Search results for: operation estimation
4641 Comparative Analysis of Two Approaches to Joint Signal Detection, ToA and AoA Estimation in Multi-Element Antenna Arrays
Authors: Olesya Bolkhovskaya, Alexey Davydov, Alexander Maltsev
Abstract:
In this paper two approaches to joint signal detection, time of arrival (ToA) and angle of arrival (AoA) estimation in multi-element antenna array are investigated. Two scenarios were considered: first one, when the waveform of the useful signal is known a priori and, second one, when the waveform of the desired signal is unknown. For first scenario, the antenna array signal processing based on multi-element matched filtering (MF) with the following non-coherent detection scheme and maximum likelihood (ML) parameter estimation blocks is exploited. For second scenario, the signal processing based on the antenna array elements covariance matrix estimation with the following eigenvector analysis and ML parameter estimation blocks is applied. The performance characteristics of both signal processing schemes are thoroughly investigated and compared for different useful signals and noise parameters.Keywords: antenna array, signal detection, ToA, AoA estimation
Procedia PDF Downloads 4964640 A New IFO Estimation Scheme for Orthogonal Frequency Division Multiplexing Systems
Authors: Keunhong Chae, Seokho Yoon
Abstract:
We address a new integer frequency offset (IFO) estimation scheme with an aid of a pilot for orthogonal frequency division multiplexing systems. After correlating each continual pilot with a predetermined scattered pilot, the correlation value is again correlated to alleviate the influence of the timing offset. From numerical results, it is demonstrated that the influence of the timing offset on the IFO estimation is significantly decreased.Keywords: estimation, integer frequency offset, OFDM, timing offset
Procedia PDF Downloads 5684639 An Approach to Noise Variance Estimation in Very Low Signal-to-Noise Ratio Stochastic Signals
Authors: Miljan B. Petrović, Dušan B. Petrović, Goran S. Nikolić
Abstract:
This paper describes a method for AWGN (Additive White Gaussian Noise) variance estimation in noisy stochastic signals, referred to as Multiplicative-Noising Variance Estimation (MNVE). The aim was to develop an estimation algorithm with minimal number of assumptions on the original signal structure. The provided MATLAB simulation and results analysis of the method applied on speech signals showed more accuracy than standardized AR (autoregressive) modeling noise estimation technique. In addition, great performance was observed on very low signal-to-noise ratios, which in general represents the worst case scenario for signal denoising methods. High execution time appears to be the only disadvantage of MNVE. After close examination of all the observed features of the proposed algorithm, it was concluded it is worth of exploring and that with some further adjustments and improvements can be enviably powerful.Keywords: noise, signal-to-noise ratio, stochastic signals, variance estimation
Procedia PDF Downloads 3864638 The Cost and Benefit on the Investment in Safety and Health of the Enterprises in Thailand
Authors: Charawee Butbumrung
Abstract:
The purpose of this study is to evaluate the monetary worthiness of investment and the usefulness of risk estimation as a tool employed by a production section of an electronic factory. This study employed the case study of accidents occurring in production areas. Data is collected from interviews with six production of safety coordinators and collect the information from the relevant section. The study will present the ratio of benefits compared with the operation costs for investment. The result showed that it is worthwhile for investment with the safety measures. In addition, the organizations must be able to analyze the causes of accidents about the benefits of investing in protective working process. They also need to quickly provide the manual for the staff to learn how to protect themselves from accidents and how to use all of the safety equipment.Keywords: cost and benefit, enterprises in Thailand, investment in safety and health, risk estimation
Procedia PDF Downloads 2654637 Towards an Intelligent Ontology Construction Cost Estimation System: Using BIM and New Rules of Measurement Techniques
Authors: F. H. Abanda, B. Kamsu-Foguem, J. H. M. Tah
Abstract:
Construction cost estimation is one of the most important aspects of construction project design. For generations, the process of cost estimating has been manual, time-consuming and error-prone. This has partly led to most cost estimates to be unclear and riddled with inaccuracies that at times lead to over- or under-estimation of construction cost. The development of standard set of measurement rules that are understandable by all those involved in a construction project, have not totally solved the challenges. Emerging Building Information Modelling (BIM) technologies can exploit standard measurement methods to automate cost estimation process and improves accuracies. This requires standard measurement methods to be structured in ontologically and machine readable format; so that BIM software packages can easily read them. Most standard measurement methods are still text-based in textbooks and require manual editing into tables or Spreadsheet during cost estimation. The aim of this study is to explore the development of an ontology based on New Rules of Measurement (NRM) commonly used in the UK for cost estimation. The methodology adopted is Methontology, one of the most widely used ontology engineering methodologies. The challenges in this exploratory study are also reported and recommendations for future studies proposed.Keywords: BIM, construction projects, cost estimation, NRM, ontology
Procedia PDF Downloads 5514636 Hybrid Subspace Approach for Time Delay Estimation in MIMO Systems
Authors: Mojtaba Saeedinezhad, Sarah Yousefi
Abstract:
In this paper, we present a hybrid subspace approach for Time Delay Estimation (TDE) in multivariable systems. While several methods have been proposed for time delay estimation in SISO systems, delay estimation in MIMO systems were always a big challenge. In these systems the existing TDE methods have significant limitations because most of procedures are just based on system response estimation or correlation analysis. We introduce a new hybrid method for TDE in MIMO systems based on subspace identification and explicit output error method; and compare its performance with previously introduced procedures in presence of different noise levels and in a statistical manner. Then the best method is selected with multi objective decision making technique. It is shown that the performance of new approach is much better than the existing methods, even in low signal-to-noise conditions.Keywords: system identification, time delay estimation, ARX, OE, merit ratio, multi variable decision making
Procedia PDF Downloads 3464635 Online Battery Equivalent Circuit Model Estimation on Continuous-Time Domain Using Linear Integral Filter Method
Authors: Cheng Zhang, James Marco, Walid Allafi, Truong Q. Dinh, W. D. Widanage
Abstract:
Equivalent circuit models (ECMs) are widely used in battery management systems in electric vehicles and other battery energy storage systems. The battery dynamics and the model parameters vary under different working conditions, such as different temperature and state of charge (SOC) levels, and therefore online parameter identification can improve the modelling accuracy. This paper presents a way of online ECM parameter identification using a continuous time (CT) estimation method. The CT estimation method has several advantages over discrete time (DT) estimation methods for ECM parameter identification due to the widely separated battery dynamic modes and fast sampling. The presented method can be used for online SOC estimation. Test data are collected using a lithium ion cell, and the experimental results show that the presented CT method achieves better modelling accuracy compared with the conventional DT recursive least square method. The effectiveness of the presented method for online SOC estimation is also verified on test data.Keywords: electric circuit model, continuous time domain estimation, linear integral filter method, parameter and SOC estimation, recursive least square
Procedia PDF Downloads 3834634 Electrical Load Estimation Using Estimated Fuzzy Linear Parameters
Authors: Bader Alkandari, Jamal Y. Madouh, Ahmad M. Alkandari, Anwar A. Alnaqi
Abstract:
A new formulation of fuzzy linear estimation problem is presented. It is formulated as a linear programming problem. The objective is to minimize the spread of the data points, taking into consideration the type of the membership function of the fuzzy parameters to satisfy the constraints on each measurement point and to insure that the original membership is included in the estimated membership. Different models are developed for a fuzzy triangular membership. The proposed models are applied to different examples from the area of fuzzy linear regression and finally to different examples for estimating the electrical load on a busbar. It had been found that the proposed technique is more suited for electrical load estimation, since the nature of the load is characterized by the uncertainty and vagueness.Keywords: fuzzy regression, load estimation, fuzzy linear parameters, electrical load estimation
Procedia PDF Downloads 5404633 The Sequential Estimation of the Seismoacoustic Source Energy in C-OTDR Monitoring Systems
Authors: Andrey V. Timofeev, Dmitry V. Egorov
Abstract:
The practical efficient approach is suggested for estimation of the seismoacoustic sources energy in C-OTDR monitoring systems. This approach represents the sequential plan for confidence estimation both the seismoacoustic sources energy, as well the absorption coefficient of the soil. The sequential plan delivers the non-asymptotic guaranteed accuracy of obtained estimates in the form of non-asymptotic confidence regions with prescribed sizes. These confidence regions are valid for a finite sample size when the distributions of the observations are unknown. Thus, suggested estimates are non-asymptotic and nonparametric, and also these estimates guarantee the prescribed estimation accuracy in the form of the prior prescribed size of confidence regions, and prescribed confidence coefficient value.Keywords: nonparametric estimation, sequential confidence estimation, multichannel monitoring systems, C-OTDR-system, non-lineary regression
Procedia PDF Downloads 3564632 Regression Model Evaluation on Depth Camera Data for Gaze Estimation
Authors: James Purnama, Riri Fitri Sari
Abstract:
We investigate the machine learning algorithm selection problem in the term of a depth image based eye gaze estimation, with respect to its essential difficulty in reducing the number of required training samples and duration time of training. Statistics based prediction accuracy are increasingly used to assess and evaluate prediction or estimation in gaze estimation. This article evaluates Root Mean Squared Error (RMSE) and R-Squared statistical analysis to assess machine learning methods on depth camera data for gaze estimation. There are 4 machines learning methods have been evaluated: Random Forest Regression, Regression Tree, Support Vector Machine (SVM), and Linear Regression. The experiment results show that the Random Forest Regression has the lowest RMSE and the highest R-Squared, which means that it is the best among other methods.Keywords: gaze estimation, gaze tracking, eye tracking, kinect, regression model, orange python
Procedia PDF Downloads 5384631 Age Estimation Using Destructive and Non-Destructive Dental Methods on an Archeological Human Sample from the Poor Claire Nunnery in Brussels, Belgium
Authors: Pilar Cornejo Ulloa, Guy Willems, Steffen Fieuws, Kim Quintelier, Wim Van Neer, Patrick Thevissen
Abstract:
Dental age estimation can be performed both in living and deceased individuals. In anthropology, few studies have tested the reliability of dental age estimation methods complementary to the usually applied osteological methods. Objectives: In this study, destructive and non-destructive dental age estimation methods were applied on an archeological sample in order to compare them with the previously obtained anthropological age estimates. Materials and Methods: One hundred and thirty-four teeth from 24 individuals were analyzed using Kvaal, Kvaal and Solheim, Bang and Ramm, Lamendin, Gustafson, Maples, Dalitz and Johanson’s methods. Results: A high variability and wider age ranges than the ones previously obtained by the anthropologist could be observed. Destructive methods had a slightly higher agreement than the non-destructive. Discussion: Due to the heterogeneity of the sample and the lack of the real age at death, the obtained results were not representative, and it was not possible to suggest one dental age estimation method over another.Keywords: archeology, dental age estimation, forensic anthropology, forensic dentistry
Procedia PDF Downloads 3604630 State Estimation Method Based on Unscented Kalman Filter for Vehicle Nonlinear Dynamics
Authors: Wataru Nakamura, Tomoaki Hashimoto, Liang-Kuang Chen
Abstract:
This paper provides a state estimation method for automatic control systems of nonlinear vehicle dynamics. A nonlinear tire model is employed to represent the realistic behavior of a vehicle. In general, all the state variables of control systems are not precisedly known, because those variables are observed through output sensors and limited parts of them might be only measurable. Hence, automatic control systems must incorporate some type of state estimation. It is needed to establish a state estimation method for nonlinear vehicle dynamics with restricted measurable state variables. For this purpose, unscented Kalman filter method is applied in this study for estimating the state variables of nonlinear vehicle dynamics. The objective of this paper is to propose a state estimation method using unscented Kalman filter for nonlinear vehicle dynamics. The effectiveness of the proposed method is verified by numerical simulations.Keywords: state estimation, control systems, observer systems, nonlinear systems
Procedia PDF Downloads 1354629 Channel Estimation for LTE Downlink
Authors: Rashi Jain
Abstract:
The LTE systems employ Orthogonal Frequency Division Multiplexing (OFDM) as the multiple access technology for the Downlink channels. For enhanced performance, accurate channel estimation is required. Various algorithms such as Least Squares (LS), Minimum Mean Square Error (MMSE) and Recursive Least Squares (RLS) can be employed for the purpose. The paper proposes channel estimation algorithm based on Kalman Filter for LTE-Downlink system. Using the frequency domain pilots, the initial channel response is obtained using the LS criterion. Then Kalman Filter is employed to track the channel variations in time-domain. To suppress the noise within a symbol, threshold processing is employed. The paper draws comparison between the LS, MMSE, RLS and Kalman filter for channel estimation. The parameters for evaluation are Bit Error Rate (BER), Mean Square Error (MSE) and run-time.Keywords: LTE, channel estimation, OFDM, RLS, Kalman filter, threshold
Procedia PDF Downloads 3564628 Building Information Modeling-Based Approach for Automatic Quantity Take-off and Cost Estimation
Authors: Lo Kar Yin, Law Ka Mei
Abstract:
Architectural, engineering, construction and operations (AECO) industry practitioners have been well adapting to the dynamic construction market from the fundamental training of its discipline. As further triggered by the pandemic since 2019, great steps are taken in virtual environment and the best collaboration is strived with project teams without boundaries. With adoption of Building Information Modeling-based approach and qualitative analysis, this paper is to review quantity take-off and cost estimation process through modeling techniques in liaison with suppliers, fabricators, subcontractors, contractors, designers, consultants and services providers in the construction industry value chain for automatic project cost budgeting, project cost control and cost evaluation on design options of in-situ reinforced-concrete construction and Modular Integrated Construction (MiC) at design stage, variation of works and cash flow/spending analysis at construction stage as far as practicable, with a view to sharing the findings for enhancing mutual trust and co-operation among AECO industry practitioners. It is to foster development through a common prototype of design and build project delivery method in NEC Engineering and Construction Contract (ECC) Options A and C.Keywords: building information modeling, cost estimation, quantity take-off, modeling techniques
Procedia PDF Downloads 1884627 Single Carrier Frequency Domain Equalization Design to Cope with Narrow Band Jammer
Authors: So-Young Ju, Sung-Mi Jo, Eui-Rim Jeong
Abstract:
In this paper, based on the conventional single carrier frequency domain equalization (SC-FDE) structure, we propose a new SC-FDE structure to cope with narrowband jammer. In the conventional SC-FDE structure, channel estimation is performed in the time domain. When a narrowband jammer exists, time-domain channel estimation is very difficult due to high power jamming interference, which degrades receiver performance. To relieve from this problem, a new SC-FDE frame is proposed to enable channel estimation under narrow band jamming environments. In this paper, we proposed a modified SC-FDE structure that can perform channel estimation in the frequency domain and verified the performance via computer simulation.Keywords: channel estimation, jammer, pilot, SC-FDE
Procedia PDF Downloads 4754626 Online Estimation of Clutch Drag Torque in Wet Dual Clutch Transmission Based on Recursive Least Squares
Authors: Hongkui Li, Tongli Lu , Jianwu Zhang
Abstract:
This paper focuses on developing an estimation method of clutch drag torque in wet DCT. The modelling of clutch drag torque is investigated. As the main factor affecting the clutch drag torque, dynamic viscosity of oil is discussed. The paper proposes an estimation method of clutch drag torque based on recursive least squares by utilizing the dynamic equations of gear shifting synchronization process. The results demonstrate that the estimation method has good accuracy and efficiency.Keywords: clutch drag torque, wet DCT, dynamic viscosity, recursive least squares
Procedia PDF Downloads 3184625 Comparative Study on Daily Discharge Estimation of Soolegan River
Authors: Redvan Ghasemlounia, Elham Ansari, Hikmet Kerem Cigizoglu
Abstract:
Hydrological modeling in arid and semi-arid regions is very important. Iran has many regions with these climate conditions such as Chaharmahal and Bakhtiari province that needs lots of attention with an appropriate management. Forecasting of hydrological parameters and estimation of hydrological events of catchments, provide important information that used for design, management and operation of water resources such as river systems, and dams, widely. Discharge in rivers is one of these parameters. This study presents the application and comparison of some estimation methods such as Feed-Forward Back Propagation Neural Network (FFBPNN), Multi Linear Regression (MLR), Gene Expression Programming (GEP) and Bayesian Network (BN) to predict the daily flow discharge of the Soolegan River, located at Chaharmahal and Bakhtiari province, in Iran. In this study, Soolegan, station was considered. This Station is located in Soolegan River at 51° 14՜ Latitude 31° 38՜ longitude at North Karoon basin. The Soolegan station is 2086 meters higher than sea level. The data used in this study are daily discharge and daily precipitation of Soolegan station. Feed Forward Back Propagation Neural Network(FFBPNN), Multi Linear Regression (MLR), Gene Expression Programming (GEP) and Bayesian Network (BN) models were developed using the same input parameters for Soolegan's daily discharge estimation. The results of estimation models were compared with observed discharge values to evaluate performance of the developed models. Results of all methods were compared and shown in tables and charts.Keywords: ANN, multi linear regression, Bayesian network, forecasting, discharge, gene expression programming
Procedia PDF Downloads 5614624 A Forbidden-Minor Characterization for the Class of Co-Graphic Matroids Which Yield the Graphic Element-Splitting Matroids
Authors: Prashant Malavadkar, Santosh Dhotre, Maruti Shikare
Abstract:
The n-point splitting operation on graphs is used to characterize 4-connected graphs with some more operations. Element splitting operation on binary matroids is a natural generalization of the notion of n-point splitting operation on graphs. The element splitting operation on a graphic (cographic) matroid may not yield a graphic (cographic) matroid. Characterization of graphic (cographic) matroids whose element splitting matroids are graphic (cographic) is known. The element splitting operation on a co-graphic matroid, in general may not yield a graphic matroid. In this paper, we give a necessary and sufficient condition for the cographic matroid to yield a graphic matroid under the element splitting operation. In fact, we prove that the element splitting operation, by any pair of elements, on a cographic matroid yields a graphic matroid if and only if it has no minor isomorphic to M(K4); where K4 is the complete graph on 4 vertices.Keywords: binary matroids, splitting, element splitting, forbidden minor
Procedia PDF Downloads 2764623 Optimization Modeling of the Hybrid Antenna Array for the DoA Estimation
Authors: Somayeh Komeylian
Abstract:
The direction of arrival (DoA) estimation is the crucial aspect of the radar technologies for detecting and dividing several signal sources. In this scenario, the antenna array output modeling involves numerous parameters including noise samples, signal waveform, signal directions, signal number, and signal to noise ratio (SNR), and thereby the methods of the DoA estimation rely heavily on the generalization characteristic for establishing a large number of the training data sets. Hence, we have analogously represented the two different optimization models of the DoA estimation; (1) the implementation of the decision directed acyclic graph (DDAG) for the multiclass least-squares support vector machine (LS-SVM), and (2) the optimization method of the deep neural network (DNN) radial basis function (RBF). We have rigorously verified that the LS-SVM DDAG algorithm is capable of accurately classifying DoAs for the three classes. However, the accuracy and robustness of the DoA estimation are still highly sensitive to technological imperfections of the antenna arrays such as non-ideal array design and manufacture, array implementation, mutual coupling effect, and background radiation and thereby the method may fail in representing high precision for the DoA estimation. Therefore, this work has a further contribution on developing the DNN-RBF model for the DoA estimation for overcoming the limitations of the non-parametric and data-driven methods in terms of array imperfection and generalization. The numerical results of implementing the DNN-RBF model have confirmed the better performance of the DoA estimation compared with the LS-SVM algorithm. Consequently, we have analogously evaluated the performance of utilizing the two aforementioned optimization methods for the DoA estimation using the concept of the mean squared error (MSE).Keywords: DoA estimation, Adaptive antenna array, Deep Neural Network, LS-SVM optimization model, Radial basis function, and MSE
Procedia PDF Downloads 1004622 Hardware Implementation of Local Binary Pattern Based Two-Bit Transform Motion Estimation
Authors: Seda Yavuz, Anıl Çelebi, Aysun Taşyapı Çelebi, Oğuzhan Urhan
Abstract:
Nowadays, demand for using real-time video transmission capable devices is ever-increasing. So, high resolution videos have made efficient video compression techniques an essential component for capturing and transmitting video data. Motion estimation has a critical role in encoding raw video. Hence, various motion estimation methods are introduced to efficiently compress the video. Low bit‑depth representation based motion estimation methods facilitate computation of matching criteria and thus, provide small hardware footprint. In this paper, a hardware implementation of a two-bit transformation based low-complexity motion estimation method using local binary pattern approach is proposed. Image frames are represented in two-bit depth instead of full-depth by making use of the local binary pattern as a binarization approach and the binarization part of the hardware architecture is explained in detail. Experimental results demonstrate the difference between the proposed hardware architecture and the architectures of well-known low-complexity motion estimation methods in terms of important aspects such as resource utilization, energy and power consumption.Keywords: binarization, hardware architecture, local binary pattern, motion estimation, two-bit transform
Procedia PDF Downloads 3114621 Monte Carlo Methods and Statistical Inference of Multitype Branching Processes
Authors: Ana Staneva, Vessela Stoimenova
Abstract:
A parametric estimation of the MBP with Power Series offspring distribution family is considered in this paper. The MLE for the parameters is obtained in the case when the observable data are incomplete and consist only with the generation sizes of the family tree of MBP. The parameter estimation is calculated by using the Monte Carlo EM algorithm. The estimation for the posterior distribution and for the offspring distribution parameters are calculated by using the Bayesian approach and the Gibbs sampler. The article proposes various examples with bivariate branching processes together with computational results, simulation and an implementation using R.Keywords: Bayesian, branching processes, EM algorithm, Gibbs sampler, Monte Carlo methods, statistical estimation
Procedia PDF Downloads 4214620 A Novel Search Pattern for Motion Estimation in High Efficiency Video Coding
Authors: Phong Nguyen, Phap Nguyen, Thang Nguyen
Abstract:
High Efficiency Video Coding (HEVC) or H.265 Standard fulfills the demand of high resolution video storage and transmission since it achieves high compression ratio. However, it requires a huge amount of calculation. Since Motion Estimation (ME) block composes about 80 % of calculation load of HEVC, there are a lot of researches to reduce the computation cost. In this paper, we propose a new algorithm to lower the number of Motion Estimation’s searching points. The number of computing points in search pattern is down from 77 for Diamond Pattern and 81 for Square Pattern to only 31. Meanwhile, the Peak Signal to Noise Ratio (PSNR) and bit rate are almost equal to those of conventional patterns. The motion estimation time of new algorithm reduces by at 68.23%, 65.83%compared to the recommended search pattern of diamond pattern, square pattern, respectively.Keywords: motion estimation, wide diamond, search pattern, H.265, test zone search, HM software
Procedia PDF Downloads 6114619 Using Derivative Free Method to Improve the Error Estimation of Numerical Quadrature
Authors: Chin-Yun Chen
Abstract:
Numerical integration is an essential tool for deriving different physical quantities in engineering and science. The effectiveness of a numerical integrator depends on different factors, where the crucial one is the error estimation. This work presents an error estimator that combines a derivative free method to improve the performance of verified numerical quadrature.Keywords: numerical quadrature, error estimation, derivative free method, interval computation
Procedia PDF Downloads 4634618 Estimation of Slab Depth, Column Size and Rebar Location of Concrete Specimen Using Impact Echo Method
Authors: Y. T. Lee, J. H. Na, S. H. Kim, S. U. Hong
Abstract:
In this study, an experimental research for estimation of slab depth, column size and location of rebar of concrete specimen is conducted using the Impact Echo Method (IE) based on stress wave among non-destructive test methods. Estimation of slab depth had total length of 1800×300 and 6 different depths including 150 mm, 180 mm, 210 mm, 240 mm, 270 mm and 300 mm. The concrete column specimen was manufactured by differentiating the size into 300×300×300 mm, 400×400×400 mm and 500×500×500 mm. In case of the specimen for estimation of rebar, rebar of ∅22 mm was used in a specimen of 300×370×200 and arranged at 130 mm and 150 mm from the top to the rebar top. As a result of error rate of slab depth was overall mean of 3.1%. Error rate of column size was overall mean of 1.7%. Mean error rate of rebar location was 1.72% for top, 1.19% for bottom and 1.5% for overall mean showing relative accuracy.Keywords: impact echo method, estimation, slab depth, column size, rebar location, concrete
Procedia PDF Downloads 3514617 Residual Life Estimation Based on Multi-Phase Nonlinear Wiener Process
Authors: Hao Chen, Bo Guo, Ping Jiang
Abstract:
Residual life (RL) estimation based on multi-phase nonlinear Wiener process was studied in this paper, which is significant for complicated products with small samples. Firstly, nonlinear Wiener model with random parameter was introduced and multi-phase nonlinear Wiener model was proposed to model degradation process of products that were nonlinear and separated into different phases. Then the multi-phase RL probability density function based on the presented model was derived approximately in a closed form and parameters estimation was achieved with the method of maximum likelihood estimation (MLE). Finally, the method was applied to estimate the RL of high voltage plus capacitor. Compared with the other three different models by log-likelihood function (Log-LF) and Akaike information criterion (AIC), the results show that the proposed degradation model can capture degradation process of high voltage plus capacitors in a better way and provide a more reliable result.Keywords: multi-phase nonlinear wiener process, residual life estimation, maximum likelihood estimation, high voltage plus capacitor
Procedia PDF Downloads 4534616 Forecasting the Volatility of Geophysical Time Series with Stochastic Volatility Models
Authors: Maria C. Mariani, Md Al Masum Bhuiyan, Osei K. Tweneboah, Hector G. Huizar
Abstract:
This work is devoted to the study of modeling geophysical time series. A stochastic technique with time-varying parameters is used to forecast the volatility of data arising in geophysics. In this study, the volatility is defined as a logarithmic first-order autoregressive process. We observe that the inclusion of log-volatility into the time-varying parameter estimation significantly improves forecasting which is facilitated via maximum likelihood estimation. This allows us to conclude that the estimation algorithm for the corresponding one-step-ahead suggested volatility (with ±2 standard prediction errors) is very feasible since it possesses good convergence properties.Keywords: Augmented Dickey Fuller Test, geophysical time series, maximum likelihood estimation, stochastic volatility model
Procedia PDF Downloads 3154615 Defects Estimation of Embedded Systems Components by a Bond Graph Approach
Authors: I. Gahlouz, A. Chellil
Abstract:
The paper concerns the estimation of system components faults by using an unknown inputs observer. To reach this goal, we used the Bond Graph approach to physical modelling. We showed that this graphical tool is allowing the representation of system components faults as unknown inputs within the state representation of the considered physical system. The study of the causal and structural features of the system (controllability, observability, finite structure, and infinite structure) based on the Bond Graph approach was hence fulfilled in order to design an unknown inputs observer which is used for the system component fault estimation.Keywords: estimation, bond graph, controllability, observability
Procedia PDF Downloads 4134614 Estimating Lost Digital Video Frames Using Unidirectional and Bidirectional Estimation Based on Autoregressive Time Model
Authors: Navid Daryasafar, Nima Farshidfar
Abstract:
In this article, we make attempt to hide error in video with an emphasis on the time-wise use of autoregressive (AR) models. To resolve this problem, we assume that all information in one or more video frames is lost. Then, lost frames are estimated using analogous Pixels time information in successive frames. Accordingly, after presenting autoregressive models and how they are applied to estimate lost frames, two general methods are presented for using these models. The first method which is the same standard method of autoregressive models estimates lost frame in unidirectional form. Usually, in such condition, previous frames information is used for estimating lost frame. Yet, in the second method, information from the previous and next frames is used for estimating the lost frame. As a result, this method is known as bidirectional estimation. Then, carrying out a series of tests, performance of each method is assessed in different modes. And, results are compared.Keywords: error steganography, unidirectional estimation, bidirectional estimation, AR linear estimation
Procedia PDF Downloads 5394613 Localization of Near Field Radio Controlled Unintended Emitting Sources
Authors: Nurbanu Guzey, S. Jagannathan
Abstract:
Locating radio controlled (RC) devices using their unintended emissions has a great interest considering security concerns. Weak nature of these emissions requires near field localization approach since it is hard to detect these signals in far field region of array. Instead of only angle estimation, near field localization also requires range estimation of the source which makes this method more complicated than far field models. Challenges of locating such devices in a near field region and real time environment are analyzed in this paper. An ESPRIT like near field localization scheme is utilized for both angle and range estimation. 1-D search with symmetric subarrays is provided. Two 7 element uniform linear antenna arrays (ULA) are employed for locating RC source. Experiment results of location estimation for one unintended emitting walkie-talkie for different positions are given.Keywords: localization, angle of arrival (AoA), range estimation, array signal processing, ESPRIT, Uniform Linear Array (ULA)
Procedia PDF Downloads 5264612 An Enhanced Floor Estimation Algorithm for Indoor Wireless Localization Systems Using Confidence Interval Approach
Authors: Kriangkrai Maneerat, Chutima Prommak
Abstract:
Indoor wireless localization systems have played an important role to enhance context-aware services. Determining the position of mobile objects in complex indoor environments, such as those in multi-floor buildings, is very challenging problems. This paper presents an effective floor estimation algorithm, which can accurately determine the floor where mobile objects located. The proposed algorithm is based on the confidence interval of the summation of online Received Signal Strength (RSS) obtained from the IEEE 802.15.4 Wireless Sensor Networks (WSN). We compare the performance of the proposed algorithm with those of other floor estimation algorithms in literature by conducting a real implementation of WSN in our facility. The experimental results and analysis showed that the proposed floor estimation algorithm outperformed the other algorithms and provided highest percentage of floor accuracy up to 100% with 95-percent confidence interval.Keywords: floor estimation algorithm, floor determination, multi-floor building, indoor wireless systems
Procedia PDF Downloads 418