resources sustainability.

Keywords: electrochemistry, metal recovery, waste steams, nanomaterials

Procedia PDF Downloads 24
6232 Predicting Provider Service Time in Outpatient Clinics Using Artificial Intelligence-Based Models

Authors: Haya Salah, Srinivas Sharan

Abstract:

Healthcare facilities use appointment systems to schedule their appointments and to manage access to their medical services. With the growing demand for outpatient care, it is now imperative to manage physician's time effectively. However, high variation in consultation duration affects the clinical scheduler's ability to estimate the appointment duration and allocate provider time appropriately. Underestimating consultation times can lead to physician's burnout, misdiagnosis, and patient dissatisfaction. On the other hand, appointment durations that are longer than required lead to doctor idle time and fewer patient visits. Therefore, a good estimation of consultation duration has the potential to improve timely access to care, resource utilization, quality of care, and patient satisfaction. Although the literature on factors influencing consultation length abound, little work has done to predict it using based data-driven approaches. Therefore, this study aims to predict consultation duration using supervised machine learning algorithms (ML), which predicts an outcome variable (e.g., consultation) based on potential features that influence the outcome. In particular, ML algorithms learn from a historical dataset without explicitly being programmed and uncover the relationship between the features and outcome variable. A subset of the data used in this study has been obtained from the electronic medical records (EMR) of four different outpatient clinics located in central Pennsylvania, USA. Also, publicly available information on doctor's characteristics such as gender and experience has been extracted from online sources. This research develops three popular ML algorithms (deep learning, random forest, gradient boosting machine) to predict the treatment time required for a patient and conducts a comparative analysis of these algorithms with respect to predictive performance. The findings of this study indicate that ML algorithms have the potential to predict the provider service time with superior accuracy. While the current approach of experience-based appointment duration estimation adopted by the clinic resulted in a mean absolute percentage error of 25.8%, the Deep learning algorithm developed in this study yielded the best performance with a MAPE of 12.24%, followed by gradient boosting machine (13.26%) and random forests (14.71%). Besides, this research also identified the critical variables affecting consultation duration to be patient type (new vs. established), doctor's experience, zip code, appointment day, and doctor's specialty. Moreover, several practical insights are obtained based on the comparative analysis of the ML algorithms. The machine learning approach presented in this study can serve as a decision support tool and could be integrated into the appointment system for effectively managing patient scheduling.

Keywords: clinical decision support system, machine learning algorithms, patient scheduling, prediction models, provider service time

Procedia PDF Downloads 125
6231 Separate Powers Control Structure of DFIG Based on Fractional Regulator Fed by Multilevel Inverters DC Bus Voltages of a photovoltaic System

Authors: S. Ghoudelbourk, A. Omeiri, D. Dib, H. Cheghib

Abstract:

This paper shows that we can improve the performance of the auto-adjustable electric machines if a fractional dynamic is considered in the algorithm of the controlling order. This structure is particularly interested in the separate control of active and reactive power of the double-fed induction generator (DFIG) of wind power conversion chain. Fractional regulators are used in the regulation of chain of powers. Knowing that, usually, the source of DFIG is provided by converters through controlled rectifiers, all this system makes the currents of lines strongly polluted that can have a harmful effect for the connected loads and sensitive equipment nearby. The solution to overcome these problems is to replace the power of the rotor DFIG by multilevel inverters supplied by PV which improve the THD. The structure of the adopted adjustment is tested using Matlab/Simulink and the results are presented and analyzed for a variable wind.

Keywords: DFIG, fractional regulator, multilevel inverters, PV

Procedia PDF Downloads 403
6230 On the Design of Electronic Control Unitsfor the Safety-Critical Vehicle Applications

Authors: Kyung-Jung Lee, Hyun-Sik Ahn

Abstract:

This paper suggests a design methodology for the hardware and software of the Electronic Control Unit (ECU) of safety-critical vehicle applications such as braking and steering. The architecture of the hardware is a high integrity system such that it incorporates a high performance 32-bit CPU and a separate Peripheral Control-Processor (PCP) together with an external watchdog CPU. Communication between the main CPU and the PCP is executed via a common area of RAM and events on either processor which are invoked by interrupts. Safety-related software is also implemented to provide a reliable, self-testing computing environment for safety critical and high integrity applications. The validity of the design approach is shown by using the Hardware-in-the-Loop Simulation (HILS) for Electric Power Steering (EPS) systems which consists of the EPS mechanism, the designed ECU, and monitoring tools.

Keywords: electronic control unit, electric power steering, functional safety, hardware-in-the-loop simulation

Procedia PDF Downloads 303
6229 Three-dimensional Steady Flow in Thin Annular Pools of Silicon Melt under a Magnetic Field

Authors: Brahim Mahfoud

Abstract:

A three-dimensional (3D) numerical technique is used to investigate the possibility of reducing the price of manufacturing some silicon-based devices, particularly those in which minor temperature gradients can significantly reduce performance. The silicon melt under the magnetic field produces Lorentz force, which can effectively suppress the flow which is caused by temperature gradients. This might allow some silicon-based products, such as solar cells, to be manufactured using a less pure, and hence less expensive. The thermocapillary effect of the silicon melt flow in thin annular pools subjected to an externally induced magnetic field was observed. The results reveal that with a strong enough magnetic field, isothermal lines change form and become concentric circles. As the amplitude of the magnetic field (Ha) grows, the azimuthal velocity and temperature at the free surface reduce, and the asymmetric 3D flow becomes axisymmetric steady when Ha surpasses a threshold value.

Keywords: magnetic field, manufacturing, silicon melt, thermocapillary

Procedia PDF Downloads 89
6228 Simulating Lean and Green Correlation in Supply Chain Context

Authors: Rachid Benmoussa, Fatima Ezzahra Essaber, Roland De Guio, Fatima Zahra Ben Moussa

Abstract:

Implementing green practices in supply chain management is a complex task mainly because ecological, economical and operational goals are usually in conflict. Green practices might thus face companies’ reluctance because managers can consider its implementation obviously as a performance lean degradation. To implement lean and green practices successfully, companies need relevant decision-making tools to highlight the correlation between them. To contribute to this issue, this work tries to answer the following research question: How to use simulation to assess correlation (antagonism or convergence) between lean and green goals? To answer this question, we propose in this paper a based simulation process that measures correlation generally between two variables. So as to prove its relevance, a logistics academic case study is used to illustrate all its stages. It shows, as for example, that Lean goal 'Stock' and Green goal 'CO₂ emission' are not conceptually correlated (linearly).

Keywords: simulation, lean, green, supply chain

Procedia PDF Downloads 508
6227 SAP-Reduce: Staleness-Aware P-Reduce with Weight Generator

Authors: Lizhi Ma, Chengcheng Hu, Fuxian Wong

Abstract:

Partial reduce (P-Reduce) has set a state-of-the-art performance on distributed machine learning in the heterogeneous environment over the All-Reduce architecture. The dynamic P-Reduce based on the exponential moving average (EMA) approach predicts all the intermediate model parameters, which raises unreliability. It is noticed that the approximation trick leads the wrong way to obtaining model parameters in all the nodes. In this paper, SAP-Reduce is proposed, which is a variant of the All-Reduce distributed training model with staleness-aware dynamic P-Reduce. SAP-Reduce directly utilizes the EMA-like algorithm to generate the normalized weights. To demonstrate the effectiveness of the algorithm, the experiments are set based on a number of deep learning models, comparing the single-step training acceleration ratio and convergence time. It is found that SAP-Reduce simplifying dynamic P-Reduce outperforms the intermediate approximation one. The empirical results show SAP-Reduce is 1.3× −2.1× faster than existing baselines.

Keywords: collective communication, decentralized distributed training, machine learning, P-Reduce

Procedia PDF Downloads 36
6226 Investigation of New Gait Representations for Improving Gait Recognition

Authors: Chirawat Wattanapanich, Hong Wei

Abstract:

This study presents new gait representations for improving gait recognition accuracy on cross gait appearances, such as normal walking, wearing a coat and carrying a bag. Based on the Gait Energy Image (GEI), two ideas are implemented to generate new gait representations. One is to append lower knee regions to the original GEI, and the other is to apply convolutional operations to the GEI and its variants. A set of new gait representations are created and used for training multi-class Support Vector Machines (SVMs). Tests are conducted on the CASIA dataset B. Various combinations of the gait representations with different convolutional kernel size and different numbers of kernels used in the convolutional processes are examined. Both the entire images as features and reduced dimensional features by Principal Component Analysis (PCA) are tested in gait recognition. Interestingly, both new techniques, appending the lower knee regions to the original GEI and convolutional GEI, can significantly contribute to the performance improvement in the gait recognition. The experimental results have shown that the average recognition rate can be improved from 75.65% to 87.50%.

Keywords: convolutional image, lower knee, gait

Procedia PDF Downloads 206
6225 Timely Detection and Identification of Abnormalities for Process Monitoring

Authors: Hyun-Woo Cho

Abstract:

The detection and identification of multivariate manufacturing processes are quite important in order to maintain good product quality. Unusual behaviors or events encountered during its operation can have a serious impact on the process and product quality. Thus they should be detected and identified as soon as possible. This paper focused on the efficient representation of process measurement data in detecting and identifying abnormalities. This qualitative method is effective in representing fault patterns of process data. In addition, it is quite sensitive to measurement noise so that reliable outcomes can be obtained. To evaluate its performance a simulation process was utilized, and the effect of adopting linear and nonlinear methods in the detection and identification was tested with different simulation data. It has shown that the use of a nonlinear technique produced more satisfactory and more robust results for the simulation data sets. This monitoring framework can help operating personnel to detect the occurrence of process abnormalities and identify their assignable causes in an on-line or real-time basis.

Keywords: detection, monitoring, identification, measurement data, multivariate techniques

Procedia PDF Downloads 241