Search results for: social reinforcement
10157 Numerical Analysis of the Effect of Geocell Reinforcement above Buried Pipes on Surface Settlement and Vertical Pressure
Authors: Waqed H. Almohammed, Mohammed Y. Fattah, Sajjad E. Rasheed
Abstract:
Dynamic traffic loads cause deformation of underground pipes, resulting in vehicle discomfort. This makes it necessary to reinforce the layers of soil above underground pipes. In this study, the subbase layer was reinforced. Finite element software (PLAXIS 3D) was used to in the simulation, which includes geocell reinforcement, vehicle loading, soil layers and Glass Fiber Reinforced Plastic (GRP) pipe. Geocell reinforcement was modeled using a geogrid element, which was defined as a slender structure element that has the ability to withstand axial stresses but not to resist bending. Geogrids cannot withstand compression but they can withstand tensile forces. Comparisons have been made between the numerical models and experimental works, and a good agreement was obtained. Using the mathematical model, the performance of three different pipes of diameter 600 mm, 800 mm, and 1000 mm, and three different vehicular speeds of 20 km/h, 40 km/h, and 60 km/h, was examined to determine their impact on surface settlement and vertical pressure at the pipe crown for two cases: with and without geocell reinforcement. The results showed that, for a pipe diameter of 600 mm under geocell reinforcement, surface settlement decreases by 94 % when the speed of the vehicle is 20 km/h and by 98% when the speed of the vehicle is 60 km/h. Vertical pressure decreases by 81 % when the diameter of the pipe is 600 mm, while the value decreases to 58 % for a pipe with diameter 1000 mm. The results show that geocell reinforcement causes a significant and positive reduction in surface settlement and vertical stress above the pipe crown, leading to an increase in pipe safety.Keywords: dynamic loading, finite element, geocell-reinforcement, GRP pipe, PLAXIS 3D, surface settlement
Procedia PDF Downloads 24510156 Experimental Research on Ductility of Regional Confined Concrete Beam
Authors: Qinggui Wu, Xinming Cao, Guyue Guo, Jiajun Ding
Abstract:
In efforts to study the shear ductility of regional confined concrete beam, 5 reinforced concrete beams were tested to examine its shear performance. These beams has the same shear span ratio, concrete strength, different ratios of tension reinforcement and shapes of stirrup. The purpose of the test is studying the effects of stirrup shape and tension reinforcement ratio on failure mode and shear ductility. The test shows that the regional confined part can be used as an independent part and the rest of the beam is good to work together so that the ductility of the beam is more one time higher than that of the normal confined concrete beam. The related laws of the effect of tension reinforcement ratio and stirrup shapes on beam’s shear ductility are founded.Keywords: ratio of tension reinforcement, stirrup shapes, shear ductility, failure mode
Procedia PDF Downloads 33210155 Deep Reinforcement Learning with Leonard-Ornstein Processes Based Recommender System
Authors: Khalil Bachiri, Ali Yahyaouy, Nicoleta Rogovschi
Abstract:
Improved user experience is a goal of contemporary recommender systems. Recommender systems are starting to incorporate reinforcement learning since it easily satisfies this goal of increasing a user’s reward every session. In this paper, we examine the most effective Reinforcement Learning agent tactics on the Movielens (1M) dataset, balancing precision and a variety of recommendations. The absence of variability in final predictions makes simplistic techniques, although able to optimize ranking quality criteria, worthless for consumers of the recommendation system. Utilizing the stochasticity of Leonard-Ornstein processes, our suggested strategy encourages the agent to investigate its surroundings. Research demonstrates that raising the NDCG (Discounted Cumulative Gain) and HR (HitRate) criterion without lowering the Ornstein-Uhlenbeck process drift coefficient enhances the diversity of suggestions.Keywords: recommender systems, reinforcement learning, deep learning, DDPG, Leonard-Ornstein process
Procedia PDF Downloads 13910154 An Experimental Investigation of Bond Properties of Reinforcements Embedded in Geopolymer Concrete
Authors: Jee-Sang Kim, Jong Ho Park
Abstract:
Geopolymer concretes are a new class of construction materials that have emerged as an alternative to Ordinary Portland cement concrete. Considerable researches have been carried out on material development of geopolymer concrete, however, a few studies have been reported on the structural use of them. This paper presents the bond behaviors of reinforcement embedded in fly ash based geopolymer concrete. The development lengths of reinforcement for various compressive strengths of concrete, 20, 30 and 40 MPa, and reinforcement diameters, 10, 16, and 25 mm are investigated. Total 27 specimens were manufactured and pull-out test according to EN 10080 was applied to measure bond strength and slips between concrete and reinforcements. The average bond strengths decreased from 23.06MPa to 17.26 MPa, as the diameters of reinforcements increased from 10mm to 25mm. The compressive strength levels of geopolymer concrete showed no significant influence on bond strengths in this study. Also, the bond-slip relations between geopolymer concrete and reinforcement are derived using non-linear regression analysis for various experimental conditions.Keywords: bond-slip relation, bond strength, geopolymer concrete, pull-out test
Procedia PDF Downloads 34810153 Experimental Studies on Prestressed Precast Concrete Bridge Piers
Authors: C. Shim, C. Koem, S. Park, S. Lee
Abstract:
This paper deals with experimental studies on pre stressed precast concrete columns with continuous reinforcing bars and pre stressing tendons. Design requirements on minimum transverse reinforcement ratio are not included in current design codes. Pre stressing introduces additional compression to the column. Precast columns with different transverse reinforcement ratios were tested to derive adequate design requirement. Displacement ductility of the pre stressed precast columns was evaluated and compared with previous studies. Design of axial steels including reinforcing bars and pre stressing tendons influenced on the seismic performance. Without significant increase of transverse reinforcement ratio, the specimens showed required displacement ductility without reduction of their flexural strength. Design recommendations for precast bridge piers were derived.Keywords: displacement ductility, flexural strength, prestressed precast column, transverse reinforcement
Procedia PDF Downloads 27710152 Q-Learning of Bee-Like Robots Through Obstacle Avoidance
Authors: Jawairia Rasheed
Abstract:
Modern robots are often used for search and rescue purpose. One of the key areas of interest in such cases is learning complex environments. One of the key methodologies for robots in such cases is reinforcement learning. In reinforcement learning robots learn to move the path to reach the goal while avoiding obstacles. Q-learning, one of the most advancement of reinforcement learning is used for making the robots to learn the path. Robots learn by interacting with the environment to reach the goal. In this paper simulation model of bee-like robots is implemented in NETLOGO. In the start the learning rate was less and it increased with the passage of time. The bees successfully learned to reach the goal while avoiding obstacles through Q-learning technique.Keywords: reinforlearning of bee like robots for reaching the goalcement learning for randomly placed obstacles, obstacle avoidance through q-learning, q-learning for obstacle avoidance,
Procedia PDF Downloads 9810151 The AI Arena: A Framework for Distributed Multi-Agent Reinforcement Learning
Authors: Edward W. Staley, Corban G. Rivera, Ashley J. Llorens
Abstract:
Advances in reinforcement learning (RL) have resulted in recent breakthroughs in the application of artificial intelligence (AI) across many different domains. An emerging landscape of development environments is making powerful RL techniques more accessible for a growing community of researchers. However, most existing frameworks do not directly address the problem of learning in complex operating environments, such as dense urban settings or defense-related scenarios, that incorporate distributed, heterogeneous teams of agents. To help enable AI research for this important class of applications, we introduce the AI Arena: a scalable framework with flexible abstractions for distributed multi-agent reinforcement learning. The AI Arena extends the OpenAI Gym interface to allow greater flexibility in learning control policies across multiple agents with heterogeneous learning strategies and localized views of the environment. To illustrate the utility of our framework, we present experimental results that demonstrate performance gains due to a distributed multi-agent learning approach over commonly-used RL techniques in several different learning environments.Keywords: reinforcement learning, multi-agent, deep learning, artificial intelligence
Procedia PDF Downloads 15510150 Distributed System Computing Resource Scheduling Algorithm Based on Deep Reinforcement Learning
Authors: Yitao Lei, Xingxiang Zhai, Burra Venkata Durga Kumar
Abstract:
As the quantity and complexity of computing in large-scale software systems increase, distributed system computing becomes increasingly important. The distributed system realizes high-performance computing by collaboration between different computing resources. If there are no efficient resource scheduling resources, the abuse of distributed computing may cause resource waste and high costs. However, resource scheduling is usually an NP-hard problem, so we cannot find a general solution. However, some optimization algorithms exist like genetic algorithm, ant colony optimization, etc. The large scale of distributed systems makes this traditional optimization algorithm challenging to work with. Heuristic and machine learning algorithms are usually applied in this situation to ease the computing load. As a result, we do a review of traditional resource scheduling optimization algorithms and try to introduce a deep reinforcement learning method that utilizes the perceptual ability of neural networks and the decision-making ability of reinforcement learning. Using the machine learning method, we try to find important factors that influence the performance of distributed system computing and help the distributed system do an efficient computing resource scheduling. This paper surveys the application of deep reinforcement learning on distributed system computing resource scheduling proposes a deep reinforcement learning method that uses a recurrent neural network to optimize the resource scheduling, and proposes the challenges and improvement directions for DRL-based resource scheduling algorithms.Keywords: resource scheduling, deep reinforcement learning, distributed system, artificial intelligence
Procedia PDF Downloads 11010149 Curriculum-Based Multi-Agent Reinforcement Learning for Robotic Navigation
Authors: Hyeongbok Kim, Lingling Zhao, Xiaohong Su
Abstract:
Deep reinforcement learning has been applied to address various problems in robotics, such as autonomous driving and unmanned aerial vehicle. However, because of the sparse reward penalty for a collision with obstacles during the navigation mission, the agent fails to learn the optimal policy or requires a long time for convergence. Therefore, using obstacles and enemy agents, in this paper, we present a curriculum-based boost learning method to effectively train compound skills during multi-agent reinforcement learning. First, to enable the agents to solve challenging tasks, we gradually increased learning difficulties by adjusting reward shaping instead of constructing different learning environments. Then, in a benchmark environment with static obstacles and moving enemy agents, the experimental results showed that the proposed curriculum learning strategy enhanced cooperative navigation and compound collision avoidance skills in uncertain environments while improving learning efficiency.Keywords: curriculum learning, hard exploration, multi-agent reinforcement learning, robotic navigation, sparse reward
Procedia PDF Downloads 9010148 A Fully Interpretable Deep Reinforcement Learning-Based Motion Control for Legged Robots
Authors: Haodong Huang, Zida Zhao, Shilong Sun, Chiyao Li, Wenfu Xu
Abstract:
The control methods for legged robots based on deep reinforcement learning have seen widespread application; however, the inherent black-box nature of neural networks presents challenges in understanding the decision-making motives of the robots. To address this issue, we propose a fully interpretable deep reinforcement learning training method to elucidate the underlying principles of legged robot motion. We incorporate the dynamics of legged robots into the policy, where observations serve as inputs and actions as outputs of the dynamics model. By embedding the dynamics equations within the multi-layer perceptron (MLP) computation process and making the parameters trainable, we enhance interpretability. Additionally, Bayesian optimization is introduced to train these parameters. We validate the proposed fully interpretable motion control algorithm on a legged robot, opening new research avenues for motion control and learning algorithms for legged robots within the deep learning framework.Keywords: deep reinforcement learning, interpretation, motion control, legged robots
Procedia PDF Downloads 1910147 Synthesis of Polystyrene Grafted Filler Nanoparticles: Effect of Grafting on Mechanical Reinforcement
Authors: M. Khlifa, A. Youssef, A. F. Zaed, A. Kraft, V. Arrighi
Abstract:
A series of PS-nanoparticles were prepared by grafting PS from both aggregated silica and colloidally silica using atom-transfer radical polymerisation (ATRP). The mechanical behaviour of the nanocomposites have been examined by differential scanning calorimetry (DSC)and dynamic mechanical thermal analysis (DMTA).Keywords: ATRP, nanocomposites, polystyrene, reinforcement
Procedia PDF Downloads 62010146 Laboratory Investigation of the Impact Resistance of High-Strength Reinforced Concrete Against Impact Loading
Authors: Hadi Rouhi Belvirdi
Abstract:
Reinforced concrete structures, in addition to bearing service loads and seismic effects, may also be subjected to impact loads resulting from unforeseen incidents. Understanding the behavior of these structures is crucial, as they serve to protect against such sudden loads and can significantly reduce damage and destruction. In examining the behavior of structures under such loading conditions, a total of eight specimens of single-layer reinforced concrete slabs were subjected to impact loading through the free fall of weights from specified heights. The weights and dimensions of the specimens were uniform, and the amount of reinforcement was consistent. By altering the slabs' overall shape and the reinforcement details, efforts were made to optimize the behavior of the slabs against impact loads. The results indicated that utilizing ductile features in the slabs increased their resistance to impact loading. However, the compressive strength of the reinforcement did not significantly enhance the flexural resistance. Assuming a constant amount of longitudinal steel, changes in the placement of tensile reinforcement led to a decrease in resistance. With a fixed amount of transverse steel, merely adjusting the angle of the transverse reinforcement could help control cracking and mitigate premature failures. An increase in compressive resistance beyond a certain limit resulted in local buckling of the compressive zone, subsequently decreasing the impact resistance.Keywords: reinforced concrete slab, high-strength concrete, impact loading, impact resistance
Procedia PDF Downloads 810145 Aluminum Matrix Composites Reinforced by Glassy Carbon-Titanium Spatial Structure
Authors: B. Hekner, J. Myalski, P. Wrzesniowski
Abstract:
This study presents aluminum matrix composites reinforced by glassy carbon (GC) and titanium (Ti). In the first step, the heterophase (GC+Ti), spatial form (similar to skeleton) of reinforcement was obtained via own method. The polyurethane foam (with spatial, open-cells structure) covered by suspension of Ti particles in phenolic resin was pyrolyzed. In the second step, the prepared heterogeneous foams were infiltrated by aluminium alloy. The manufactured composites are designated to industrial application, especially as a material used in tribological field. From this point of view, the glassy carbon was applied to stabilise a coefficient of friction on the required value 0.6 and reduce wear. Furthermore, the wear can be limited due to titanium phase application, which reveals high mechanical properties. Moreover, fabrication of thin titanium layer on the carbon skeleton leads to reduce contact between aluminium alloy and carbon and thus aluminium carbide phase creation. However, the main modification involves the manufacturing of reinforcement in the form of 3D, skeleton foam. This kind on reinforcement reveals a few important advantages compared to classical form of reinforcement-particles: possibility to control homogeneity of reinforcement phase in composite material; low-advanced technique of composite manufacturing- infiltration; possibility to application the reinforcement only in required places of material; strict control of phase composition; High quality of bonding between components of material. This research is founded by NCN in the UMO-2016/23/N/ST8/00994.Keywords: metal matrix composites, MMC, glassy carbon, heterophase composites, tribological application
Procedia PDF Downloads 11610144 Impact of Butt Joints on Flexural Properties of Nail Laminated Timber
Authors: Mohammad Mehdi Bagheri, Tianying Ma, Meng Gong
Abstract:
Nail laminated timber (NLT) is widely used for constructing timber bridge decks in North America. Butt joints usually exist due to the length limits of lumber, leading to concerns about the decrease of structural performance of NLT. This study aimed at investigating the provisions incorporated in Canadian highway bridge design code on the use of but joints in wooden bridge decks. Three and five layers NLT specimens with various configurations were tested under 3-point bending test. It was found that the standard equation is capable of predicting the bending stiffness reduction due to butt joints and 1-m band limit in which, one but joint in every three adjacent lamination is allowed, sounds reasonable. The strength reduction also followed a pattern similar to stiffness reduction. Also reinforcement of the butt joint through nails and steel side plates was attempted. It was found that nail reinforcement recovers the stiffness slightly. In contrast, reinforcing the butt joint through steel side plate improved the flexural performance significantly when compared to the nail reinforcement.Keywords: nail laminated timber, butt joint, bending stiffness, reinforcement
Procedia PDF Downloads 18310143 Efficient Subgoal Discovery for Hierarchical Reinforcement Learning Using Local Computations
Authors: Adrian Millea
Abstract:
In hierarchical reinforcement learning, one of the main issues encountered is the discovery of subgoal states or options (which are policies reaching subgoal states) by partitioning the environment in a meaningful way. This partitioning usually requires an expensive global clustering operation or eigendecomposition of the Laplacian of the states graph. We propose a local solution to this issue, much more efficient than algorithms using global information, which successfully discovers subgoal states by computing a simple function, which we call heterogeneity for each state as a function of its neighbors. Moreover, we construct a value function using the difference in heterogeneity from one step to the next, as reward, such that we are able to explore the state space much more efficiently than say epsilon-greedy. The same principle can then be applied to higher level of the hierarchy, where now states are subgoals discovered at the level below.Keywords: exploration, hierarchical reinforcement learning, locality, options, value functions
Procedia PDF Downloads 17010142 Structural Performance of Concrete Beams Reinforced with Steel Plates: Experimental Study
Authors: Mazin Mohammed S. Sarhan
Abstract:
This study presents the performance of concrete beams reinforced with steel plates as a technique of reinforcement. Three reinforced concrete beams with the dimensions of 200 mm x 300 mm x 4000 mm (width x height x length, respectively) were experimentally investigated under flexural loading. The deformed steel bars were used as the main reinforcement for the first beam. A steel plate placed horizontally was used as the main reinforcement for the second beam. The bond between the steel plate and the surrounding concrete was enhanced by using steel bolts (with a diameter of 20 mm and length of 100 mm) welded to the steel plate at a regular distance of 200 mm. A pair of steel plates placed vertically was used as the main reinforcement for the third beam. The bond between the pair steel plates and the surrounding concrete was enhanced by using 4 equal steel angles (with the dimensions of 75 mm x 75 mm and the thickness of 8 mm) for each vertical steel plate. Two steel angles were welded at each end of the steel plate. The outcomes revealed that the bending stiffness of the beams reinforced with steel plates was higher than that reinforced with deformed steel bars. Also, the flexural ductile behavior of the second beam was much higher than the rest beams.Keywords: concrete beam, deflection, ductility, plate
Procedia PDF Downloads 15910141 Deflection Behaviour of Retaining Wall with Pile for Pipeline on Slope of Soft Soil
Authors: Mutadi
Abstract:
Pipes laying on an unstable slope of soft soil are prone to movement. Pipelines that are buried in unstable slope areas will move due to lateral loads from soil movement, which can cause damage to the pipeline. A small-scale laboratory model of the reinforcement system of piles supported by retaining walls was conducted to investigate the effect of lateral load on the reinforcement. In this experiment, the lateral forces of 0.3 kN, 0.35 kN, and 0.4 kN and vertical force of 0.05 kN, 0.1 kN, and 0.15 kN were used. Lateral load from the electric jack is equipped with load cell and vertical load using the cement-steel box. To validate the experimental result, a finite element program named 2-D Plaxis was used. The experimental results showed that with an increase in lateral loading, the displacement of the reinforcement system increased. For a Vertical Load, 0.1 kN and versus a lateral load of 0.3 kN causes a horizontal displacement of 0.35 mm and an increase of 2.94% for loading of 0.35 kN and an increase of 8.82% for loading 0.4 kN. The pattern is the same in the finite element method analysis, where there was a 6.52% increase for 0.35 kN loading and an increase to 23.91 % for 0.4 kN loading. In the same Load, the Reinforcement System is reliable, as shown in Safety Factor on dry conditions were 3.3, 2.824 and 2.474, and on wet conditions were 2.98, 2.522 and 2.235.Keywords: soft soil, deflection, wall, pipeline
Procedia PDF Downloads 16210140 Case Study: Hybrid Mechanically Stabilized Earth Wall System Built on Basal Reinforced Raft
Authors: S. Kaymakçı, D. Gündoğdu, H. Özçelik
Abstract:
The truck park of a warehouse for a chain of supermarket was going to be constructed on a poor ground. Rather than using a piled foundation, the client was convinced that a ground improvement using a reinforced foundation raft also known as “basal reinforcement” shall work. The retaining structures supporting the truck park area were designed using a hybrid structure made up of the Terramesh® Wall System and MacGrid™ high strength geogrids. The total wall surface area is nearly 2740 sq.m , reaching a maximum height of 13.00 meters. The area is located in the first degree seismic zone of Turkey and the design seismic acceleration is high. The design of walls has been carried out using pseudo-static method (limit equilibrium) taking into consideration different loading conditions using Eurocode 7. For each standard approach stability analysis in seismic condition were performed. The paper presents the detailed design of the reinforced soil structure, basal reinforcement and the construction methods; advantages of using such system for the project are discussed.Keywords: basal reinforcement, geogrid, reinforced soil raft, reinforced soil wall, soil reinforcement
Procedia PDF Downloads 30010139 Cyber Violence Behaviors Among Social Media Users in Ghana: An Application of Self-Control Theory and Social Learning Theory
Authors: Aisha Iddrisu
Abstract:
The proliferation of cyberviolence in the wave of increased social media consumption calls for immediate attention both at the local and global levels. With over 4.70 billion social media users worldwide and 8.8 social media users in Ghana, various forms of violence have become the order of the day in most countries and communities. Cyber violence is defined as producing, retrieving, and sharing of hurtful or dangerous online content to cause emotional, psychological, or physical harm. The urgency and severity of cyber violence have led to the enactment of laws in various countries though lots still need to be done, especially in Ghana. In Ghana, studies on cyber violence have not been extensively dealt with. Existing studies concentrate only on one form or the other form of cyber violence, thus cybercrime and cyber bullying. Also, most studies in Africa have not explored cyber violence forms using empirical theories and the few that existed were qualitatively researched, whereas others examine the effect of cyber violence rather than examining why those who involve in it behave the way they behave. It is against this backdrop that this study aims to examine various cyber violence behaviour among social media users in Ghana by applying the theory of Self-control and Social control theory. This study is important for the following reasons. The outcome of this research will help at both national and international level of policymaking by adding to the knowledge of understanding cyberviolence and why people engage in various forms of cyberviolence. It will also help expose other ways by which such behaviours are enforced thereby serving as a guide in the enactment of the rightful rules and laws to curb such behaviours. It will add to literature on consequences of new media. This study seeks to confirm or reject to the following research hypotheses. H1 Social media usage has direct significant effect of cyberviolence behaviours. H2 Ineffective parental management has direct significant positive relation to Low self-control. H3 Low self-control has direct significant positive effect on cyber violence behaviours among social, H4 Differential association has significant positive effect on cyberviolence behaviour among social media users in Ghana. H5 Definitions have a significant positive effect on cyberviolence behaviour among social media users in Ghana. H6 Imitation has a significant positive effect on cyberviolence behaviour among social media users in Ghana. H7 Differential reinforcement has a significant positive effect on cyberviolence behaviour among social media users in Ghana. H8 Differential association has a significant positive effect on definitions. H9 Differential association has a significant positive effect on imitation. H10 Differential association has a significant positive effect on differential reinforcement. H11 Differential association has significant indirect positive effects on cyberviolence through the learning process.Keywords: cyberviolence, social media users, self-control theory, social learning theory
Procedia PDF Downloads 8310138 Umbrella Reinforcement Learning – A Tool for Hard Problems
Authors: Egor E. Nuzhin, Nikolay V. Brilliantov
Abstract:
We propose an approach for addressing Reinforcement Learning (RL) problems. It combines the ideas of umbrella sampling, borrowed from Monte Carlo technique of computational physics and chemistry, with optimal control methods, and is realized on the base of neural networks. This results in a powerful algorithm, designed to solve hard RL problems – the problems, with long-time delayed reward, state-traps sticking and a lack of terminal states. It outperforms the prominent algorithms, such as PPO, RND, iLQR and VI, which are among the most efficient for the hard problems. The new algorithm deals with a continuous ensemble of agents and expected return, that includes the ensemble entropy. This results in a quick and efficient search of the optimal policy in terms of ”exploration-exploitation trade-off” in the state-action space.Keywords: umbrella sampling, reinforcement learning, policy gradient, dynamic programming
Procedia PDF Downloads 1910137 Development of Plantar Insoles Reinforcement Using Biocomposites
Authors: A. C. Vidal, D. R. Mulinari, C. F. Bandeira, S. R. Montoro
Abstract:
Due to the great effort suffered by foot during movement, is of great importance to count on a shoe that has a proper structure and excellent support tread to prevent the immediate and long-term consequences in all parts of the body. In this sense, new reinforcements of insoles with high impact absorption were developed in this work, from a polyurethane (PU) biocomposite derived from castor oil reinforced or not with palm fibers. These insoles have been obtained from the mixture with polyol prepolymer (diisocyanate) and subsequently were evaluated morphologically, mechanically and by thermal analysis. The results revealed that the biocomposites showed lower flexural strength, higher impact strength and open interconnected pores in their microstructure, but with smaller cells and degradation temperature slightly higher compared to the marketed material, showing interesting properties for a possible application as reinforcement of insoles.Keywords: composite, polyurethane insole, palm fibers, plantar insoles reinforcement
Procedia PDF Downloads 41610136 Kinetic Study of Thermal Degradation of a Lignin Nanoparticle-Reinforced Phenolic Foam
Authors: Juan C. Domínguez, Belén Del Saz-Orozco, María V. Alonso, Mercedes Oliet, Francisco Rodríguez
Abstract:
In the present study, the kinetics of thermal degradation of a phenolic and lignin reinforced phenolic foams, and the lignin used as reinforcement were studied and the activation energies of their degradation processes were obtained by a DAEM model. The average values for five heating rates of the mean activation energies obtained were: 99.1, 128.2, and 144.0 kJ.mol-1 for the phenolic foam, 109.5, 113.3, and 153.0 kJ.mol-1 for the lignin reinforcement, and 82.1, 106.9, and 124.4 kJ. mol-1 for the lignin reinforced phenolic foam. The standard deviation ranges calculated for each sample were 1.27-8.85, 2.22-12.82, and 3.17-8.11 kJ.mol-1 for the phenolic foam, lignin and the reinforced foam, respectively. The DAEM model showed low mean square errors (< 1x10-5), proving that is a suitable model to study the kinetics of thermal degradation of the foams and the reinforcement.Keywords: kinetics, lignin, phenolic foam, thermal degradation
Procedia PDF Downloads 48510135 Comparing the Behaviour of the FRP and Steel Reinforced Shear Walls under Cyclic Seismic Loading in Aspect of the Energy Dissipation
Authors: H. Rahman, T. Donchev, D. Petkova
Abstract:
Earthquakes claim thousands of lives around the world annually due to inadequate design of lateral load resisting systems particularly shear walls. Additionally, corrosion of the steel reinforcement in concrete structures is one of the main challenges in construction industry. Fibre Reinforced Polymer (FRP) reinforcement can be used as an alternative to traditional steel reinforcement. FRP has several excellent mechanical properties than steel such as high resistance to corrosion, high tensile strength and light self-weight; additionally, it has electromagnetic neutrality advantageous to the structures where it is important such as hospitals, some laboratories and telecommunications. This paper is about results of experimental research and it is incorporating experimental testing of two medium-scale concrete shear wall samples; one reinforced with Basalt FRP (BFRP) bar and one reinforced with steel bars as a control sample. The samples are tested under quasi-static-cyclic loading following modified ATC-24 protocol standard seismic loading. The results of both samples are compared to allow a judgement about performance of BFRP reinforced against steel reinforced concrete shear walls. The results of the conducted researches show a promising momentum toward utilisation of the BFRP as an alternative to traditional steel reinforcement with the aim of improving durability with suitable energy dissipation in the reinforced concrete shear walls.Keywords: shear walls, internal fibre reinforced polymer reinforcement, cyclic loading, energy dissipation, seismic behaviour
Procedia PDF Downloads 12610134 A Study on the Reinforced Earth Walls Using Sandwich Backfills under Seismic Loads
Authors: Kavitha A.S., L.Govindaraju
Abstract:
Reinforced earth walls offer excellent solution to many problems associated with earth retaining structures especially under seismic conditions. Use of cohesive soils as backfill material reduces the cost of reinforced soil walls if proper drainage measures are taken. This paper presents a numerical study on the application of a new technique called sandwich technique in reinforced earth walls. In this technique, a thin layer of granular soil is placed above and below the reinforcement layer to initiate interface friction and the remaining portion of the backfill is filled up using the existing insitu cohesive soil. A 6 m high reinforced earth wall has been analysed as a two-dimensional plane strain finite element model. Three types of reinforcing elements such as geotextile, geogrid and metallic strips were used. The horizontal wall displacements and the tensile loads in the reinforcement were used as the criteria to evaluate the results at the end of construction and dynamic excitation phases. Also to verify the effectiveness of sandwich layer on the performance of the wall, the thickness of sand fill surrounding the reinforcement was varied. At the end of construction stage it is found that the wall with sandwich type backfill yielded lower displacements when compared to the wall with cohesive soil as backfill. Also with sandwich backfill, the reinforcement loads reduced substantially when compared to the wall with cohesive soil as backfill. Further, it is found that sandwich technique as backfill and geogrid as reinforcement is a good combination to reduce the deformations of geosynthetic reinforced walls during seismic loading.Keywords: geogrid, geotextile, reinforced earth, sandwich technique
Procedia PDF Downloads 28510133 Performance Evaluation of Cement Mortar with Crushed Stone Dust as Fine Aggregates
Authors: Pradeep Kumar
Abstract:
The present work is based on application of cement mortar with natural sand and discontinuous steel fiber through which bending behavior of skinny beam was evaluated. This research is to study the effects of combining reinforcing steel meshes (continuous steel reinforcement) with discontinuous fibers as reinforcement in skinny walled Portland cement based cement mortar with crushed stone dust as a fine aggregate. The term ‘skinny’ means thickness of the beams is less than 25 mm. The main idea behind this combination is to satisfy the ultimate strength limit state through the steel mesh reinforcement (as a main reinforcement) and to control the cracking under service loads through fiber (Recron 3s) reinforcement (as secondary reinforcement). The main object of this study is to carry out the bending behavior of mortar reinforced thin beam with only one layer of steel mesh (with various transfer wire spacing) and with a recron 3s (Reliance) fifers. The wide experimental program with bending tests is undertaken. The following variables are investigated: (a) the reference mesh size - 25.4 x 25.4 mm and 50.8 x 50.8 mm; (b) the transverse wire spacing - 25.4 mm, 50.8 mm, and no transverse wires; (c) the type of fibers – Reliance (Recron 3s, 6mm length); and (d) the fiber volume fraction – 0.1% and 0.25%. Some of the main conclusions are: (a) the use of recron 3s fibers leads to a little better overall performance than that with no fiber; (b) an increase in equivalent stress is observed when 0.1% RF,0.25% R Fibers are used; (c) when 25.4 x 50.8 size steel mesh is used, no noticeable change in behavior is observed in comparison to specimens without fibers; and (d) for no fibers 0.1% and o.1% RF the transverse wire spacing has some little effect on the equivalent stress for RF fibers, the transverse wire has no influence but the equivalent stress are increased.Keywords: cement mortar, crushed stone dust, fibre, steel mesh
Procedia PDF Downloads 31210132 Machine Learning Approach for Mutation Testing
Authors: Michael Stewart
Abstract:
Mutation testing is a type of software testing proposed in the 1970s where program statements are deliberately changed to introduce simple errors so that test cases can be validated to determine if they can detect the errors. Test cases are executed against the mutant code to determine if one fails, detects the error and ensures the program is correct. One major issue with this type of testing was it became intensive computationally to generate and test all possible mutations for complex programs. This paper used reinforcement learning and parallel processing within the context of mutation testing for the selection of mutation operators and test cases that reduced the computational cost of testing and improved test suite effectiveness. Experiments were conducted using sample programs to determine how well the reinforcement learning-based algorithm performed with one live mutation, multiple live mutations and no live mutations. The experiments, measured by mutation score, were used to update the algorithm and improved accuracy for predictions. The performance was then evaluated on multiple processor computers. With reinforcement learning, the mutation operators utilized were reduced by 50 – 100%.Keywords: automated-testing, machine learning, mutation testing, parallel processing, reinforcement learning, software engineering, software testing
Procedia PDF Downloads 19710131 Experimental Study on Weak Cohesion Less Soil Using Granular Piles with Geogrid Reinforcement
Authors: Sateesh Kumar Pisini, Swetha Priya Pisini
Abstract:
Granular piles are becoming popular as a technique of deep ground improvement not only in soft cohesive soils but also in loose cohesionless deposits. The present experimental study has been carried out on granular piles in sand (loose sand and medium dense sand i.e. relative density at 15% and 30%) with geogrid reinforcement. In this experimental study, a group of five piles installed in sand (at different spacing i.e s = 2d, 3d and 4d) the length and diameter of the pile (L = 0.4 m and d= 50 mm) kept as same for all series of experiments. Geogrid reinforcement is provided on granular piles with a limited number of laboratory tests. It has been conducted in laboratory to study the behavior of a granular pile with reinforced geogrid layers supporting a square footing at different s/d ratios. The influence of geogrid layers providing on granular piles investigated through model tests. In this paper the experimental study carried out results in significant increase in load carrying capacity and decrease in settlement reduction of the weak cohesionless soil. Also, the behavior of load carrying capacity and settlement with changing the s/d ratio has been carried out through a parametric study.Keywords: granular piles, cohesionless soil, geogrid reinforcement, load carrying capacity
Procedia PDF Downloads 25810130 A Deep Reinforcement Learning-Based Secure Framework against Adversarial Attacks in Power System
Authors: Arshia Aflaki, Hadis Karimipour, Anik Islam
Abstract:
Generative Adversarial Attacks (GAAs) threaten critical sectors, ranging from fingerprint recognition to industrial control systems. Existing Deep Learning (DL) algorithms are not robust enough against this kind of cyber-attack. As one of the most critical industries in the world, the power grid is not an exception. In this study, a Deep Reinforcement Learning-based (DRL) framework assisting the DL model to improve the robustness of the model against generative adversarial attacks is proposed. Real-world smart grid stability data, as an IIoT dataset, test our method and improves the classification accuracy of a deep learning model from around 57 percent to 96 percent.Keywords: generative adversarial attack, deep reinforcement learning, deep learning, IIoT, generative adversarial networks, power system
Procedia PDF Downloads 3510129 Reinforcement Learning for Classification of Low-Resolution Satellite Images
Authors: Khadija Bouzaachane, El Mahdi El Guarmah
Abstract:
The classification of low-resolution satellite images has been a worthwhile and fertile field that attracts plenty of researchers due to its importance in monitoring geographical areas. It could be used for several purposes such as disaster management, military surveillance, agricultural monitoring. The main objective of this work is to classify efficiently and accurately low-resolution satellite images by using novel technics of deep learning and reinforcement learning. The images include roads, residential areas, industrial areas, rivers, sea lakes, and vegetation. To achieve that goal, we carried out experiments on the sentinel-2 images considering both high accuracy and efficiency classification. Our proposed model achieved a 91% accuracy on the testing dataset besides a good classification for land cover. Focus on the parameter precision; we have obtained 93% for the river, 92% for residential, 97% for residential, 96% for the forest, 87% for annual crop, 84% for herbaceous vegetation, 85% for pasture, 78% highway and 100% for Sea Lake.Keywords: classification, deep learning, reinforcement learning, satellite imagery
Procedia PDF Downloads 21110128 Numerical Simulation of Punching Shear of Flat Plates with Low Reinforcement
Authors: Fatema-Tuz-Zahura, Raquib Ahsan
Abstract:
Punching shear failure is usually the governing failure mode of flat plate structures. Punching failure is brittle in nature which induces more vulnerability to this type of structure. In the present study, a 3D finite element model of a flat plate with low reinforcement ratio and without any transverse reinforcement has been developed. Punching shear stress and the deflection data were obtained on the surface of the flat plate as well as through the thickness of the model from numerical simulations. The obtained data were compared with the experimental results. Variation of punching stress with respect to deflection as obtained from numerical results is found to be in good agreement with the experimental results; the range of variation of punching stress is within 5%. The numerical simulation shows an early and gradual onset of nonlinearity, whereas the same is late and abrupt as observed in the experimental results. The range of variation of punching stress for different slab thicknesses between experimental and numerical results is less than 15%. The developed numerical model is useful to complement available punching test series performed in the past. The results obtained from the numerical model will be helpful for designing retrofitting schemes of flat plates.Keywords: flat plate, finite element model, punching shear, reinforcement ratio
Procedia PDF Downloads 255