Search results for: voltage improvement
4916 Academic Goal Setting Practices of University Students in Lagos State, Nigeria: Implications for Counselling
Authors: Asikhia Olubusayo Aduke
Abstract:
Students’ inability to set data-based (specific, measurable, attainable, reliable, and time-bound) personal improvement goals threatens their academic success. Hence, the study aimed to investigate year-one students’ academic goal-setting practices at Lagos State University of Education, Nigeria. Descriptive survey research was used in carrying out this study. The study population consisted of 3,101 year-one students of the University. A sample size of five hundred (501) participants was selected through a proportional and simple random sampling technique. The Formative Goal Setting Questionnaire (FGSQ) developed by Research Collaboration (2015) was adapted and used as an instrument for the study. Two main research questions were answered, while two null hypotheses were formulated and tested for the study. The study revealed higher data-based goals for all students than personal improvement goals. Nevertheless, data-based and personal improvement goal-setting for female students was higher than for male students. One sample test statistic and Anova used to analyse data for the two hypotheses also revealed that the mean difference between male and female year one students’ data-based and personal improvement goal-setting formation was statistically significant (p < 0.05). This means year one students’ data-based and personal improvement goals showed significant gender differences. Based on the findings of this study, it was recommended, among others, that therapeutic techniques that can help to change students’ faulty thinking and challenge their lack of desire for personal improvement should be sought to treat students who have problems with setting high personal improvement goals. Counsellors also need to advocate continued research into how to increase the goal-setting ability of male students and should focus more on counselling male students’ goal-setting ability. The main contributions of the study are higher institutions must prioritize early intervention in first-year students' academic goal setting. Researching gender differences in this practice reveals a crucial insight: male students often lag behind in setting meaningful goals, impacting their motivation and performance. Focusing on this demographic with data-driven personal improvement goals can be transformative. By promoting goal setting that is specific, measurable, and focused on self-growth (rather than competition), male students can unlock their full potential. Researchers and counselors play a vital role in detecting and supporting students with lower goal-setting tendencies. By prioritizing this intervention, we can empower all students to set ambitious, personalized goals that ignite their passion for learning and pave the way for academic success.Keywords: academic goal setting, counselling, practice, university, year one students
Procedia PDF Downloads 614915 Comparative Ante-Mortem Studies through Electrochemical Impedance Spectroscopy, Differential Voltage Analysis and Incremental Capacity Analysis on Lithium Ion Batteries
Authors: Ana Maria Igual-Munoz, Juan Gilabert, Marta Garcia, Alfredo Quijano-Lopez
Abstract:
Nowadays, several lithium-ion battery technologies are being commercialized. These chemistries present different properties that make them more suitable for different purposes. However, comparative studies showing the advantages and disadvantages of different chemistries are incomplete or scarce. Different non-destructive techniques are currently being employed to detect how ageing affects the active materials of lithium-ion batteries (LIBs). For instance, electrochemical impedance spectroscopy (EIS) is one of the most employed ones. This technique allows the user to identify the variations on the different resistances present in LIBs. On the other hand, differential voltage analysis (DVA) has shown to be a powerful technique to detect the processes affecting the different capacities present in LIBs. This technique shows variations in the state of health (SOH) and the capacities for one or both electrodes depending on their chemistry. Finally, incremental capacity analysis (ICA) is a widely known technique for being capable of detecting phase equilibria. It reminds of the commonly used cyclic voltamperometry, as it allows detecting some reactions taking place in the electrodes. In these studies, a set of ageing procedures have been applied to commercial batteries of different chemistries (NCA, NMC, and LFP). Afterwards, results of EIS, DVA, and ICA have been used to correlate them with the processes affecting each cell. Ciclability, overpotential, and temperature cycling studies envisage how the charge-discharge rates, cut-off voltage, and operation temperatures affect each chemistry. These studies will serve battery pack manufacturers, as for common battery users, as they will determine the different conditions affecting cells for each of the chemistry. Taking this into account, each cell could be adjusted to the final purpose of the battery application. Last but not least, all the degradation parameters observed are focused to be integrated into degradation models in the future. This fact will allow the implementation of the widely known digital twins to the degradation in LIBs.Keywords: lithium ion batteries, non-destructive analysis, different chemistries, ante-mortem studies, ICA, DVA, EIS
Procedia PDF Downloads 1284914 Characterization of Cement Mortar Based on Fine Quartz
Authors: K. Arroudj, M. Lanez, M. N. Oudjit
Abstract:
The introduction of siliceous mineral additions in cement production allows, in addition to the ecological and economic gain, improvement of concrete performance. This improvement is mainly due to the fixing of Portlandite, released during the hydration of cement, by fine siliceous, forming denser calcium silicate hydrates and therefore a more compact cementitious matrix. This research is part of the valuation of the Dune Sand (DS) in the cement industry in Algeria. The high silica content of DS motivated us to study its effect, at ground state, on the properties of mortars in fresh and hardened state. For this purpose, cement pastes and mortars based on ground dune sand (fine quartz) has been analyzed with a replacement to cement of 15%, 20% and 25%. This substitution has reduced the amount of heat of hydration and avoids any risk of initial cracking. In addition, the grinding of the dune sand provides amorphous thin populations adsorbed at the surface of the crystal particles of quartz. Which gives to ground quartz pozzolanic character. This character results an improvement of mechanical strength of mortar (66 MPa in the presence of 25% of ground quartz).Keywords: mineralogical structure, pozzolanic reactivity, Quartz, mechanical strength
Procedia PDF Downloads 2854913 Depth of Penetration and Nature of Interferential Current in Cutaneous, Subcutaneous and Muscle Tissues
Authors: A. Beatti, L. Chipchase, A. Rayner, T. Souvlis
Abstract:
The aims of this study were to investigate the depth of interferential current (IFC) penetration through soft tissue and to investigate the area over which IFC spreads during clinical application. Premodulated IFC and ‘true’ IFC at beat frequencies of 4, 40 and 90Hz were applied via four electrodes to the distal medial thigh of 15 healthy subjects. The current was measured via three Teflon coated fine needle electrodes that were inserted into the superficial layer of skin, then into the subcutaneous tissue (≈1 cm deep) and then into muscle tissue (≈2 cm deep). The needle electrodes were placed in the middle of the four IFC electrodes, between two channels and outside the four electrodes. Readings were taken at each tissue depth from each electrode during each treatment frequency then digitized and stored for analysis. All voltages were greater at all depths and locations than baseline (p < 0.01) and voltages decreased with depth (P=0.039). Lower voltages of all currents were recorded in the middle of the four electrodes with the highest voltage being recorded outside the four electrodes in all depths (P=0.000).For each frequency of ‘true’ IFC, the voltage was higher in the superficial layer outside the electrodes (P ≤ 0.01).Premodulated had higher voltages along the line of one circuit (P ≤ 0.01). Clinically, IFC appears to pass through skin layers to depth and is more efficient than premodulated IFC when targeting muscle tissue.Keywords: electrotherapy, interferential current, interferential therapy, medium frequency current
Procedia PDF Downloads 3464912 Experimental Investigations on Nanoclay (Cloisite-15A) Modified Bitumen
Authors: Ashish Kumar, Sanjeev Kumar Suman
Abstract:
This study investigated the influence of Cloisite-15A nanoclay on the physical, performance, and mechanical properties of bitumen binder. Cloisite-15A was blended in the bitumen in variegated percentages from 1% to 9% with increment of 2%. The blended bitumen was characterized using penetration, softening point, and dynamic viscosity using rotational viscometer, and compared with unmodified bitumen equally penetration grade 60/70. The rheological parameters were investigated using Dynamic Shear Rheometer (DSR), and mechanical properties were investigated by using Marshall Stability test. The results indicated an increase in softening point, dynamic viscosity and decrease in binder penetration. Rheological properties of bitumen increase complex modulus, decrease phase angle and improve rutting resistances as well. There was significant improvement in Marshall Stability, rather marginal improvement in flow value. The best improvement in the modified binder was obtained with 5% Cloisite-15A nanoclay.Keywords: Cloisite-15A, complex shear modulus, phase angle, rutting resistance
Procedia PDF Downloads 3944911 Internal DC Short-Circuit Fault Analysis and Protection for VSI of Wind Power Generation Systems
Authors: Mehdi Radmehr, Amir Hamed Mashhadzadeh, Mehdi Jafari
Abstract:
Traditional HVDC systems are tough to DC short circuits as they are current regulated with a large reactance connected in series with cables. Multi-terminal DC wind farm topologies are attracting increasing research attempt. With AC/DC converters on the generator side, this topology can be developed into a multi-terminal DC network for wind power collection, which is especially suitable for large-scale offshore wind farms. For wind farms, the topology uses high-voltage direct-current transmission based on voltage-source converters (VSC-HVDC). Therefore, they do not suffer from over currents due to DC cable faults and there is no over current to react to. In this study, the multi-terminal DC wind farm topology is introduced. Then, possible internal DC faults are analyzed according to type and characteristic. Fault over current expressions are given in detail. Under this characteristic analysis, fault detection and detailed protection methods are proposed. Theoretical analysis and PSCAD/EMTDC simulations are provided.Keywords: DC short circuits, multi-terminal DC wind farm topologies, HVDC transmission based on VSC, fault analysis
Procedia PDF Downloads 4214910 A Customize Battery Management Approach for Satellite
Authors: Muhammad Affan, Muhammad Ilyas Raza, Muhammad Harris Hashmi
Abstract:
This work is attributed to the battery management unit design of student Satellites under Pakistan National Student Satellite Program (PNSSP). The aim has been to design a customized, low-cost, efficient, reliable and less-complex battery management scheme for the Satellite. Nowadays, Lithium Ion (Li-ion) batteries have become the de-facto standard for remote applications, especially for satellites. Li-ion cells are selected for secondary storage. The design also addresses Li-ion safety requirements by monitoring, balancing and protecting cells for safe and prolonged operation. Accurate voltage measurement of individual cells was the main challenge because all the actions triggered were based on the digital voltage measurement. For this purpose, a resistive-divider network is used to maintain simplicity and cost-effectiveness. To cater the problem of insufficient i/o pins on microcontroller, fast multiplexers and de-multiplexers were used. The discrepancy inherited in the given design is the dissipation of heat due to the dissipative resistors. However, it is still considered to be the optimum adoption, considering the simple and cost-effective nature of the passive balancing technique. Furthermore, it is a completely unique solution, customized to meet specific requirements. However, there is still an option for a more advanced and expensive design.Keywords: satellite, battery module, passive balancing, dissipative
Procedia PDF Downloads 1394909 Cutaneous Sarcoidosis Treated with Narrow Band Ultraviolet B (NBUVB) Phototherapy
Authors: Hannah Riva, Sarah Mazal, Jessica L. Marquez, Michael Rains
Abstract:
A 70-year-old female with a Fitzpatrick skin phenotype II presented with a 13-year history of a scaly rash located on the left breast and bilateral pretibial regions. The patient’s past medical history was otherwise unremarkable, with the exception of surgery involving the left breast. Physical examination revealed infiltrative hyperpigmented scaly plaques and nodules located on the left breast and pretibial regions bilaterally. A negative systemic workup excluded organ involvement. A clinical diagnosis of cutaneous sarcoidosis was made. Prior treatments included triamcinolone 0.1% topical cream and clobetasol 0.05% ointment, which failed to show improvement. Full-body narrow-band UVB (NBUVB) treatment was performed on a tri-weekly basis for eight months. NBUVB dosage was slowly titrated from 300 mJ/cm2 to a final dose of 1800 mJ/cm2 to prevent discomfort and burning sensations. Throughout the duration of her treatment, the patient adhered to a regimen of clobetasol 0.05% topical ointment applied twice daily in two-week intervals. Improvement was noticed after two months, with continued improvement up to eight months. The patient is continuing NBUVB phototherapy treatments for maintenance. In our case, NBUVB phototherapy treatment demonstrated promising results with improvement after two months of treatment. Physicians should consider NBUVB phototherapy as an effective option for patients presenting with cutaneous sarcoidosis.Keywords: dermatology, sarcoidosis, phototherapy, ultraviolet
Procedia PDF Downloads 724908 The Use of PD and Tanδ Characteristics as Diagnostic Technique for the Insulation Integrity of XLPE Insulated Cable Joints
Authors: Mazen Al-Bulaihed, Nissar Wani, Abdulrahman Al-Arainy, Yasin Khan
Abstract:
Partial Discharge (PD) measurements are widely used for diagnostic purposes in electrical equipment used in power systems. The main cause of these measurements is to prevent large power failures as cables are prone to aging, which usually results in embrittlement, cracking and eventual failure of the insulating and sheathing materials, exposing the conductor and risking a potential short circuit, a likely cause of the electrical fire. Many distribution networks rely heavily on medium voltage (MV) power cables. The presence of joints in these networks is a vital part of serving the consumer demand for electricity continuously. Such measurements become even more important when the extent of dependence increases. Moreover, it is known that the partial discharge in joints and termination are difficult to track and are the most crucial point of failures in large power systems. This paper discusses the diagnostic techniques of four samples of XLPE insulated cable joints, each included with a different type of defect. Experiments were carried out by measuring PD and tanδ at very low frequency applied high voltage. The results show the importance of combining PD and tanδ for effective cable assessment.Keywords: partial discharge, tan delta, very low frequency, XLPE cable
Procedia PDF Downloads 1634907 Advanced Electrocoagulation for Textile Wastewater Treatment
Authors: Alemi Asefa Wordofa
Abstract:
The textile industry is among the biggest industries in the world, producing a wide variety of products. Industry plays an important role in the world economy as well as in our daily lives. In Ethiopia, this has also been aided by the country’s impressive economic growth over the years. However, Textile industries consume large amounts of water and produce colored wastewater, which results in polluting the environment. In this study, the efficiency of the electrocoagulation treatment process using Iron electrodes to treat textile wastewater containing Reactive black everzol was studied. The effects of parameters such as voltage, time of reaction, and inter-electrode distance on Chemical oxygen demand (COD) and dye removal efficiency were investigated. In addition, electrical energy consumption at optimum conditions has been investigated. The results showed that COD and dye removals were 90.76% and 97.66%, respectively, at the optimum point of input voltage of 14v, inter-electrode distance of 7.24mm, and 47.86min electrolysis time. Energy consumption at the optimum point is also 2.9*10-3. It can be concluded that the electrocoagulation process by the iron electrode is a very efficient and clean process for COD and reactive black removal from wastewater.Keywords: iron electrode, electrocoagulation, chemical oxygen demand, wastewater
Procedia PDF Downloads 664906 Role of ICT and Wage Inequality in Organization
Authors: Shoji Katagiri
Abstract:
This study deals with wage inequality in organization and shows the relationship between ICT and wage in organization. To do so, we incorporate ICT’s factors in organization into our model. ICT’s factors are efficiencies of Enterprise Resource Planning (ERP), Computer Assisted Design/Computer Assisted Manufacturing (CAD/CAM), and NETWORK. The improvement of ICT’s factors decrease the learning cost to solve problem pertaining to the hierarchy in organization. The improvement of NETWORK increases the wage inequality within workers and decreases within managers and entrepreneurs. The improvements of CAD/CAM and ERP increases the wage inequality within all agent, and partially increase it between the agents in hierarchy.Keywords: endogenous economic growth, ICT, inequality, capital accumulation
Procedia PDF Downloads 2604905 Design and Development of a Prototype Vehicle for Shell Eco-Marathon
Authors: S. S. Dol
Abstract:
Improvement in vehicle efficiency can reduce global fossil fuels consumptions. For that sole reason, Shell Global Corporation introduces Shell Eco-marathon where student teams require to design, build and test energy-efficient vehicles. Hence, this paper will focus on design processes and the development of a fuel economic vehicle which satisfying the requirements of the competition. In this project, three components are designed and analyzed, which are the body, chassis and powertrain of the vehicle. Optimum design for each component is produced through simulation analysis and theoretical calculation in which improvement is made as the project progresses.Keywords: energy efficient, drag force, chassis, powertrain
Procedia PDF Downloads 3354904 High Gain Broadband Plasmonic Slot Nano-Antenna
Authors: H. S. Haroyan, V. R. Tadevosyan
Abstract:
High gain broadband plasmonic slot nano-antenna has been considered. The theory of plasmonic slot nano-antenna (PSNA) has been developed. The analytical model takes into account also the electrical field inside the metal due to imperfectness of metal in optical range, as well as numerical investigation based on FEM method has been realized. It should be mentioned that Yagi-Uda configuration improves directivity in the plane of structure. In contrast, in this paper the possibility of directivity improvement of proposed PSNA in perpendicular plane of structure by using reflection metallic surface placed under the slot in fixed distance has been demonstrated. It is well known that a directivity improvement brings to the antenna gain increasing. This method of diagram improving is also well known from RF antenna design theory. Moreover the improvement of directivity in the perpendicular plane gives more flexibility in such application as improving the light and atom, ion, molecule interactions by using such type of plasmonic slot antenna. By the analogy of dipole type optical antennas the widening of working wavelengths has been realized by using bowtie geometry of slots, which made the antenna broadband.Keywords: broadband antenna, high gain, slot nano-antenna, plasmonics.
Procedia PDF Downloads 3704903 A Research on the Improvement of Small and Medium-Sized City in Early-Modern China (1895-1927): Taking Southern Jiangsu as an Example
Authors: Xiaoqiang Fu, Baihao Li
Abstract:
In 1895, the failure of Sino-Japanese prompted the trend of comprehensive and systematic study of western pattern in China. In urban planning and construction, urban reform movement sprang up slowly, which aimed at renovating and reconstructing the traditional cities into modern cities similar to the concessions. During the movement, Chinese traditional city initiated a process of modern urban planning for its modernization. Meanwhile, the traditional planning morphology and system started to disintegrate, on the contrary, western form and technology had become the paradigm. Therefore, the improvement of existing cities had become the prototype of urban planning of early modern China. Currently, researches of the movement mainly concentrate on large cities, concessions, railway hub cities and some special cities resembling those. However, the systematic research about the large number of traditional small and medium-sized cities is still blank, up to now. This paper takes the improvement constructions of small and medium-sized cities in Southern region of Jiangsu Province as the research object. First of all, the criteria of small and medium-sized cities are based on the administrative levels of general office and cities at the county level. Secondly, the suitability of taking the Southern Jiangsu as the research object. The southern area of Jiangsu province called Southern Jiangsu for short, was the most economically developed region in Jiangsu, and also one of the most economically developed and the highest urbanization regions in China. As the most developed agricultural areas in ancient China, Southern Jiangsu formed a large number of traditional small and medium-sized cities. In early modern times, with the help of the Shanghai economic radiation, geographical advantage and powerful economic foundation, Southern Jiangsu became an important birthplace of Chinese national industry. Furthermore, the strong business atmosphere promoted the widespread urban improvement practices, which were incomparable of other regions. Meanwhile, the demonstration of Shanghai, Zhenjiang, Suzhou and other port cities became the improvement pattern of small and medium-sized city in Southern Jiangsu. This paper analyzes the reform movement of the small and medium-sized cities in Southern Jiangsu (1895-1927), including the subjects, objects, laws, technologies and the influence factors of politic and society, etc. At last, this paper reveals the formation mechanism and characteristics of urban improvement movement in early modern China. According to the paper, the improvement of small-medium city was a kind of gestation of the local city planning culture in early modern China,with a fusion of introduction and endophytism.Keywords: early modern China, improvement of small-medium city, southern region of Jiangsu province, urban planning history of China
Procedia PDF Downloads 2604902 Fapitow: An Advanced AI Agent for Travel Agent Competition
Authors: Faiz Ul Haque Zeya
Abstract:
In this paper, Fapitow’s bidding strategy and approach to participate in Travel Agent Competition (TAC) is described. Previously, Fapitow is designed using the agents provided by the TAC Team and mainly used their modification for developing our strategy. But later, by observing the behavior of the agent, it is decided to come up with strategies that will be the main cause of improved utilities of the agent, and by theoretical examination, it is evident that the strategies will provide a significant improvement in performance which is later proved by agent’s performance in the games. The techniques and strategies for further possible improvement are also described. TAC provides a real-time, uncertain environment for learning, experimenting, and implementing various AI techniques. Some lessons learned about handling uncertain environments are also presented.Keywords: agent, travel agent competition, bidding, TAC
Procedia PDF Downloads 1074901 Biofouling Control during the Wastewater Treatment in Self-Support Carbon Nanotubes Membrane: Role of Low Voltage Electric Potential
Authors: Chidambaram Thamaraiselvan, Carlos Dosoretz
Abstract:
This work will explore the influence of low voltage electric field, both alternating (AC) and direct (DC) currents, on biofouling control to highly electrically conductive self-supporting carbon nanotubes (CNT) membranes at conditions which encourage bacterial growth. A mutant strain of Pseudomonas putida S12 was used a model bacterium. The antibiofouling studies were performed with flow-through mode connecting an electric circuit in resistive mode. Major emphasis was placed on AC due to its ability of repulsing and inactivating bacteria. The observations indicate that an AC potential >1500 mV, 1 kHz frequency, 100 Ω external resistance on ground side and pulse wave above the offset (+0.45) almost completely prevented attachment of bacteria (>98.5%) and bacterial inactivation (95.3±2.5%). Findings suggest that at the conditions applied, direct electron transfer might be dominant in a decrease of cell viability. AC resulted more effective than DC, both in terms of biofouling reduction compared to cathodic DC and in terms of cell inactivation compared to anodic DC. This electrically polarized CNT membranes offer a viable antibiofouling strategy to hinder biofouling and simplify membrane care during filtration.Keywords: bacterial attachment, biofouling control, low electric potential, water treatment
Procedia PDF Downloads 2704900 Proposals for Continuous Quality Improvement of Public Transportation Federal District Using SERVQUAL
Authors: Rodrigo Guimarães Santos
Abstract:
The quality of public transport services has been considered as a critical factor by their users and also by users of individual transport. Thus, this dissertation aims to adapt a model that assesses the quality of public transport and determines its level of service based on the views of its users. The methodology is widely used by marketers and allows measuring the quality of services by assessing the perceptions and expectations of users. The adapted SERVQUAL was tested with users of public transport service users and car in Brasília-DF, city of Brazil. This research involved 241 questionnaires answered by people living in the various administrative regions of Brasília-DF. The analysis of the determinants pointed out that the quality of the public transport service offered in the city is low and users of public transport and cars have a high degree of expectations for improvement in all tested determinants. This method enabled the identification of the most critical determinants and those needing strategic actions for continuous improvement of quality. Adapting the SERVQUAL for a public transport service was satisfactory and demonstrated applicability to internal and external services, including measuring the public transport services in other cities with the opinion of the users.Keywords: transportation services, quality services, servqual scale and marketing services
Procedia PDF Downloads 3874899 Design and Synthesis of an Organic Material with High Open Circuit Voltage of 1.0 V
Authors: Javed Iqbal
Abstract:
The growing need for energy by the human society and depletion of conventional energy sources demands a renewable, safe, infinite, low-cost and omnipresent energy source. One of the most suitable ways to solve the foreseeable world’s energy crisis is to use the power of the sun. Photovoltaic devices are especially of wide interest as they can convert solar energy to electricity. Recently the best performing solar cells are silicon-based cells. However, silicon cells are expensive, rigid in structure and have a large timeline for the payback of cost and electricity. Organic photovoltaic cells are cheap, flexible and can be manufactured in a continuous process. Therefore, organic photovoltaic cells are an extremely favorable replacement. Organic photovoltaic cells utilize sunlight as energy and convert it into electricity through the use of conductive polymers/ small molecules to separate electrons and electron holes. A major challenge for these new organic photovoltaic cells is the efficiency, which is low compared with the traditional silicon solar cells. To overcome this challenge, usually two straightforward strategies have been considered: (1) reducing the band-gap of molecular donors to broaden the absorption range, which results in higher short circuit current density (JSC) of devices, and (2) lowering the highest occupied molecular orbital (HOMO) energy of molecular donors so as to increase the open-circuit voltage (VOC) of applications devices.8 Keeping in mind the cost of chemicals it is hard to try many materials on test basis. The best way is to find the suitable material in the bulk. For this purpose, we use computational approach to design molecules based on our organic chemistry knowledge and determine their physical and electronic properties. In this study, we did DFT calculations with different options to get high open circuit voltage and after getting suitable data from calculation we finally did synthesis of a novel D–π–A–π–D type low band-gap small molecular donor material (ZOPTAN-TPA). The Aarylene vinylene based bis(arylhalide) unit containing a cyanostilbene unit acts as a low-band- gap electron-accepting block, and is coupled with triphenylamine as electron-donating blocks groups. The motivation for choosing triphenylamine (TPA) as capped donor was attributed to its important role in stabilizing the separated hole from an exciton and thus improving the hole-transporting properties of the hole carrier.3 A π-bridge (thiophene) is inserted between the donor and acceptor unit to reduce the steric hindrance between the donor and acceptor units and to improve the planarity of the molecule. The ZOPTAN-TPA molecule features a low HOMO level of 5.2 eV and an optical energy gap of 2.1 eV. Champion OSCs based on a solution-processed and non-annealed active-material blend of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and ZOPTAN-TPA in a mass ratio of 2:1 exhibits a power conversion efficiency of 1.9 % and a high open-circuit voltage of over 1.0 V.Keywords: high open circuit voltage, donor, triphenylamine, organic solar cells
Procedia PDF Downloads 2404898 Optimization Techniques of Doubly-Fed Induction Generator Controller Design for Reliability Enhancement of Wind Energy Conversion Systems
Authors: Om Prakash Bharti, Aanchal Verma, R. K. Saket
Abstract:
The Doubly-Fed Induction Generator (DFIG) is suggested for Wind Energy Conversion System (WECS) to extract wind power. DFIG is preferably employed due to its robustness towards variable wind and rotor speed. DFIG has the adaptable property because the system parameters are smoothly dealt with, including real power, reactive power, DC-link voltage, and the transient and dynamic responses, which are needed to analyze constantly. The analysis becomes more prominent during any unusual condition in the electrical power system. Hence, the study and improvement in the system parameters and transient response performance of DFIG are required to be accomplished using some controlling techniques. For fulfilling the task, the present work implements and compares the optimization methods for the design of the DFIG controller for WECS. The bio-inspired optimization techniques are applied to get the optimal controller design parameters for DFIG-based WECS. The optimized DFIG controllers are then used to retrieve the transient response performance of the six-order DFIG model with a step input. The results using MATLAB/Simulink show the betterment of the Firefly algorithm (FFA) over other control techniques when compared with the other controller design methods.Keywords: doubly-fed induction generator, wind turbine, wind energy conversion system, induction generator, transfer function, proportional, integral, derivatives
Procedia PDF Downloads 934897 Defect Identification in Partial Discharge Patterns of Gas Insulated Switchgear and Straight Cable Joint
Authors: Chien-Kuo Chang, Yu-Hsiang Lin, Yi-Yun Tang, Min-Chiu Wu
Abstract:
With the trend of technological advancement, the harm caused by power outages is substantial, mostly due to problems in the power grid. This highlights the necessity for further improvement in the reliability of the power system. In the power system, gas-insulated switches (GIS) and power cables play a crucial role. Long-term operation under high voltage can cause insulation materials in the equipment to crack, potentially leading to partial discharges. If these partial discharges (PD) can be analyzed, preventative maintenance and replacement of equipment can be carried out, there by improving the reliability of the power grid. This research will diagnose defects by identifying three different defects in GIS and three different defects in straight cable joints, for a total of six types of defects. The partial discharge data measured will be converted through phase analysis diagrams and pulse sequence analysis. Discharge features will be extracted using convolutional image processing, and three different deep learning models, CNN, ResNet18, and MobileNet, will be used for training and evaluation. Class Activation Mapping will be utilized to interpret the black-box problem of deep learning models, with each model achieving an accuracy rate of over 95%. Lastly, the overall model performance will be enhanced through an ensemble learning voting method.Keywords: partial discharge, gas-insulated switches, straight cable joint, defect identification, deep learning, ensemble learning
Procedia PDF Downloads 784896 Improved Multilevel Inverter with Hybrid Power Selector and Solar Panel Cleaner in a Solar System
Authors: S. Oladoyinbo, A. A. Tijani
Abstract:
Multilevel inverters (MLI) are used at high power application based on their operation. There are 3 main types of multilevel inverters (MLI); diode clamped, flying capacitor and cascaded MLI. A cascaded MLI requires the least number of components to achieve same number of voltage levels when compared to other types of MLI while the flying capacitor has the minimum harmonic distortion. However, maximizing the advantage of cascaded H-bridge MLI and flying capacitor MLI, an improved MLI can be achieved with fewer components and better performance. In this paper an improved MLI is presented by asymmetrically integrating a flying capacitor to a cascaded H-bridge MLI also integrating an auxiliary transformer to the main transformer to decrease the total harmonics distortion (THD) with increased number of output voltage levels. Furthermore, the system is incorporated with a hybrid time and climate based solar panel cleaner and power selector which intelligently manage the input of the MLI and clean the solar panel weekly ensuring the environmental factor effect on the panel is reduced to minimum.Keywords: multilevel inverter, total harmonics distortion, cascaded h-bridge inverter, flying capacitor
Procedia PDF Downloads 3664895 Analysis of Standard Tramway Surge Protection Methods Based on Real Cases
Authors: Alain Rousseau, Alfred Aragones, Gilles Rougier
Abstract:
The study is based on lightning and surge standards mainly the EN series 62305 for facility protection, EN series 61643 for Low Voltage Surge Protective Devices, High Voltage surge arrester standard en 60099-4 and the traction arrester standards namely EN 50526-1 and 50526-1 dealing respectively with railway applications fixed installations D.C. surge arresters and voltage limiting devices. The more severe stress for tramways installations is caused by direct lightning on the catenary line. In such case, the surge current propagates towards the various poles and sparkover the insulators leading to a lower stress. If the impact point is near enough, a significant surge current will flow towards the traction surge arrester that is installed on the catenary at the location the substation is connected. Another surge arrester can be installed at the entrance of the substation or even inside the rectifier to avoid insulation damages. In addition, surge arresters can be installed between + and – to avoid damaging sensitive circuits. Based on disturbances encountered in a substation following a lighting event, the engineering department of RATP has decided to investigate the cause of such damage and more generally to question the efficiency of the various possible protection means. Based on the example of a recent tramway line the paper present the result of a lightning study based on direct lightning strikes. As a matter of fact, the induced surges on the catenary are much more frequent but much less damaging. First, a lightning risk assessment is performed for the substations that takes into account direct lightning and induced lightning both on the substation and its connected lines such as the catenary. Then the paper deals with efficiency of the various surge arresters is discussed based on field experience and calculations. The efficiency of the earthing system used at the bottom of the pole is also addressed based on high frequency earthing measurement. As a conclusion, the paper is making recommendations for an enhanced efficiency of existing protection means.Keywords: surge arrester, traction, lightning, risk, surge protective device
Procedia PDF Downloads 2594894 Time to CT in Major Trauma in Coffs Harbour Health Campus - The Australian Rural Centre Experience
Authors: Thampi Rawther, Jack Cecire, Andrew Sutherland
Abstract:
Introduction: CT facilitates the diagnosis of potentially life-threatening injuries and facilitates early management. There is evidence that reduced CT acquisition time reduces mortality and length of hospital stay. Currently, there are variable recommendations for ideal timing. Indeed, the NHS standard contract for a major trauma service and STAG both recommend immediate access to CT within a maximum time of 60min and appropriate reporting within 60min of the scan. At Coffs Harbour Health Campus (CHHC), a CT radiographer is on site between 8am-11pm. Aim: To investigate the average time to CT at CHHC and assess for any significant relationship between time to CT and injury severity score (ISS) or time of triage. Method: All major trauma calls between Jan 2021-Oct 2021 were audited (N=87). Patients were excluded if they went from ED to the theatre. Time to CT is defined as the time between triage to the timestamp on the first CT image. Median and interquartile range was used as a measure of central tendency as the data was not normally distributed, and Chi-square test was used to determine association. Results: The median time to CT is 51.5min (IQR 40-74). We found no relationship between time to CT and ISS (P=0.18) and time of triage to time to CT (P=0.35). We compared this to other centres such as John Hunter Hospital and Gold Coast Hospital. We found that the median CT acquisition times were 76min (IQR 52-115) and 43min, respectively. Conclusion: This shows an avenue for improvement given 35% of CT’s were >30min. Furthermore, being proactive and aware of time to CT as an important factor to trauma management can be another avenue for improvement. Based on this, we will re-audit in 12-24months to assess if any improvement has been made.Keywords: imaging, rural surgery, trauma surgery, improvement
Procedia PDF Downloads 1024893 Investigation of Mechanical Properties and Positron Annihilation Lifetime Spectroscopy of Acrylonitrile Butadiene Styrene/Polycarbonate Blends
Authors: Ayman M. M. Abdelhaleem, Mustafa Gamal Sadek, Kamal Reyad, Montasser M. Dewidar
Abstract:
The main objective of this research is to study the effect of adding polycarbonate (PC) to pure Acrylonitrile Butadiene Styrene (ABS) using the injection moulding process. The PC was mixed mechanically with ABS in 10%, 20%, 30%, 40%, and 50% by weight. The mechanical properties of pure ABS reinforced with PC were investigated using tensile, impact, hardness, and wear tests. The results showed that, by adding 10%, 20%, 30%, 40%, and 50% wt. of PC to the pure ABS, the ultimate tensile strength increased from 55 N/mm2 for neat ABS to 57 N/mm2 (i.e. 3.63%), 60 N/mm2 (i.e. 9.09%), 63 N/mm2 (i.e. 14.54%), 66 N/mm2 (i.e. 20%), 69 N/mm2 (i.e. 25.45%) respectively. Test results also revealed nearly 5.72% improvement in young's modulus by adding 10% of PC to ABS, 16.74% improvement by adding 20%, 23.34% improvement by adding 30%, 27.75% improvement by adding 40%, and no other increase in case of 50%. The impact test results showed that with the increase of the PC content, first, the impact strength decreased and then increased gradually. The impact strength decreased rapidly when the content of PC was 0% to 10% range. As well as, in the case of 20%, 30%, 40%, and 50% PC, the impact strength is increased. The hardness test results, using the Shore D tester, showed that, as the PC particles contents increased, the hardness increased from 76 for the ABS to 80 for 10% PC, and decreased to 79 for 20% PC, and then increased to 80 in case of 30%, 40%, and 50% PC. Wear test results showed that PC improves the wear resistance of ABS/PC blends. Positron annihilation lifetime spectroscopy showed that with an increase of PC in ABS/PC blends, a slight decrease in free volume size and an increase in the tensile strength due to good adhesion between PC and ABS matrix, which acted as an advantage in the polymer matrix.Keywords: ABS, PC, injection molding process, mechanical properties, lifetime spectroscopy
Procedia PDF Downloads 734892 Solar Power Monitoring and Control System using Internet of Things
Authors: Oladapo Tolulope Ibitoye
Abstract:
It has become imperative to harmonize energy poverty alleviation and carbon footprint reduction. This is geared towards embracing independent power generation at local levels to reduce the popular ambiguity in the transmission of generated power. Also, it will contribute towards the total adoption of electric vehicles and direct current (DC) appliances that are currently flooding the global market. Solar power system is gaining momentum as it is now an affordable and less complex alternative to fossil fuel-based power generation. Although, there are many issues associated with solar power system, which resulted in deprivation of optimum working capacity. One of the key problems is inadequate monitoring of the energy pool from solar irradiance, which can then serve as a foundation for informed energy usage decisions and appropriate solar system control for effective energy pooling. The proposed technique utilized Internet of Things (IoT) in developing a system to automate solar irradiance pooling by controlling solar photovoltaic panels autonomously for optimal usage. The technique is potent with better solar irradiance exposure which results into 30% voltage pooling capacity than a system with static solar panels. The evaluation of the system show that the developed system possesses higher voltage pooling capacity than a system of static positioning of solar panel.Keywords: solar system, internet of things, renewable energy, power monitoring
Procedia PDF Downloads 834891 Generation and Diagnostics of Atmospheric Pressure Dielectric Barrier Discharge in Argon/Air
Authors: R. Shrestha, D. P. Subedi, R. B. Tyata, C. S. Wong,
Abstract:
In this paper, a technique for the determination of electron temperatures and electron densities in atmospheric pressure Argon/air discharge by the analysis of optical emission spectra (OES) is reported. The discharge was produced using a high voltage (0-20) kV power supply operating at a frequency of 27 kHz in parallel electrode system, with glass as dielectric. The dielectric layers covering the electrodes act as current limiters and prevent the transition to an arc discharge. Optical emission spectra in the range of (300nm-850nm) were recorded for the discharge with different inter electrode gap keeping electric field constant. Electron temperature (Te) and electron density (ne) are estimated from electrical and optical methods. Electron density was calculated using power balance method. The optical methods are related with line intensity ratio from the relative intensities of Ar-I and Ar-II lines in Argon plasma. The electron density calculated by using line intensity ratio method was compared with the electron density calculated by stark broadening method. The effect of dielectric thickness on plasma parameters (Te and ne) have also been studied and found that Te and ne increases as thickness of dielectric decrease for same inter electrode distance and applied voltage.Keywords: electron density, electron temperature, optical emission spectra,
Procedia PDF Downloads 4964890 Study and Improvement of the Quality of a Production Line
Authors: S. Bouchami, M.N. Lakhoua
Abstract:
The automotive market is a dynamic market that continues to grow. That’s why several companies belonging to this sector adopt a quality improvement approach. Wanting to be competitive and successful in the environment in which they operate, these companies are dedicated to establishing a system of quality management to ensure the achievement of the objective quality, improving the products and process as well as the satisfaction of the customers. In this paper, the management of the quality and the improvement of a production line in an industrial company is presented. In fact, the project is divided into two essential parts: the creation of the technical line documentation and the quality assurance documentation and the resolution of defects at the line, as well as those claimed by the customer. The creation of the documents has required a deep understanding of the manufacturing process. The analysis and problem solving were done through the implementation of PDCA (Plan Do Check Act) and FTA (Fault Tree Analysis). As perspective, in order to better optimize production and improve the efficiency of the production line, a study on the problems associated with the supply of raw materials should be made to solve the problems of stock-outs which cause delays penalizing for the industrial company.Keywords: quality management, documentary system, Plan Do Check Act (PDCA), fault tree analysis (FTA) method
Procedia PDF Downloads 1424889 Modeling of Micro-Grid System Components Using MATLAB/Simulink
Authors: Mahmoud Fouad, Mervat Badr, Marwa Ibrahim
Abstract:
Micro-grid system is presently considered a reliable solution for the expected deficiency in the power required from future power systems. Renewable power sources such as wind, solar and hydro offer high potential of benign power for future micro-grid systems. Micro-Grid (MG) is basically a low voltage (LV) or medium voltage (MV) distribution network which consists of a number of called distributed generators (DG’s); micro-sources such as photovoltaic array, fuel cell, wind turbine etc. energy storage systems and loads; operating as a single controllable system, that could be operated in both grid-connected and islanded mode. The capacity of the DG’s is sufficient to support all; or most, of the load connected to the micro-grid. This paper presents a micro-grid system based on wind and solar power sources and addresses issues related to operation, control, and stability of the system. Using Matlab/Simulink, the system is modeled and simulated to identify the relevant technical issues involved in the operation of a micro-grid system based on renewable power generation units.Keywords: micro-grid system, photovoltaic, wind turbine, energy storage, distributed generation, modeling
Procedia PDF Downloads 4344888 Transient Analysis and Mitigation of Capacitor Bank Switching on a Standalone Wind Farm
Authors: Ajibola O. Akinrinde, Andrew Swanson, Remy Tiako
Abstract:
There exist significant losses on transmission lines due to distance, as power generating stations could be located far from some isolated settlements. Standalone wind farms could be a good choice of alternative power generation for such settlements that are far from the grid due to factors of long distance or socio-economic problems. However, uncompensated wind farms consume reactive power since wind turbines are induction generators. Therefore, capacitor banks are used to compensate reactive power, which in turn improves the voltage profile of the network. Although capacitor banks help improving voltage profile, they also undergo switching actions due to its compensating response to the variation of various types of load at the consumer’s end. These switching activities could cause transient overvoltage on the network, jeopardizing the end-life of other equipment on the system. In this paper, the overvoltage caused by these switching activities is investigated using the IEEE bus 14-network to represent a standalone wind farm, and the simulation is done using ATP/EMTP software. Scenarios involving the use of pre-insertion resistor and pre-insertion inductor, as well as controlled switching was also carried out in order to decide the best mitigation option to reduce the overvoltage.Keywords: capacitor banks, IEEE bus 14-network, pre-insertion resistor, standalone wind farm
Procedia PDF Downloads 4414887 Model-Based Global Maximum Power Point Tracking at Photovoltaic String under Partial Shading Conditions Using Multi-Input Interleaved Boost DC-DC Converter
Authors: Seyed Hossein Hosseini, Seyed Majid Hashemzadeh
Abstract:
Solar energy is one of the remarkable renewable energy sources that have particular characteristics such as unlimited, no environmental pollution, and free access. Generally, solar energy can be used in thermal and photovoltaic (PV) types. The cost of installation of the PV system is very high. Additionally, due to dependence on environmental situations such as solar radiation and ambient temperature, electrical power generation of this system is unpredictable and without power electronics devices, there is no guarantee to maximum power delivery at the output of this system. Maximum power point tracking (MPPT) should be used to achieve the maximum power of a PV string. MPPT is one of the essential parts of the PV system which without this section, it would be impossible to reach the maximum amount of the PV string power and high losses are caused in the PV system. One of the noticeable challenges in the problem of MPPT is the partial shading conditions (PSC). In PSC, the output photocurrent of the PV module under the shadow is less than the PV string current. The difference between the mentioned currents passes from the module's internal parallel resistance and creates a large negative voltage across shaded modules. This significant negative voltage damages the PV module under the shadow. This condition is called hot-spot phenomenon. An anti-paralleled diode is inserted across the PV module to prevent the happening of this phenomenon. This diode is known as the bypass diode. Due to the performance of the bypass diode under PSC, the P-V curve of the PV string has several peaks. One of the P-V curve peaks that makes the maximum available power is the global peak. Model-based Global MPPT (GMPPT) methods can estimate the optimal point with higher speed than other GMPPT approaches. Centralized, modular, and interleaved DC-DC converter topologies are the significant structures that can be used for GMPPT at a PV string. there are some problems in the centralized structure such as current mismatch losses at PV sting, loss of power of the shaded modules because of bypassing by bypass diodes under PSC, needing to series connection of many PV modules to reach the desired voltage level. In the modular structure, each PV module is connected to a DC-DC converter. In this structure, by increasing the amount of demanded power from the PV string, the number of DC-DC converters that are used at the PV system will increase. As a result, the cost of the modular structure is very high. We can implement the model-based GMPPT through the multi-input interleaved boost DC-DC converter to increase the power extraction from the PV string and reduce hot-spot and current mismatch error in a PV string under different environmental condition and variable load circumstances. The interleaved boost DC-DC converter has many privileges than other mentioned structures, such as high reliability and efficiency, better regulation of DC voltage at DC link, overcome the notable errors such as module's current mismatch and hot spot phenomenon, and power switches voltage stress reduction.Keywords: solar energy, photovoltaic systems, interleaved boost converter, maximum power point tracking, model-based method, partial shading conditions
Procedia PDF Downloads 130