Search results for: ethereum
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 34

Search results for: ethereum

4 Blockchain-Based Decentralized Architecture for Secure Medical Records Management

Authors: Saeed M. Alshahrani

Abstract:

This research integrated blockchain technology to reform medical records management in healthcare informatics. It was aimed at resolving the limitations of centralized systems by establishing a secure, decentralized, and user-centric platform. The system was architected with a sophisticated three-tiered structure, integrating advanced cryptographic methodologies, consensus algorithms, and the Fast Healthcare Interoperability Resources (HL7 FHIR) standard to ensure data security, transaction validity, and semantic interoperability. The research has profound implications for healthcare delivery, patient care, legal compliance, operational efficiency, and academic advancements in blockchain technology and healthcare IT sectors. The methodology adapted in this research comprises of Preliminary Feasibility Study, Literature Review, Design and Development, Cryptographic Algorithm Integration, Modeling the data and testing the system. The research employed a permissioned blockchain with a Practical Byzantine Fault Tolerance (PBFT) consensus algorithm and Ethereum-based smart contracts. It integrated advanced cryptographic algorithms, role-based access control, multi-factor authentication, and RESTful APIs to ensure security, regulate access, authenticate user identities, and facilitate seamless data exchange between the blockchain and legacy healthcare systems. The research contributed to the development of a secure, interoperable, and decentralized system for managing medical records, addressing the limitations of the centralized systems that were in place. Future work will delve into optimizing the system further, exploring additional blockchain use cases in healthcare, and expanding the adoption of the system globally, contributing to the evolution of global healthcare practices and policies.

Keywords: healthcare informatics, blockchain, medical records management, decentralized architecture, data security, cryptographic algorithms

Procedia PDF Downloads 54
3 A Framework Based Blockchain for the Development of a Social Economy Platform

Authors: Hasna Elalaoui Elabdallaoui, Abdelaziz Elfazziki, Mohamed Sadgal

Abstract:

Outlines: The social economy is a moral approach to solidarity applied to the projects’ development. To reconcile economic activity and social equity, crowdfunding is as an alternative means of financing social projects. Several collaborative blockchain platforms exist. It eliminates the need for a central authority or an inconsiderate middleman. Also, the costs for a successful crowdfunding campaign are reduced, since there is no commission to be paid to the intermediary. It improves the transparency of record keeping and delegates authority to authorities who may be prone to corruption. Objectives: The objectives are: to define a software infrastructure for projects’ participatory financing within a social and solidarity economy, allowing transparent, secure, and fair management and to have a financial mechanism that improves financial inclusion. Methodology: The proposed methodology is: crowdfunding platforms literature review, financing mechanisms literature review, requirements analysis and project definition, a business plan, Platform development process and implementation technology, and testing an MVP. Contributions: The solution consists of proposing a new approach to crowdfunding based on Islamic financing, which is the principle of Mousharaka inspired by Islamic financing, which presents a financial innovation that integrates ethics and the social dimension into contemporary banking practices. Conclusion: Crowdfunding platforms need to secure projects and allow only quality projects but also offer a wide range of options to funders. Thus, a framework based on blockchain technology and Islamic financing is proposed to manage this arbitration between quality and quantity of options. The proposed financing system, "Musharaka", is a mode of financing that prohibits interests and uncertainties. The implementation is offered on the secure Ethereum platform as investors sign and initiate transactions for contributions using their digital signature wallet managed by a cryptography algorithm and smart contracts. Our proposal is illustrated by a crop irrigation project in the Marrakech region.

Keywords: social economy, Musharaka, blockchain, smart contract, crowdfunding

Procedia PDF Downloads 76
2 A Lightweight Blockchain: Enhancing Internet of Things Driven Smart Buildings Scalability and Access Control Using Intelligent Direct Acyclic Graph Architecture and Smart Contracts

Authors: Syed Irfan Raza Naqvi, Zheng Jiangbin, Ahmad Moshin, Pervez Akhter

Abstract:

Currently, the IoT system depends on a centralized client-servant architecture that causes various scalability and privacy vulnerabilities. Distributed ledger technology (DLT) introduces a set of opportunities for the IoT, which leads to practical ideas for existing components at all levels of existing architectures. Blockchain Technology (BCT) appears to be one approach to solving several IoT problems, like Bitcoin (BTC) and Ethereum, which offer multiple possibilities. Besides, IoTs are resource-constrained devices with insufficient capacity and computational overhead to process blockchain consensus mechanisms; the traditional BCT existing challenge for IoTs is poor scalability, energy efficiency, and transaction fees. IOTA is a distributed ledger based on Direct Acyclic Graph (DAG) that ensures M2M micro-transactions are free of charge. IOTA has the potential to address existing IoT-related difficulties such as infrastructure scalability, privacy and access control mechanisms. We proposed an architecture, SLDBI: A Scalable, lightweight DAG-based Blockchain Design for Intelligent IoT Systems, which adapts the DAG base Tangle and implements a lightweight message data model to address the IoT limitations. It enables the smooth integration of new IoT devices into a variety of apps. SLDBI enables comprehensive access control, energy efficiency, and scalability in IoT ecosystems by utilizing the Masked Authentication Message (MAM) protocol and the IOTA Smart Contract Protocol (ISCP). Furthermore, we suggest proof-of-work (PoW) computation on the full node in an energy-efficient way. Experiments have been carried out to show the capability of a tangle to achieve better scalability while maintaining energy efficiency. The findings show user access control management at granularity levels and ensure scale up to massive networks with thousands of IoT nodes, such as Smart Connected Buildings (SCBDs).

Keywords: blockchain, IOT, direct acyclic graphy, scalability, access control, architecture, smart contract, smart connected buildings

Procedia PDF Downloads 121
1 Revolutionizing Financial Forecasts: Enhancing Predictions with Graph Convolutional Networks (GCN) - Long Short-Term Memory (LSTM) Fusion

Authors: Ali Kazemi

Abstract:

Those within the volatile and interconnected international economic markets, appropriately predicting market trends, hold substantial fees for traders and financial establishments. Traditional device mastering strategies have made full-size strides in forecasting marketplace movements; however, monetary data's complicated and networked nature calls for extra sophisticated processes. This observation offers a groundbreaking method for monetary marketplace prediction that leverages the synergistic capability of Graph Convolutional Networks (GCNs) and Long Short-Term Memory (LSTM) networks. Our suggested algorithm is meticulously designed to forecast the traits of inventory market indices and cryptocurrency costs, utilizing a comprehensive dataset spanning from January 1, 2015, to December 31, 2023. This era, marked by sizable volatility and transformation in financial markets, affords a solid basis for schooling and checking out our predictive version. Our algorithm integrates diverse facts to construct a dynamic economic graph that correctly reflects market intricacies. We meticulously collect opening, closing, and high and low costs daily for key inventory marketplace indices (e.g., S&P 500, NASDAQ) and widespread cryptocurrencies (e.g., Bitcoin, Ethereum), ensuring a holistic view of marketplace traits. Daily trading volumes are also incorporated to seize marketplace pastime and liquidity, providing critical insights into the market's shopping for and selling dynamics. Furthermore, recognizing the profound influence of the monetary surroundings on financial markets, we integrate critical macroeconomic signs with hobby fees, inflation rates, GDP increase, and unemployment costs into our model. Our GCN algorithm is adept at learning the relational patterns amongst specific financial devices represented as nodes in a comprehensive market graph. Edges in this graph encapsulate the relationships based totally on co-movement styles and sentiment correlations, enabling our version to grasp the complicated community of influences governing marketplace moves. Complementing this, our LSTM algorithm is trained on sequences of the spatial-temporal illustration discovered through the GCN, enriched with historic fee and extent records. This lets the LSTM seize and expect temporal marketplace developments accurately. Inside the complete assessment of our GCN-LSTM algorithm across the inventory marketplace and cryptocurrency datasets, the version confirmed advanced predictive accuracy and profitability compared to conventional and opportunity machine learning to know benchmarks. Specifically, the model performed a Mean Absolute Error (MAE) of 0.85%, indicating high precision in predicting day-by-day charge movements. The RMSE was recorded at 1.2%, underscoring the model's effectiveness in minimizing tremendous prediction mistakes, which is vital in volatile markets. Furthermore, when assessing the model's predictive performance on directional market movements, it achieved an accuracy rate of 78%, significantly outperforming the benchmark models, averaging an accuracy of 65%. This high degree of accuracy is instrumental for techniques that predict the course of price moves. This study showcases the efficacy of mixing graph-based totally and sequential deep learning knowledge in economic marketplace prediction and highlights the fee of a comprehensive, records-pushed evaluation framework. Our findings promise to revolutionize investment techniques and hazard management practices, offering investors and economic analysts a powerful device to navigate the complexities of cutting-edge economic markets.

Keywords: financial market prediction, graph convolutional networks (GCNs), long short-term memory (LSTM), cryptocurrency forecasting

Procedia PDF Downloads 63