Search results for: inventory control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11151

Search results for: inventory control

10521 A Model-Reference Sliding Mode for Dual-Stage Actuator Servo Control in HDD

Authors: S. Sonkham, U. Pinsopon, W. Chatlatanagulchai

Abstract:

This paper presents a method of sliding mode control (SMC) designing and developing for the servo system in a dual-stage actuator (DSA) hard disk drive. Mathematical modelling of hard disk drive actuators is obtained, extracted from measuring frequency response of the voice-coil motor (VCM) and PZT micro-actuator separately. Matlab software tools are used for mathematical model estimation and also for controller design and simulation. A model-reference approach for tracking requirement is selected as a proposed technique. The simulation results show that performance of a model-reference SMC controller design in DSA servo control can be satisfied in the tracking error, as well as keeping the positioning of the head within the boundary of +/-5% of track width under the presence of internal and external disturbance. The overall results of model-reference SMC design in DSA are met per requirement specifications and significant reduction in %off track is found when compared to the single-state actuator (SSA).

Keywords: hard disk drive, dual-stage actuator, track following, hdd servo control, sliding mode control, model-reference, tracking control

Procedia PDF Downloads 348
10520 Endoscopic Pituitary Surgery: Learning Curve and Nasal Quality of Life

Authors: Martin Dupuy, Solange Grunenwald, Pierre-Louis Colombo, Laurence Mahieu, Pomone Richard, Philippe Bartoli

Abstract:

Endonasal endoscopic trans-sphenoidal surgery for pituitary tumours has become a mainstay of treatment over the last two decades. Although it is generally accepted that there is no significant difference between endoscopic versus microscopic approach for surgical outcomes (endocrine and ophthalmologic status), nasal morbidity seems to the benefit of endoscopic procedures. Minimally invasive endoscopic surgery needs an operative learning curve to achieve surgeon’s efficiency. This learning curve is now well known for surgical outcomes and complications rate, however, few data are available for nasal morbidity. The aim of our series is to document operative experience and nasal quality of life after (NQOL) endoscopic trans-sphenoidal surgery. The prospective pituitary surgical cohort consisted of 525 consecutives patients referred to our Skull Base Diseases Department. Endoscopic procedures were performed by a single neurosurgeon using an uninostril approach. NQOL was evaluated using the Sino-Nasal Test (SNOT-22), the Anterior Base Nasal Inventory (ASBNI) and the Skull Base Inventory Score (SBIS). Data were collected before surgery during hospital stay and 3 months after the surgery. The seventy first patients were compared to the latest 70 patients. There was no significant difference between comparison score before versus after surgery for SNOT-22, ASBNI and SBIS during the single surgeon’s learning curve. Our series demonstrates that in our institution there is no statistically significant learning curve for NQOL after uninostril endoscopic pituitary surgery. A careful progression through sinonasal structures with very limited mucosal incision is associated with minimal morbidity and preserves nasal function. Conservative and minimal invasive approach could be achieved early during learning curve.

Keywords: pituitary surgery, quality of life, minimal invasive surgery, learning curve, pituitary tumours, skull base surgery, endoscopic surgery

Procedia PDF Downloads 106
10519 Hierarchical Operation Strategies for Grid Connected Building Microgrid with Energy Storage and Photovoltatic Source

Authors: Seon-Ho Yoon, Jin-Young Choi, Dong-Jun Won

Abstract:

This paper presents hierarchical operation strategies which are minimizing operation error between day ahead operation plan and real time operation. Operating power systems between centralized and decentralized approaches can be represented as hierarchical control scheme, featured as primary control, secondary control and tertiary control. Primary control is known as local control, featuring fast response. Secondary control is referred to as microgrid Energy Management System (EMS). Tertiary control is responsible of coordinating the operations of multi-microgrids. In this paper, we formulated 3 stage microgrid operation strategies which are similar to hierarchical control scheme. First stage is to set a day ahead scheduled output power of Battery Energy Storage System (BESS) which is only controllable source in microgrid and it is optimized to minimize cost of exchanged power with main grid using Particle Swarm Optimization (PSO) method. Second stage is to control the active and reactive power of BESS to be operated in day ahead scheduled plan in case that State of Charge (SOC) error occurs between real time and scheduled plan. The third is rescheduling the system when the predicted error is over the limited value. The first stage can be compared with the secondary control in that it adjusts the active power. The second stage is comparable to the primary control in that it controls the error in local manner. The third stage is compared with the secondary control in that it manages power balancing. The proposed strategies will be applied to one of the buildings in Electronics and Telecommunication Research Institute (ETRI). The building microgrid is composed of Photovoltaic (PV) generation, BESS and load and it will be interconnected with the main grid. Main purpose of that is minimizing operation cost and to be operated in scheduled plan. Simulation results support validation of proposed strategies.

Keywords: Battery Energy Storage System (BESS), Energy Management System (EMS), Microgrid (MG), Particle Swarm Optimization (PSO)

Procedia PDF Downloads 238
10518 Continuous Adaptive Robust Control for Non-Linear Uncertain Systems

Authors: Dong Sang Yoo

Abstract:

We consider nonlinear uncertain systems such that a priori information of the uncertainties is not available. For such systems, we assume that the upper bound of the uncertainties is represented as a Fredholm integral equation of the first kind and we propose an adaptation law that is capable of estimating the upper bound and design a continuous robust control which renders nonlinear uncertain systems ultimately bounded.

Keywords: adaptive control, estimation, Fredholm integral, uncertain system

Procedia PDF Downloads 467
10517 The Effect of Elastic-Resistance Training on Postural Control in Sedentary Women

Authors: Yagmur Kocaoglu, Nurtekin Erkmen

Abstract:

The aim of this study was to determine effects of elastic resistance band training on body composition and postural control in sedentary women. Thirty-four sedentary females participated voluntarily for this study. Subjects' age was 21.88 ± 1.63 years, height was 161.50 ± 4.45 cm, and weight was 59.47 ± 7.03 kg. Participants were randomly placed into one of two groups (Experimental = 17, Control = 17). The elastic resistance training program lasted 8 weeks with 3 sessions per week. Experimental Group performed elastic resistance band training with red color for first 3 weeks, blue color for second 3 weeks and for last 2 weeks. The subjects carried out exercises 3 set, 10-15 repetitions with 15 seconds rest between exercises. The rest between sets was 30 seconds. The subjects underwent a standard warm-up for 10 minutes in every session. The elastic resistance training lasted 40 minutes for each session. After the training, all subjects performed a standard cool down for 10 minutes in each session. After and before 8 weeks training period, all subjects in experimental group and control group participated body composition and postural control measurements. Independent t-Test and Mann Whitney U Test were conducted to compare differences between experimental and control groups. Paired t-Test and Wilcoxon Z Test were used to compare differences between pre and posttests. There is no significant difference between pre and posttests in BMI (p>0.05). After the elastic resistance training, postural control scores and body fat significantly decreased in experimental group (p<0.05). In conclusion, it can be concluded that elastic resistance training improves postural control and body composition in sedentary women.

Keywords: body composition, elastic resistance band, postural control, sedentary women

Procedia PDF Downloads 258
10516 Heat Pipe Production and Life Performance Tests in Geosynchronous Telecom Satellites

Authors: Erkam Arslantas

Abstract:

Heat pipes one of the thermal control elements are used in communication satellites. A selection of the heat pipes of satellite thermal design will be emphasized how important and effective it is. In this article, manufacturing and performance control tests of heat pipes are reviewed from the current literature. The heat pipe is expected to function efficiently during all missions of the spacecraft from Beginning of Life (BOL) to End of Life (EOL). There are many parameters that are evaluated in manufacturing and performance control tests of the heat pipes which are used in satellites. These parameters are pressure design, leakage, noncondensable gas level (N.C.G), sine vibration, shock and static load capabilities, aging, bending, proof, final test etc. These parameters will be explained separately for the heat pipes in this review article and young researches working on the thermal control system of Geosynchronous Satellites systems can find easily related information in this article.

Keywords: communication satellite, heat pipe, performance test, thermal control

Procedia PDF Downloads 148
10515 ESS Control Strategy for Primary Frequency Response in Microgrid Considering Ramp Rate

Authors: Ho-Jun Jo, Wook-Won Kim, Yong-Sung Kim, Jin-O Kim

Abstract:

The application of ESS (Energy Storage Systems) in the future grids has been the solution of the microgrid. However, high investment costs necessitate accurate modeling and control strategy of ESS to justify its economic viability and further underutilization. Therefore, the reasonable control strategy for ESS which is subjected to generator and usage helps to curtail the cost of investment and operation costs. The rated frequency in power system is decreased when the load is increasing unexpectedly; hence the thermal power is operated at the capacity of only its 95% for the Governor Free (GF) to adjust the frequency as reserve (5%) in practice. The ESS can be utilized with governor at the same time for the frequency response due to characteristic of its fast response speed and moreover, the cost of ESS is declined rapidly to the reasonable price. This paper presents the ESS control strategy to extend usage of the ESS taken account into governor’s ramp rate and reduce the governor’s intervention as well. All results in this paper are simulated by MATLAB.

Keywords: micro grid, energy storage systems, ramp rate, control strategy

Procedia PDF Downloads 374
10514 Collaborative Management Approach for Logistics Flow Management of Cuban Medicine Supply Chain

Authors: Ana Julia Acevedo Urquiaga, Jose A. Acevedo Suarez, Ana Julia Urquiaga Rodriguez, Neyfe Sablon Cossio

Abstract:

Despite the progress made in logistics and supply chains fields, it is unavoidable the development of business models that use efficiently information to facilitate the integrated logistics flows management between partners. Collaborative management is an important tool for materializing the cooperation between companies, as a way to achieve the supply chain efficiency and effectiveness. The first face of this research was a comprehensive analysis of the collaborative planning on the Cuban companies. It is evident that they have difficulties in supply chains planning where production, supplies and replenishment planning are independent tasks, as well as logistics and distribution operations. Large inventories generate serious financial and organizational problems for entities, demanding increasing levels of working capital that cannot be financed. Problems were found in the efficient application of Information and Communication Technology on business management. The general objective of this work is to develop a methodology that allows the deployment of a planning and control system in a coordinated way on the medicine’s logistics system in Cuba. To achieve these objectives, several mechanisms of supply chain coordination, mathematical programming models, and other management techniques were analyzed to meet the requirements of collaborative logistics management in Cuba. One of the findings is the practical and theoretical inadequacies of the studied models to solve the current situation of the Cuban logistics systems management. To contribute to the tactical-operative management of logistics, the Collaborative Logistics Flow Management Model (CLFMM) is proposed as a tool for the balance of cycles, capacities, and inventories, always to meet the final customers’ demands in correspondence with the service level expected by these. The CLFMM has as center the supply chain planning and control system as a unique information system, which acts on the processes network. The development of the model is based on the empirical methods of analysis-synthesis and the study cases. Other finding is the demonstration of the use of a single information system to support the supply chain logistics management, allows determining the deadlines and quantities required in each process. This ensures that medications are always available to patients and there are no faults that put the population's health at risk. The simulation of planning and control with the CLFMM in medicines such as dipyrone and chlordiazepoxide, during 5 months of 2017, permitted to take measures to adjust the logistic flow, eliminate delayed processes and avoid shortages of the medicines studied. As a result, the logistics cycle efficiency can be increased to 91%, the inventory rotation would increase, and this results in a release of financial resources.

Keywords: collaborative management, medicine logistic system, supply chain planning, tactical-operative planning

Procedia PDF Downloads 161
10513 The Optimal Order Policy for the Newsvendor Model under Worker Learning

Authors: Sunantha Teyarachakul

Abstract:

We consider the worker-learning Newsvendor Model, under the case of lost-sales for unmet demand, with the research objective of proposing the cost-minimization order policy and lot size, scheduled to arrive at the beginning of the selling-period. In general, the New Vendor Model is used to find the optimal order quantity for the perishable items such as fashionable products or those with seasonal demand or short-life cycles. Technically, it is used when the product demand is stochastic and available for the single selling-season, and when there is only a one time opportunity for the vendor to purchase, with possibly of long ordering lead-times. Our work differs from the classical Newsvendor Model in that we incorporate the human factor (specifically worker learning) and its influence over the costs of processing units into the model. We describe this by using the well-known Wright’s Learning Curve. Most of the assumptions of the classical New Vendor Model are still maintained in our work, such as the constant per-unit cost of leftover and shortage, the zero initial inventory, as well as the continuous time. Our problem is challenging in the way that the best order quantity in the classical model, which is balancing the over-stocking and under-stocking costs, is no longer optimal. Specifically, when adding the cost-saving from worker learning to such expected total cost, the convexity of the cost function will likely not be maintained. This has called for a new way in determining the optimal order policy. In response to such challenges, we found a number of characteristics related to the expected cost function and its derivatives, which we then used in formulating the optimal ordering policy. Examples of such characteristics are; the optimal order quantity exists and is unique if the demand follows a Uniform Distribution; if the demand follows the Beta Distribution with some specific properties of its parameters, the second derivative of the expected cost function has at most two roots; and there exists the specific level of lot size that satisfies the first order condition. Our research results could be helpful for analysis of supply chain coordination and of the periodic review system for similar problems.

Keywords: inventory management, Newsvendor model, order policy, worker learning

Procedia PDF Downloads 400
10512 Phase Control in Population Inversion Using Chirped Laser

Authors: Avijit Datta

Abstract:

We have presented a phase control scheme in population transfer using chirped laser fields. A chirped pulse can do population transfer from one level to another level via adiabatic rapid passage accessible by one photon dipole transition. We propose to use a pair of phase-locked chirped pulses of the same frequency w(t) instead of a singly chirped-pulse frequency w(t). Simultaneous action of phase controlled interference in addition to rapid adiabatic passages due to chirped pulses lead to phase control over this population transfer dynamics. We have demonstrated the proposed phase control scheme over the population distribution from the initial level X(v=0,j=0) to C(v=2,j=1) level of hydrogen molecule using a pair of phase-locked and similarly chirped laser pulses. We have extended this two-level system to three-level 1+1 ladder system of hydrogen molecule from X level to final J(v=2,j=2) level via C intermediate level using two pairs of laser pulses having frequencies w(t) and w'(t) respectively and obtained laudable control over the population distribution among three levels. We also have presented some results of interference effects of w₁(t) and its third harmonics w₃(t).

Keywords: phase control, population transfer, chirped laser pulses, rapid adiabatic passage, laser-molecule interaction

Procedia PDF Downloads 348
10511 Judicial Control in a Context of the Concept of Legal Policy of the Republic of Kazakhstan

Authors: G. A. Kuanaliyeva, G. T. Aigarinova, G. K. Shulanbekova

Abstract:

This article is devoted to judicial control in criminal legal proceedings of the Republic of Kazakhstan in the light of the new Concept of legal policy till 2020. In article the general characteristic and concept of judicial control, and also its signs and types are considered. Different views of scientists are analyzed. Foreign experiment on application of judicial control is given. The author states also the point sight on this problem and gives the definition to concept of judicial control. The code of criminal procedure of the Republic of Kazakhstan (RK Criminal Procedure Code) doesn't consolidate concept of judicial control. The author in article suggests making change and addition to the existing Code of criminal procedure of the Republic of Kazakhstan by definition of judicial control. The decree of the President of the Republic of Kazakhstan of August 24, 2009 No. 858 approved the Concept of legal policy of the Republic for the period from 2010 to 2020. The new Concept of legal policy of the Republic of Kazakhstan, defines prospects of development of national legal system of the country on the following decade. The concept of legal policy completely mentions also institute of judicial control. Since finding of the independence by Kazakhstan the set of laws, including the rights directed on providing, freedoms and a legitimate interest of citizens was accepted. Certainly, in any country, whatever democratic it was, there are problems to human rights. However, it is obvious that Kazakhstan strongly intends to guarantee all Republic of Kazakhstan proclaimed in the Constitution the rights and freedoms of the citizens. Our country seeks for creation of the constitutional state, tries to provide a guarantee from various arbitrariness in activity of competent government bodies, officials. In the concept of legal policy of the Republic of Kazakhstan it is specified: "...priority of development of the criminal procedure right there is a further consecutive realization of the fundamental principles of the criminal legal proceedings directed on protection of the rights and freedoms of the person". Judicial control just also is such guarantee.

Keywords: rights and freedoms of the person, concept, legal policy, court, judicial control

Procedia PDF Downloads 482
10510 Deficits in Perceptual and Musical Memory in Individuals with Major Depressive Disorder

Authors: Toledo-Fernandez Aldebaran

Abstract:

Introduction: One of the least explored cognitive functions in relation with depression is the one related to musical stimuli. Music perception and memory can become impaired as well. The term amusia is used to define a type of agnosia caused by damage to basic processes that creates a general inability to perceive music. Therefore, the main objective is to explore performance-based and self-report deficits in music perception and memory on people with major depressive disorder (MDD). Method: Data was collected through April-October 2021 recruiting people who met the eligibility criteria and using the Montreal Battery of Evaluation of Amusia (MBEA) to evaluate performance-based music perception and memory, along with the module for depression of the Mini International Neuropsychiatric Interview, and the Amusic Dysfunction Inventory (ADI) which evaluates the participants’ self-report concerning their abilities in music perception. Results: 64 participants were evaluated. The main study, referring to analyzing the differences between people with MDD and the control group, only showed one statistical difference on the Interval subtest of the MBEA. No difference was found in the dimensions assessed by the ADI. Conclusion: Deficits in interval perception can be explained by mental fatigue, to which people with depression are more vulnerable, rather than by specific deficits in musical perception and memory associated with depressive disorder. Additionally, significant associations were found between musical deficits as observed by performance-based evidence and music dysfunction according to self-report, which could suggest that some people with depression are capable of detecting these deficits in themselves.

Keywords: depression, amusia, music, perception, memory

Procedia PDF Downloads 45
10509 Effects of Heart Rate Variability Biofeedback to Improve Autonomic Nerve Function, Inflammatory Response and Symptom Distress in Patients with Chronic Kidney Disease: A Randomized Control Trial

Authors: Chia-Pei Chen, Yu-Ju Chen, Yu-Juei Hsu

Abstract:

The prevalence and incidence of end-stage renal disease in Taiwan ranks the highest in the world. According to the statistical survey of the Ministry of Health and Welfare in 2019, kidney disease is the ninth leading cause of death in Taiwan. It leads to autonomic dysfunction, inflammatory response and symptom distress, and further increases the damage to the structure and function of the kidneys, leading to increased demand for renal replacement therapy and risks of cardiovascular disease, which also has medical costs for the society. If we can intervene in a feasible manual to effectively regulate the autonomic nerve function of CKD patients, reduce the inflammatory response and symptom distress. To prolong the progression of the disease, it will be the main goal of caring for CKD patients. This study aims to test the effect of heart rate variability biofeedback (HRVBF) on improving autonomic nerve function (Heart Rate Variability, HRV), inflammatory response (Interleukin-6 [IL-6], C reaction protein [CRP] ), symptom distress (Piper fatigue scale, Pittsburgh Sleep Quality Index [PSQI], and Beck Depression Inventory-II [BDI-II] ) in patients with chronic kidney disease. This study was experimental research, with a convenience sampling. Participants were recruited from the nephrology clinic at a medical center in northern Taiwan. With signed informed consent, participants were randomly assigned to the HRVBF or control group by using the Excel BINOMDIST function. The HRVBF group received four weekly hospital-based HRVBF training, and 8 weeks of home-based self-practice was done with StressEraser. The control group received usual care. We followed all participants for 3 months, in which we repeatedly measured their autonomic nerve function (HRV), inflammatory response (IL-6, CRP), and symptom distress (Piper fatigue scale, PSQI, and BDI-II) on their first day of study participation (baselines), 1 month, and 3 months after the intervention to test the effects of HRVBF. The results were analyzed by SPSS version 23.0 statistical software. The data of demographics, HRV, IL-6, CRP, Piper fatigue scale, PSQI, and BDI-II were analyzed by descriptive statistics. To test for differences between and within groups in all outcome variables, it was used by paired sample t-test, independent sample t-test, Wilcoxon Signed-Rank test and Mann-Whitney U test. Results: Thirty-four patients with chronic kidney disease were enrolled, but three of them were lost to follow-up. The remaining 31 patients completed the study, including 15 in the HRVBF group and 16 in the control group. The characteristics of the two groups were not significantly different. The four-week hospital-based HRVBF training combined with eight-week home-based self-practice can effectively enhance the parasympathetic nerve performance for patients with chronic kidney disease, which may against the disease-related parasympathetic nerve inhibition. In the inflammatory response, IL-6 and CRP in the HRVBF group could not achieve significant improvement when compared with the control group. Self-reported fatigue and depression significantly decreased in the HRVBF group, but they still failed to achieve a significant difference between the two groups. HRVBF has no significant effect on improving the sleep quality for CKD patients.

Keywords: heart rate variability biofeedback, autonomic nerve function, inflammatory response, symptom distress, chronic kidney disease

Procedia PDF Downloads 165
10508 Implementation and Modeling of a Quadrotor

Authors: Ersan Aktas, Eren Turanoğuz

Abstract:

In this study, the quad-electrical rotor driven unmanned aerial vehicle system is designed and modeled using fundamental dynamic equations. After that, mechanical, electronical and control system of the air vehicle are designed and implemented. Brushless motor speeds are altered via electronic speed controllers in order to achieve desired controllability. The vehicle's fundamental Euler angles (i.e., roll angle, pitch angle, and yaw angle) are obtained via AHRS sensor. These angles are provided as an input to the control algorithm that run on soft the processor on the electronic card. The vehicle control algorithm is implemented in the electronic card. Controller is designed and improved for each Euler angles. Finally, flight tests have been performed to observe and improve the flight characteristics.

Keywords: quadrotor, UAS applications, control architectures, PID

Procedia PDF Downloads 346
10507 Control of Stability for PV and Battery Hybrid System in Partial Shading

Authors: Weiying Wang, Qi Li, Huiwen Deng, Weirong Chen

Abstract:

The abrupt light change and uneven illumination will make the PV system get rid of constant output power, which will affect the efficiency of the grid connected inverter as well as the stability of the system. To solve this problem, this paper presents a strategy to control the stability of photovoltaic power system under the condition of partial shading of PV array, leading to constant power output, improving the capacity of resisting interferences. Firstly, a photovoltaic cell model considering the partial shading is established, and the backtracking search algorithm is used as the maximum power point to track algorithm under complex illumination. Then, the energy storage system based on the constant power control strategy is used to achieve constant power output. Finally, the effectiveness and correctness of the proposed control method are verified by the joint simulation of MATLAB/Simulink and RTLAB simulation platform.

Keywords: backtracking search algorithm, constant power control, hybrid system, partial shading, stability

Procedia PDF Downloads 285
10506 Driving Performance Improvement in Mini Markets: The Impact of Talent Management, Business Skills, and Technology Adoption in Johannesburg and Cape Town, South Africa

Authors: Fedil Jemal Ahmed

Abstract:

This conference abstract paper presents a study that aimed to explore the impact of talent management and business skills on performance improvement in mini markets located in Johannesburg and Cape Town, South Africa. Mini markets are small retail stores that play a crucial role in providing essential goods and services to communities. However, due to their small size, they often face significant challenges in terms of resources and management. The study conducted interviews with mini market owners and managers in Johannesburg and Cape Town to understand their approach to talent management, business skills, and their impact on business performance. The results showed that effective talent management practices, including recruitment, training, and retention, along with strong business skills, had a significant positive impact on business performance in mini markets. Furthermore, the study found that the use of technology, such as point of sale systems and inventory management software, can also contribute to business performance improvement in mini markets. The results suggest that mini market owners and managers should prioritize talent management, business skills, and invest in technology to improve their business performance. Comparing the improvements made by mini markets in Johannesburg and Cape Town to those made by others, the study found that the adoption of effective talent management practices and strong business skills were key factors in driving performance improvement. Mini market owners and managers who invested in these areas were better equipped to manage their resources, enhance their customer service, and increase their profitability. When comparing the personal experiences of the fedil jemal who improved their business performance from a small market to a large one, they found that effective talent management practices and strong business skills were crucial in achieving success. Through the adoption of effective talent management practices, the fedil was able to attract and retain top talent, ensuring that the business was managed effectively. Furthermore, the fedil invested in improving their business skills, such as financial management, marketing, and customer service, which helped to increase their revenue and profitability. In terms of technology adoption, the author found that the use of point-of-sale systems and inventory management software were essential in managing their inventory and improving their customer service. By investing in technology, the fedil was able to streamline their operations and enhance their overall business performance. In conclusion, this study provides valuable insights into the importance of talent management, business skills, and technology adoption in improving business performance in mini markets. It highlights the need for mini market owners and managers to prioritize these areas and invest in them to enhance their business performance. The findings of this study have practical implications for mini market owners and managers who are looking to improve their business performance and compete in a highly competitive market. By adopting effective talent management practices, developing strong business skills, and investing in technology, mini market owners and managers can improve their operations and increase their profitability.

Keywords: talent management, business skills, technology adoption, mini markets

Procedia PDF Downloads 89
10505 Formal Asymptotic Stability Guarantees, Analysis, and Evaluation of Nonlinear Controlled Unmanned Aerial Vehicle for Trajectory Tracking

Authors: Soheib Fergani

Abstract:

This paper concerns with the formal asymptotic stability guarantees, analysis and evaluation of a nonlinear controlled unmanned aerial vehicles (uav) for trajectory tracking purpose. As the system has been recognised as an under-actuated non linear system, the control strategy has been oriented towards a hierarchical control. The dynamics of the system and the mission purpose make it mandatory to provide an absolute proof of the vehicle stability during the maneuvers. For this sake, this work establishes the complete theoretical proof for an implementable control oriented strategy that asymptotically stabilizes (GAS and LISS) the system and has never been provided in previous works. The considered model is reorganized into two partly decoupled sub-systems. The concidered control strategy is presented into two stages: the first sub-system is controlled by a nonlinear backstepping controller that generates the desired control inputs to stabilize the second sub-system. This methodology is then applied to a harware in the loop uav simulator (SiMoDrones) that reproduces the realistic behaviour of the uav in an indoor environment has been performed to show the efficiency of the proposed strategy.

Keywords: UAV application, trajectory tracking, backstepping, sliding mode control, input to state stability, stability evaluation

Procedia PDF Downloads 40
10504 Psycho-social Antecedents of Goal Setting and Self-Control of Thai University Students

Authors: Duchduen Bhanthumnavin

Abstract:

One of the most important characteristics to increase competitive ability in undergraduate students after post COVID-19 era is goal setting and self-control. This correlational study aimes at investigating the influence of psycho-social antecedents on goal setting and self-control in 550 Thai university students. Results from multiple regression analysis revealed that the important predictors of this characteristic were reasoning ability, psychological immunity, attitudes toward competition, core self-evaluation, and family nurture, which yielded 54.28 predictive percentage in the total sample. Moreover, the analysis identified three at-risk groups, namely, male students, low GPA students, and students with siblings. Discussion and implications in general and for specific purposes for the at-risk groups were offered.

Keywords: antecedents, plan and self-control, predictors, university students

Procedia PDF Downloads 49
10503 Implementation of a Paraconsistent-Fuzzy Digital PID Controller in a Level Control Process

Authors: H. M. Côrtes, J. I. Da Silva Filho, M. F. Blos, B. S. Zanon

Abstract:

In a modern society the factor corresponding to the increase in the level of quality in industrial production demand new techniques of control and machinery automation. In this context, this work presents the implementation of a Paraconsistent-Fuzzy Digital PID controller. The controller is based on the treatment of inconsistencies both in the Paraconsistent Logic and in the Fuzzy Logic. Paraconsistent analysis is performed on the signals applied to the system inputs using concepts from the Paraconsistent Annotated Logic with annotation of two values (PAL2v). The signals resulting from the paraconsistent analysis are two values defined as Dc - Degree of Certainty and Dct - Degree of Contradiction, which receive a treatment according to the Fuzzy Logic theory, and the resulting output of the logic actions is a single value called the crisp value, which is used to control dynamic system. Through an example, it was demonstrated the application of the proposed model. Initially, the Paraconsistent-Fuzzy Digital PID controller was built and tested in an isolated MATLAB environment and then compared to the equivalent Digital PID function of this software for standard step excitation. After this step, a level control plant was modeled to execute the controller function on a physical model, making the tests closer to the actual. For this, the control parameters (proportional, integral and derivative) were determined for the configuration of the conventional Digital PID controller and of the Paraconsistent-Fuzzy Digital PID, and the control meshes in MATLAB were assembled with the respective transfer function of the plant. Finally, the results of the comparison of the level control process between the Paraconsistent-Fuzzy Digital PID controller and the conventional Digital PID controller were presented.

Keywords: fuzzy logic, paraconsistent annotated logic, level control, digital PID

Procedia PDF Downloads 268
10502 Evaluating Factors Impacting Functioning Management Control Systems Becoming Dysfunctional Beyond Intra-Organizational Boundaries

Authors: Martin Kartomo

Abstract:

Though Management Control Systems (MCS) research has evolved beyond intra-organizational boundaries, there is limited understanding of the impact of a functioning MCS being functional beyond intra-organizational boundaries. The purpose of this research is to investigate factors that have an impact on functioning management Control Systems (MCS)becoming (dys-)functional beyond its intra-organizational boundaries. To bridge the theoretical gap, a systematic literature review is conducted to identify inter-and extra-organizational factors that are purposely suggested or unintendingly mentioned by MCS researchers to evaluate functioning MCS becoming (dys-)functional. A conceptual map is rationalized and constructed from five contingent inter-and extra-organizational MCS frameworks illuminating under-investigated MSC research areas and allowing new research avenues based on academically known factors. A multiple case study followed by a co-researcher discussion group with the purpose of identifying academically unknown factors for evaluating MCS (dys-)functionality beyond its intra-organizational boundaries. The study's result will help bridge the gap between what academics know and not know of evaluating MCS being functional beyond intra-organizational boundaries with the opportunity to develop better, more complete theories. Furthermore, it will help organizations to evaluate the impact of their activities beyond intra-organizational boundaries.

Keywords: management control systems, management control systems evaluation, management controls, control system

Procedia PDF Downloads 163
10501 Belt Conveyor Dynamics in Transient Operation for Speed Control

Authors: D. He, Y. Pang, G. Lodewijks

Abstract:

Belt conveyors play an important role in continuous dry bulk material transport, especially at the mining industry. Speed control is expected to reduce the energy consumption of belt conveyors. Transient operation is the operation of increasing or decreasing conveyor speed for speed control. According to literature review, current research rarely takes the conveyor dynamics in transient operation into account. However, in belt conveyor speed control, the conveyor dynamic behaviors are significantly important since the poor dynamics might result in risks. In this paper, the potential risks in transient operation will be analyzed. An existing finite element model will be applied to build a conveyor model, and simulations will be carried out to analyze the conveyor dynamics. In order to realize the soft speed regulation, Harrison’s sinusoid acceleration profile will be applied, and Lodewijks estimator will be built to approximate the required acceleration time. A long inclined belt conveyor will be studied with two major simulations. The conveyor dynamics will be given.

Keywords: belt conveyor , speed control, transient operation, dynamics

Procedia PDF Downloads 310
10500 Modeling and Control of a 4DoF Robotic Assistive Device for Hand Rehabilitation

Authors: Christopher Spiewak, M. R. Islam, Mohammad Arifur Rahaman, Mohammad H. Rahman, Roger Smith, Maarouf Saad

Abstract:

For those who have lost the ability to move their hand, going through repetitious motions with the assistance of a therapist is the main method of recovery. We have been developed a robotic assistive device to rehabilitate the hand motions in place of the traditional therapy. The developed assistive device (RAD-HR) is comprised of four degrees of freedom enabling basic movements, hand function, and assists in supporting the hand during rehabilitation. We used a nonlinear computed torque control technique to control the RAD-HR. The accuracy of the controller was evaluated in simulations (MATLAB/Simulink environment). To see the robustness of the controller external disturbance as modelling uncertainty (±10% of joint torques) were added in each joints.

Keywords: biorobotics, rehabilitation, robotic assistive device, exoskeleton, nonlinear control

Procedia PDF Downloads 455
10499 Fault Tolerant Control System Using a Multiple Time Scale SMC Technique and a Geometric Approach

Authors: Ghodbane Azeddine, Saad Maarouf, Boland Jean-Francois, Thibeault Claude

Abstract:

This paper proposes a new design of an active fault-tolerant flight control system against abrupt actuator faults. This overall system combines a multiple time scale sliding mode controller for fault compensation and a geometric approach for fault detection and diagnosis. The proposed control system is able to accommodate several kinds of partial and total actuator failures, by using available healthy redundancy actuators. The overall system first estimates the correct fault information using the geometric approach. Then, and based on that, a new reconfigurable control law is designed based on the multiple time scale sliding mode technique for on-line compensating the effect of such faults. This approach takes advantages of the fact that there are significant difference between the time scales of aircraft states that have a slow dynamics and those that have a fast dynamics. The closed-loop stability of the overall system is proved using Lyapunov technique. A case study of the non-linear model of the F16 fighter, subject to the rudder total loss of control confirms the effectiveness of the proposed approach.

Keywords: actuator faults, fault detection and diagnosis, fault tolerant flight control, sliding mode control, multiple time scale approximation, geometric approach for fault reconstruction, lyapunov stability

Procedia PDF Downloads 359
10498 Preliminary Study of Human Reliability of Control in Case of Fire Based on the Decision Processes and Stress Model of Human in a Fire

Authors: Seung-Un Chae, Heung-Yul Kim, Sa-Kil Kim

Abstract:

This paper presents the findings of preliminary study on human control performance in case of fire. The relationship between human control and human decision is studied in decision processes and stress model of human in a fire. Human behavior aspects involved in the decision process during a fire incident. The decision processes appear that six of individual perceptual processes: recognition, validation, definition, evaluation, commitment, and reassessment. Then, human may be stressed in order to get an optimal decision for their activity. This paper explores problems in human control processes and stresses in a catastrophic situation. Thus, the future approach will be concerned to reduce stresses and ambiguous irrelevant information.

Keywords: human reliability, decision processes, stress model, fire

Procedia PDF Downloads 966
10497 Self-Esteem and Emotional Intelligence’s Association to Nutritional Status in Adolescent Schoolchildren in Chile

Authors: Peter Mc Coll, Alberto Caro, Chiara Gandolfo, Montserrat Labbe, Francisca Schnaidt, Michela Palazzi

Abstract:

Self-esteem and emotional intelligence are variables that are related to people's nutritional status. Self-esteem may be at low levels in people living with obesity, while emotional intelligence can play an important role in the way people living with obesity cope. The objective of the study was to measure the association between self-esteem and emotional intelligence to nutritional status in adolescent population. Methodology: A cross-sectional study was carried out with 179 adolescent schoolchildren between 13 and 19 years old from a public school. The objective was to evaluate nutritional status; weight and height were measured by calculating the body mass index and Z score. Self-esteem was evaluated using the Coopersmith Self-esteem Inventory adapted by Brinkmann and Segure. Emotional intelligence was measured using the Emotional Quotient Inventory: short, by Bar On, adapted questionnaire, translated into Spanish by López Zafra. For statistical analysis: Pearson's Chi-square test, Pearson's correlation, and odd ratio calculation were used, with a p value at a significance level < 5%. Results: The study group was composed of 71% female and 29% male. The nutritional status was distributed as eutrophic 41.9%, overweight 20.1%, and obesity 21.1%. In relation to self-esteem, 44.1% presented low and very low levels, without differences by gender. Emotional intelligence was distributed: low 3.4%, medium 81%, and high 13.4% -no differences according to gender. The association between nutritional status (overweight and obesity) with low and very low self-esteem, an odds ratio of 2.5 (95% CI 1.12 – 5.59) was obtained with a p-value = 0.02. The correlation analysis between the intrapersonal sub-dimension emotional intelligence scores and the Z score of nutritional status presented a negative correlation of r = - 0.209 with a p-value < 0.005. The correlation between emotional intelligence subdimension stress management with Z score presented a positive correlation of r = 0.0161 with a p-value < 0.05. In conclusion, the group of adolescents studied had a high prevalence of overweight and obesity, a high prevalence of low self-esteem, and a high prevalence of average emotional intelligence. Overweight and obese adolescents were 2.5 times more likely to have low self-esteem. As overweight and obesity increase, self-esteem decreases, and the ability to manage stress increases.

Keywords: self-esteem, emotional intelligence, obesity, adolescent, nutritional status

Procedia PDF Downloads 44
10496 Design of Identification Based Adaptive Control for Fermentation Process in Bioreactor

Authors: J. Ritonja

Abstract:

The biochemical technology has been developing extremely fast since the middle of the last century. The main reason for such development represents a requirement for large production of high-quality biologically manufactured products such as pharmaceuticals, foods, and beverages. The impact of the biochemical industry on the world economy is enormous. The great importance of this industry also results in intensive development in scientific disciplines relevant to the development of biochemical technology. In addition to developments in the fields of biology and chemistry, which enable to understand complex biochemical processes, development in the field of control theory and applications is also very important. In the paper, the control for the biochemical reactor for the milk fermentation was studied. During the fermentation process, the biophysical quantities must be precisely controlled to obtain the high-quality product. To control these quantities, the bioreactor’s stirring drive and/or heating system can be used. Available commercial biochemical reactors are equipped with open loop or conventional linear closed loop control system. Due to the outstanding parameters variations and the partial nonlinearity of the biochemical process, the results obtained with these control systems are not satisfactory. To improve the fermentation process, the self-tuning adaptive control system was proposed. The use of the self-tuning adaptive control is suggested because the parameters’ variations of the studied biochemical process are very slow in most cases. To determine the linearized mathematical model of the fermentation process, the recursive least square identification method was used. Based on the obtained mathematical model the linear quadratic regulator was tuned. The parameters’ identification and the controller’s synthesis are executed on-line and adapt the controller’s parameters to the fermentation process’ dynamics during the operation. The use of the proposed combination represents the original solution for the control of the milk fermentation process. The purpose of the paper is to contribute to the progress of the control systems for the biochemical reactors. The proposed adaptive control system was tested thoroughly. From the obtained results it is obvious that the proposed adaptive control system assures much better following of the reference signal as a conventional linear control system with fixed control parameters.

Keywords: adaptive control, biochemical reactor, linear quadratic regulator, recursive least square identification

Procedia PDF Downloads 105
10495 Process Monitoring Based on Parameterless Self-Organizing Map

Authors: Young Jae Choung, Seoung Bum Kim

Abstract:

Statistical Process Control (SPC) is a popular technique for process monitoring. A widely used tool in SPC is a control chart, which is used to detect the abnormal status of a process and maintain the controlled status of the process. Traditional control charts, such as Hotelling’s T2 control chart, are effective techniques to detect abnormal observations and monitor processes. However, many complicated manufacturing systems exhibit nonlinearity because of the different demands of the market. In this case, the unregulated use of a traditional linear modeling approach may not be effective. In reality, many industrial processes contain the nonlinear and time-varying properties because of the fluctuation of process raw materials, slowing shift of the set points, aging of the main process components, seasoning effects, and catalyst deactivation. The use of traditional SPC techniques with time-varying data will degrade the performance of the monitoring scheme. To address these issues, in the present study, we propose a parameterless self-organizing map (PLSOM)-based control chart. The PLSOM-based control chart not only can manage a situation where the distribution or parameter of the target observations changes, but also address the nonlinearity of modern manufacturing systems. The control limits of the proposed PLSOM chart are established by estimating the empirical level of significance on the percentile using a bootstrap method. Experimental results with simulated data and actual process data from a thin-film transistor-liquid crystal display process demonstrated the effectiveness and usefulness of the proposed chart.

Keywords: control chart, parameter-less self-organizing map, self-organizing map, time-varying property

Procedia PDF Downloads 255
10494 Industry 4.0 Adoption, Control Mechanism and Sustainable Performance of Healthcare Supply Chains under Disruptive Impact

Authors: Edward Nartey

Abstract:

Although the boundaries of sustainable performance and growth in the field of service supply chains (SCs) have been broadened by scholars in recent years, research on the impact and promises of Industry 4.0 Destructive Technologies (IDTs) on sustainability performance under disruptive events is still scarce. To mitigate disruptions in the SC and improve efficiency by identifying areas for cost savings, organizations have resorted to investments in digitalization, automation, and control mechanisms in recent years. However, little is known about the sustainability implications for IDT adoption and controls in service SCs, especially during disruptive events. To investigate this paradox, survey data were sought from 223 public health managers across Ghana and analyzed via covariance-based structural equations modelling. The results showed that both formal and informal control have a positive and significant relationship with IDT adoption. In addition, formal control has a significant and positive relationship with environmental and economic sustainability but an insignificant relationship with social sustainability. Furthermore, informal control positively impacts economic performance but has an insignificant relationship with social and environmental sustainability. While the findings highlight the prevalence of the IDTs being initiated by Ghanaian public health institutions (PHIs), this study concludes that the installed control systems in these organizations are inadequate for promoting sustainable SC behaviors under destructive events. Thus, in crisis situations, PHIs need to redesign their control systems to facilitate IDT integration towards sustainability issues in SCs.

Keywords: industry 4.0 destructive technologies, formal control, informal control, sustainable supply chain performance, public health organizations

Procedia PDF Downloads 40
10493 Exponential Stabilization of a Flexible Structure via a Delayed Boundary Control

Authors: N. Smaoui, B. Chentouf

Abstract:

The boundary stabilization problem of the rotating disk-beam system is a topic of interest in research studies. This system involves a flexible beam attached to the center of a disk, and the control and stabilization of this system have been extensively studied. This research focuses on the case where the center of mass is fixed in an inertial frame, and the rotation of the center is non-uniform. The system is represented by a set of nonlinear coupled partial differential equations and ordinary differential equations. The boundary stabilization problem of this system via a delayed boundary control is considered. We assume that the boundary control is either of a force type control or a moment type control and is subject to the presence of a constant time-delay. The aim of this research is threefold: First, we demonstrate that the rotating disk-beam system is well-posed in an appropriate functional space. Then, we establish the exponential stability property of the system. Finally, we provide numerical simulations that illustrate the theoretical findings. The research utilizes the semigroup theory to establish the well-posedness of the system. The resolvent method is then employed to prove the exponential stability property. Finally, the finite element method is used to demonstrate the theoretical results through numerical simulations. The research findings indicate that the rotating disk-beam system can be stabilized using a boundary control with a time delay. The proof of stability is based on the resolvent method and a variation of constants formula. The numerical simulations further illustrate the theoretical results. The findings have potential implications for the design and implementation of control strategies in similar systems. In conclusion, this research demonstrates that the rotating disk-beam system can be stabilized using a boundary control with time delay. The well-posedness and exponential stability properties are established through theoretical analysis, and these findings are further supported by numerical simulations. The research contributes to the understanding and practical application of control strategies for flexible structures, providing insights into the stability of rotating disk-beam systems.

Keywords: rotating disk-beam, delayed force control, delayed moment control, torque control, exponential stability

Procedia PDF Downloads 61
10492 Applied Actuator Fault Accommodation in Flight Control Systems Using Fault Reconstruction Based FDD and SMC Reconfiguration

Authors: A. Ghodbane, M. Saad, J. F. Boland, C. Thibeault

Abstract:

Historically, actuators’ redundancy was used to deal with faults occurring suddenly in flight systems. This technique was generally expensive, time consuming and involves increased weight and space in the system. Therefore, nowadays, the on-line fault diagnosis of actuators and accommodation plays a major role in the design of avionic systems. These approaches, known as Fault Tolerant Flight Control systems (FTFCs) are able to adapt to such sudden faults while keeping avionics systems lighter and less expensive. In this paper, a (FTFC) system based on the Geometric Approach and a Reconfigurable Flight Control (RFC) are presented. The Geometric approach is used for cosmic ray fault reconstruction, while Sliding Mode Control (SMC) based on Lyapunov stability theory is designed for the reconfiguration of the controller in order to compensate the fault effect. Matlab®/Simulink® simulations are performed to illustrate the effectiveness and robustness of the proposed flight control system against actuators’ faulty signal caused by cosmic rays. The results demonstrate the successful real-time implementation of the proposed FTFC system on a non-linear 6 DOF aircraft model.

Keywords: actuators’ faults, fault detection and diagnosis, fault tolerant flight control, sliding mode control, geometric approach for fault reconstruction, Lyapunov stability

Procedia PDF Downloads 395