Search results for: terahertz
5 Effects of Two Cross Focused Intense Laser Beams On THz Generation in Rippled Plasma
Authors: Sandeep Kumar, Naveen Gupta
Abstract:
Terahertz (THz) generation has been investigated by beating two cosh-Gaussian laser beams of the same amplitude but different wavenumbers and frequencies through rippled collisionless plasma. The ponderomotive force is operative which is induced due to the intensity gradient of the laser beam over the cross-section area of the wavefront. The electrons evacuate towards a low-intensity regime, which modifies the dielectric function of the medium and results in cross focusing of cosh-Gaussian laser beams. The evolution of spot size of laser beams has been studied by solving nonlinear Schrodinger wave equation (NLSE) with variational technique. The laser beams impart oscillations to electrons which are enhanced with ripple density. The nonlinear oscillatory motion of electrons gives rise to a nonlinear current density driving THz radiation. It has been observed that the periodicity of the ripple density helps to enhance the THz radiation.Keywords: rippled collisionless plasma, cosh-gaussian laser beam, ponderomotive force, variational technique, nonlinear current density
Procedia PDF Downloads 2014 Analytical Terahertz Characterization of In0.53Ga0.47As Transistors and Homogenous Diodes
Authors: Abdelmadjid Mammeri, Fatima Zohra Mahi, Luca Varani, H. Marinchoi
Abstract:
We propose an analytical model for the admittance and the noise calculations of the InGaAs transistor and diode. The development of the small-signal admittance takes into account the longitudinal and transverse electric fields through a pseudo two-dimensional approximation of the Poisson equation. The frequency-dependent of the small-signal admittance response is determined by the total currents and the potentials matrix relation between the gate and the drain terminals. The noise is evaluated by using the real part of the transistor/diode admittance under a small-signal perturbation. The analytical results show that the admittance spectrum exhibits a series of resonant peaks corresponding to the excitation of plasma waves. The appearance of the resonance is discussed and analyzed as functions of the channel length and the temperature. The model can be used, on one hand; to control the appearance of the plasma resonances, and on other hand; can give significant information about the noise frequency dependence in the InGaAs transistor and diode.Keywords: InGaAs transistors, InGaAs diode, admittance, resonant peaks, plasma waves, analytical model
Procedia PDF Downloads 3163 Evaluation of Heterogeneity of Paint Coating on Metal Substrate Using Laser Infrared Thermography and Eddy Current
Authors: S. Mezghani, E. Perrin, J. L. Bodnar, J. Marthe, B. Cauwe, V. Vrabie
Abstract:
Non contact evaluation of the thickness of paint coatings can be attempted by different destructive and nondestructive methods such as cross-section microscopy, gravimetric mass measurement, magnetic gauges, Eddy current, ultrasound or terahertz. Infrared thermography is a nondestructive and non-invasive method that can be envisaged as a useful tool to measure the surface thickness variations by analyzing the temperature response. In this paper, the thermal quadrupole method for two layered samples heated up with a pulsed excitation is firstly used. By analyzing the thermal responses as a function of thermal properties and thicknesses of both layers, optimal parameters for the excitation source can be identified. Simulations show that a pulsed excitation with duration of ten milliseconds allows to obtain a substrate-independent thermal response. Based on this result, an experimental setup consisting of a near-infrared laser diode and an Infrared camera was next used to evaluate the variation of paint coating thickness between 60 µm and 130 µm on two samples. Results show that the parameters extracted for thermal images are correlated with the estimated thicknesses by the Eddy current methods. The laser pulsed thermography is thus an interesting alternative nondestructive method that can be moreover used for non conductive substrates.Keywords: non destructive, paint coating, thickness, infrared thermography, laser, heterogeneity
Procedia PDF Downloads 6392 Check Red Blood Cells Concentrations of a Blood Sample by Using Photoconductive Antenna
Authors: Ahmed Banda, Alaa Maghrabi, Aiman Fakieh
Abstract:
Terahertz (THz) range lies in the area between 0.1 to 10 THz. The process of generating and detecting THz can be done through different techniques. One of the most familiar techniques is done through a photoconductive antenna (PCA). The process of generating THz radiation at PCA includes applying a laser pump in femtosecond and DC voltage difference. However, photocurrent is generated at PCA, which its value is affected by different parameters (e.g., dielectric properties, DC voltage difference and incident power of laser pump). THz radiation is used for biomedical applications. However, different biomedical fields need new technologies to meet patients’ needs (e.g. blood-related conditions). In this work, a novel method to check the red blood cells (RBCs) concentration of a blood sample using PCA is presented. RBCs constitute 44% of total blood volume. RBCs contain Hemoglobin that transfers oxygen from lungs to body organs. Then it returns to the lungs carrying carbon dioxide, which the body then gets rid of in the process of exhalation. The configuration has been simulated and optimized using COMSOL Multiphysics. The differentiation of RBCs concentration affects its dielectric properties (e.g., the relative permittivity of RBCs in the blood sample). However, the effects of four blood samples (with different concentrations of RBCs) on photocurrent value have been tested. Photocurrent peak value and RBCs concentration are inversely proportional to each other due to the change of dielectric properties of RBCs. It was noticed that photocurrent peak value has dropped from 162.99 nA to 108.66 nA when RBCs concentration has risen from 0% to 100% of a blood sample. The optimization of this method helps to launch new products for diagnosing blood-related conditions (e.g., anemia and leukemia). The resultant electric field from DC components can not be used to count the RBCs of the blood sample.Keywords: biomedical applications, photoconductive antenna, photocurrent, red blood cells, THz radiation
Procedia PDF Downloads 2051 Smart Defect Detection in XLPE Cables Using Convolutional Neural Networks
Authors: Tesfaye Mengistu
Abstract:
Power cables play a crucial role in the transmission and distribution of electrical energy. As the electricity generation, transmission, distribution, and storage systems become smarter, there is a growing emphasis on incorporating intelligent approaches to ensure the reliability of power cables. Various types of electrical cables are employed for transmitting and distributing electrical energy, with cross-linked polyethylene (XLPE) cables being widely utilized due to their exceptional electrical and mechanical properties. However, insulation defects can occur in XLPE cables due to subpar manufacturing techniques during production and cable joint installation. To address this issue, experts have proposed different methods for monitoring XLPE cables. Some suggest the use of interdigital capacitive (IDC) technology for online monitoring, while others propose employing continuous wave (CW) terahertz (THz) imaging systems to detect internal defects in XLPE plates used for power cable insulation. In this study, we have developed models that employ a custom dataset collected locally to classify the physical safety status of individual power cables. Our models aim to replace physical inspections with computer vision and image processing techniques to classify defective power cables from non-defective ones. The implementation of our project utilized the Python programming language along with the TensorFlow package and a convolutional neural network (CNN). The CNN-based algorithm was specifically chosen for power cable defect classification. The results of our project demonstrate the effectiveness of CNNs in accurately classifying power cable defects. We recommend the utilization of similar or additional datasets to further enhance and refine our models. Additionally, we believe that our models could be used to develop methodologies for detecting power cable defects from live video feeds. We firmly believe that our work makes a significant contribution to the field of power cable inspection and maintenance. Our models offer a more efficient and cost-effective approach to detecting power cable defects, thereby improving the reliability and safety of power grids.Keywords: artificial intelligence, computer vision, defect detection, convolutional neural net
Procedia PDF Downloads 112