Search results for: Mateusz Barczewski
11 Analysis of the Operating Load of Gas Bearings in the Gas Generator of the Turbine Engine during a Deceleration to Dash Maneuver
Authors: Zbigniew Czyz, Pawel Magryta, Mateusz Paszko
Abstract:
The paper discusses the status of loads acting on the drive unit of the unmanned helicopter during deceleration to dash maneuver. Special attention was given for the loads of bearings in the gas generator turbine engine, in which will be equipped a helicopter. The analysis was based on the speed changes as a function of time for manned flight of helicopter PZL W3-Falcon. The dependence of speed change during the flight was approximated by the least squares method and then determined for its changes in acceleration. This enabled us to specify the forces acting on the bearing of the gas generator in static and dynamic conditions. Deceleration to dash maneuvers occurs in steady flight at a speed of 222 km/h by horizontal braking and acceleration. When the speed reaches 92 km/h, it dynamically changes an inclination of the helicopter to the maximum acceleration and power to almost maximum and holds it until it reaches its initial speed. This type of maneuvers are used due to ineffective shots at significant cruising speeds. It is, therefore, important to reduce speed to the optimum as soon as possible and after giving a shot to return to the initial speed (cruising). In deceleration to dash maneuvers, we have to deal with the force of gravity of the rotor assembly, gas aerodynamics forces and the forces caused by axial acceleration during this maneuver. While we can assume that the working components of the gas generator are designed so that axial gas forces they create could balance the aerodynamic effects, the remaining ones operate with a value that results from the motion profile of the aircraft. Based on the analysis, we can make a compilation of the results. For this maneuver, the force of gravity (referring to statistical calculations) respectively equals for bearing A = 5.638 N and bearing B = 1.631 N. As overload coefficient k in this direction is 1, this force results solely from the weight of the rotor assembly. For this maneuver, the acceleration in the longitudinal direction achieved value a_max = 4.36 m/s2. Overload coefficient k is, therefore, 0.44. When we multiply overload coefficient k by the weight of all gas generator components that act on the axial bearing, the force caused by axial acceleration during deceleration to dash maneuver equals only 3.15 N. The results of the calculations are compared with other maneuvers such as acceleration and deceleration and jump up and jump down maneuvers. This work has been financed by the Polish Ministry of Science and Higher Education.Keywords: gas bearings, helicopters, helicopter maneuvers, turbine engines
Procedia PDF Downloads 34010 Development of the Squamate Egg Tooth on the Basis of Grass Snake Natrix natrix Studies
Authors: Mateusz Hermyt, Pawel Kaczmarek, Weronika Rupik
Abstract:
The egg tooth is a crucial structure during hatching of lizards and snakes. In contrast to birds, turtles, crocodiles, and monotremes, egg tooth of squamate reptiles is a true tooth sharing common features of structure and development with all the other teeth of vertebrates. The egg tooth; however, due to its function, exhibits structural differences in relation to regular teeth. External morphology seems to be important in the context of phylogenetic relationships within Squamata but up to date, there is scarce information concerning structure and development of the egg tooth at the submicroscopical level. In presented studies detailed analysis of the egg tooth development in grass snake has been performed with the usage of light (including fluorescent), transmission and scanning electron microscopy. Grass snake embryo’s heads have been used in our studies. Grass snake is common snake species occurring in most of Europe including Poland. The grass snake is characterized by the presence of single unpaired egg tooth (as in most squamates) in contrast to geckos and dibamids possessing paired egg teeth. Studies show changes occurring on the external morphology, tissue and cellular levels of differentiating egg tooth. The egg tooth during its development changes its curvature. Initially, faces directly downward and in the course of its differentiation, it gradually changes to rostro-ventral orientation. Additionally, it forms conical dentinal protrusions on the sides. Histological analysis showed that egg tooth development occurs in similar steps in relation to regular teeth. It undergoes initiation, bud, cap and bell morphological stages. Analyses focused on describing morphological changes in hard tissues (mainly dentin and predentin) of egg tooth and in cells which enamel organ consists of. It included: outer enamel epithelium, stratum intermedium, inner enamel epithelium, odontoblasts, and cells of dental pulp. All specimens used in the study were captured according to the Polish regulations concerning the protection of wild species. Permission was granted by the Local Ethics Commission in Katowice (41/2010; 87/2015) and the Regional Directorate for Environmental Protection in Katowice (WPN.6401.257.2015.DC).Keywords: hatching, organogenesis, reptile, Squamata
Procedia PDF Downloads 1809 The Interventricular Septum as a Site for Implantation of Electrocardiac Devices - Clinical Implications of Topography and Variation in Position
Authors: Marcin Jakiel, Maria Kurek, Karolina Gutkowska, Sylwia Sanakiewicz, Dominika Stolarczyk, Jakub Batko, Rafał Jakiel, Mateusz K. Hołda
Abstract:
Proper imaging of the interventricular septum during endocavital lead implantation is essential for successful procedure. The interventricular septum is located oblique to the 3 main body planes and forms angles of 44.56° ± 7.81°, 45.44° ± 7.81°, 62.49° (IQR 58.84° - 68.39°) with the sagittal, frontal and transverse planes, respectively. The optimal left anterior oblique (LAO) projection is to have the septum aligned along the radiation beam and will be obtained for an angle of 53.24° ± 9,08°, while the best visualization of the septal surface in the right anterior oblique (RAO) projection is obtained by using an angle of 45.44° ± 7.81°. In addition, the RAO angle (p=0.003) and the septal slope to the transverse plane (p=0.002) are larger in the male group, but the LAO angle (p=0.003) and the dihedral angle that the septum forms with the sagittal plane (p=0.003) are smaller, compared to the female group. Analyzing the optimal RAO angle in cross-sections lying at the level of the connections of the septum with the free wall of the right ventricle from the front and back, we obtain slightly smaller angle values, i.e. 41.11° ± 8.51° and 43.94° ± 7.22°, respectively. As the septum is directed leftward in the apical region, the optimal RAO angle for this area decreases (16.49° ± 7,07°) and does not show significant differences between the male and female groups (p=0.23). Within the right ventricular apex, there is a cavity formed by the apical segment of the interventricular septum and the free wall of the right ventricle with a depth of 12.35mm (IQR 11.07mm - 13.51mm). The length of the septum measured in longitudinal section, containing 4 heart cavities, is 73.03mm ± 8.06mm. With the left ventricular septal wall formed by the interventricular septum in the apical region at a length of 10.06mm (IQR 8.86 - 11.07mm) already lies outside the right ventricle. Both mentioned lengths are significantly larger in the male group (p<0.001). For proper imaging of the septum from the right ventricular side, an oblique position of the visualization devices is necessary. Correct determination of the RAO and LAO angle during the procedure allows to improve the procedure performed, and possible modification of the visual field when moving in the anterior, posterior and apical directions of the septum will avoid complications. Overlooking the change in the direction of the interventricular septum in the apical region and a significant decrease in the RAO angle can result in implantation of the lead into the free wall of the right ventricle with less effective pacing and even complications such as wall perforation and cardiac tamponade. The demonstrated gender differences can also be helpful in setting the right projections. A necessary addition to the analysis will be a description of the area of the ventricular septum, which we are currently working on using autopsy material.Keywords: anatomical variability, angle, electrocardiological procedure, intervetricular septum
Procedia PDF Downloads 998 The Use of Brachytherapy in the Treatment of Liver Metastases: A Systematic Review
Authors: Mateusz Bilski, Jakub Klas, Emilia Kowalczyk, Sylwia Koziej, Katarzyna Kulszo, Ludmiła Grzybowska- Szatkowska
Abstract:
Background: Liver metastases are a common complication of primary solid tumors and sig-nificantly reduce patient survival. In the era of increasing diagnosis of oligometastatic disease and oligoprogression, methods of local treatment of metastases, i.e. MDT, are becoming more important. Implementation of such treatment can be considered for liver metastases, which are a common complication of primary solid tumors and significantly reduce patient survival. To date, the mainstay of treatment for oligometastatic disease has been surgical resection, but not all patients qualify for the procedure. As an alternative to surgical resection, radiotherapy techniques have become available, including stereotactic body radiation therapy (SBRT) or high-dose interstitial brachytherapy (iBT). iBT is an invasive method that emits very high doses of radiation from the inside of the tumor to the outside. This technique provides better tumor coverage than SBRT while having little impact on surrounding healthy tissue and elim-inates some concerns involving respiratory motion. Methods: We conducted a systematic re-view of the scientific literature on the use of brachytherapy in the treatment of liver metasta-ses from 2018 - 2023 using PubMed and ResearchGate browsers according to PRISMA rules. Results: From 111 articles, 18 publications containing information on 729 patients with liver metastases were selected. iBT has been shown to provide high rates of tumor control. Among 14 patients with 54 unresectable RCC liver metastases, after iBT LTC was 92.6% during a median follow-up of 10.2 months, PFS was 3.4 months. In analysis of 167 patients after treatment with a single fractional dose of 15-25 Gy with brachytherapy at 6- and 12-month follow-up, LRFS rates of 88,4-88.7% and 70.7 - 71,5%, PFS of 78.1 and 53.8%, and OS of 92.3 - 96.7% and 76,3% - 79.6%, respectively, were achieved. No serious complications were observed in all patients. Distant intrahepatic progression occurred later in patients with unre-sectable liver metastases after brachytherapy (PFS: 19.80 months) than in HCC patients (PFS: 13.50 months). A significant difference in LRFS between CRC patients (84.1% vs. 50.6%) and other histologies (92.4% vs. 92.4%) was noted, suggesting a higher treatment dose is necessary for CRC patients. The average target dose for metastatic colorectal cancer was 40 - 60 Gy (compared to 100 - 250 Gy for HCC). To better assess sensitivity to therapy and pre-dict side effects, it has been suggested that humoral mediators be evaluated. It was also shown that baseline levels of TNF-α, MCP-1 and VEGF, as well as NGF and CX3CL corre-lated with both tumor volume and radiation-induced liver damage, one of the most serious complications of iBT, indicating their potential role as biomarkers of therapy outcome. Con-clusions: The use of brachytherapy methods in the treatment of liver metastases of various cancers appears to be an interesting and relatively safe therapeutic method alternative to sur-gery. An important challenge remains the selection of an appropriate brachytherapy method and radiation dose for the corresponding initial tumor type from which the metastasis origi-nated.Keywords: liver metastases, brachytherapy, CT-HDRBT, iBT
Procedia PDF Downloads 1157 Comparison of Quality of Life One Year after Bariatric Intervention: Systematic Review of the Literature with Bayesian Network Meta-Analysis
Authors: Piotr Tylec, Alicja Dudek, Grzegorz Torbicz, Magdalena Mizera, Natalia Gajewska, Michael Su, Tanawat Vongsurbchart, Tomasz Stefura, Magdalena Pisarska, Mateusz Rubinkiewicz, Piotr Malczak, Piotr Major, Michal Pedziwiatr
Abstract:
Introduction: Quality of life after bariatric surgery is an important factor when evaluating the final result of the treatment. Considering the vast surgical options, we tried to globally compare available methods in terms of quality of following the surgery. The aim of the study is to compare the quality of life a year after bariatric intervention using network meta-analysis methods. Material and Methods: We performed a systematic review according to PRISMA guidelines with Bayesian network meta-analysis. Inclusion criteria were: studies comparing at least two methods of weight loss treatment of which at least one is surgical, assessment of the quality of life one year after surgery by validated questionnaires. Primary outcomes were quality of life one year after bariatric procedure. The following aspects of quality of life were analyzed: physical, emotional, general health, vitality, role physical, social, mental, and bodily pain. All questionnaires were standardized and pooled to a single scale. Lifestyle intervention was considered as a referenced point. Results: An initial reference search yielded 5636 articles. 18 studies were evaluated. In comparison of total score of quality of life, we observed that laparoscopic sleeve gastrectomy (LSG) (median (M): 3.606, Credible Interval 97.5% (CrI): 1.039; 6.191), laparoscopic Roux en-Y gastric by-pass (LRYGB) (M: 4.973, CrI: 2.627; 7.317) and open Roux en-Y gastric by-pass (RYGB) (M: 9.735, CrI: 6.708; 12.760) had better results than other bariatric intervention in relation to lifestyle interventions. In the analysis of the physical aspects of quality of life, we notice better results in LSG (M: 3.348, CrI: 0.548; 6.147) and in LRYGB procedure (M: 5.070, CrI: 2.896; 7.208) than control intervention, and worst results in open RYGB (M: -9.212, CrI: -11.610; -6.844). Analyzing emotional aspects, we found better results than control intervention in LSG, in LRYGB, in open RYGB, and laparoscopic gastric plication. In general health better results were in LSG (M: 9.144, CrI: 4.704; 13.470), in LRYGB (M: 6.451, CrI: 10.240; 13.830) and in single-anastomosis gastric by-pass (M: 8.671, CrI: 1.986; 15.310), and worst results in open RYGB (M: -4.048, CrI: -7.984; -0.305). In social and vital aspects of quality of life, better results were observed in LSG and LRYGB than control intervention. We did not find any differences between bariatric interventions in physical role, mental and bodily aspects of quality of life. Conclusion: The network meta-analysis revealed that better quality of life in total score one year after bariatric interventions were after LSG, LRYGB, open RYGB. In physical and general health aspects worst quality of life was in open RYGB procedure. Other interventions did not significantly affect the quality of life after a year compared to dietary intervention.Keywords: bariatric surgery, network meta-analysis, quality of life, one year follow-up
Procedia PDF Downloads 1596 Simulation Research of the Aerodynamic Drag of 3D Structures for Individual Transport Vehicle
Authors: Pawel Magryta, Mateusz Paszko
Abstract:
In today's world, a big problem of individual mobility, especially in large urban areas, occurs. Commonly used grand way of transport such as buses, trains or cars do not fulfill their tasks, i.e. they are not able to meet the increasing mobility needs of the growing urban population. Additional to that, the limitations of civil infrastructure construction in the cities exist. Nowadays the most common idea is to transfer the part of urban transport on the level of air transport. However to do this, there is a need to develop an individual flying transport vehicle. The biggest problem occurring in this concept is the type of the propulsion system from which the vehicle will obtain a lifting force. Standard propeller drives appear to be too noisy. One of the ideas is to provide the required take-off and flight power by the machine using the innovative ejector system. This kind of the system will be designed through a suitable choice of the three-dimensional geometric structure with special shape of nozzle in order to generate overpressure. The authors idea is to make a device that would allow to cumulate the overpressure using the a five-sided geometrical structure that will be limited on the one side by the blowing flow of air jet. In order to test this hypothesis a computer simulation study of aerodynamic drag of such 3D structures have been made. Based on the results of these studies, the tests on real model were also performed. The final stage of work was a comparative analysis of the results of simulation and real tests. The CFD simulation studies of air flow was conducted using the Star CD - Star Pro 3.2 software. The design of virtual model was made using the Catia v5 software. Apart from the objective to obtain advanced aviation propulsion system, all of the tests and modifications of 3D structures were also aimed at achieving high efficiency of this device while maintaining the ability to generate high value of overpressures. This was possible only in case of a large mass flow rate of air. All these aspects have been possible to verify using CFD methods for observing the flow of the working medium in the tested model. During the simulation tests, the distribution and size of pressure and velocity vectors were analyzed. Simulations were made with different boundary conditions (supply air pressure), but with a fixed external conditions (ambient temp., ambient pressure, etc.). The maximum value of obtained overpressure is 2 kPa. This value is too low to exploit the power of this device for the individual transport vehicle. Both the simulation model and real object shows a linear dependence of the overpressure values obtained from the different geometrical parameters of three-dimensional structures. Application of computational software greatly simplifies and streamlines the design and simulation capabilities. This work has been financed by the Polish Ministry of Science and Higher Education.Keywords: aviation propulsion, CFD, 3d structure, aerodynamic drag
Procedia PDF Downloads 3115 Study of a Decentralized Electricity Market on Awaji Island
Authors: Arkadiusz P. Wójcik, Tetsuya Sato, Shin-Ichiro Shima, Mateusz Malanowski
Abstract:
Over the last decades, new technologies have significantly changed the way information is transmitted and stored. Renewable energy sources have become prevalent and affordable. Cooperation of the Information and Communication Technology industry and Renewable Energy industry makes it possible to create a next generation, decentralized power grid. In this context, the study seeks to identify the wider benefits to the local Japanese economy as a result of the development of a decentralised electricity market. Our general approach aims to integrate an economic analysis (monetary appraisal of costs and benefits to society) with externalities that are not quantifiable in monetary terms (e.g. social impact, environmental impact). The study also highlights opportunities and sets out recommendations for the citizens of the island and the local government. The simulation is the scientific basis for economic impact analysis. Various types of sources of energy have been taken into account: residential wind farm, residential wind turbine, solar farm, residential solar panels and private solar farms. Analysis of local geographic and economic conditions allowed creating a customized business model. Very often farmers on Awaji Island are using crop cycle. During each cycle, one part of the field is resting and replenishing nutrients. In the next year another part of the field is resting. Portable solar panels could be freely set up in this part of the field. At the end of the crop cycle, portable solar panels would be moved to the next resting part. Because of spacious area, for a single household 500 square meters of portable solar panels has been proposed and simulated. The devised simulation shows that the Rate of Return on Investment for solar panels, which are on the island, could reach up to 37.21%. Supposing that about 20% of households install solar panels they could produce 49.11% of the electric energy consumed by households on the island. The analysis shows that rest of the energy supply can be produced by currently existing one huge solar farm and two wind farms to meet 97.59% of demand on electricity for households on the island. Although there are more than 7,000 agricultural fields on the island, young people tend to avoid agricultural work and prefer to move from the island to big cities, live there in little mansions and work until late night. The business model proposed in this study could increase farmer’s monthly income by ¥200,000 - ¥300,000 (1,600 euro – 2,400 euro). Young people could work less and have a higher standard of living than in a city. Creation of a decentralized electricity market can unlock significant benefits in other industries (e.g. electric vehicles), providing a welcome boost to economic growth, jobs and quality of life.Keywords: digital twin, Matlab, model-based systems engineering, simulink, smart grid, systems engineering
Procedia PDF Downloads 1234 Energy Metabolism and Mitochondrial Biogenesis in Muscles of Rats Subjected to Cold Water Immersion
Authors: Bosiacki Mateusz, Anna Lubkowska, Dariusz Chlubek, Irena Baranowska-Bosiacka
Abstract:
Exposure to cold temperatures can be considered a stressor that can lead to adaptive responses. The present study hypothesized the possibility of a positive effect of cold water exercise on mitochondrial biogenesis and muscle energy metabolism in aging rats. The purpose of this study was to evaluate the effects of cold water exercise on energy status, purine compounds, and mitochondrial biogenesis in the muscles of aging rats as indicators of the effects of cold water exercise and their usefulness in monitoring adaptive changes. The study was conducted on 64 aging rats of both sexes, 15 months old at the time of the experiment. The rats (male and female separately) were randomly assigned to the following study groups: control, sedentary animals; 5°C groups animals - training swimming in cold water at 5°C; 36°C groups - animals training swimming in water at thermal comfort temperature. The study was conducted with the approval of the Local Ethical Committee for Animal Experiments. The animals in the experiment were subjected to swimming training for 9 weeks. During the first week of the study, the duration of the first swimming training was 2 minutes (on the first day), increasing daily by 0.5 minutes up to 4 minutes on the fifth day of the first week. From the second to the eighth week, the swimming training was 4 minutes per day, five days a week. At the end of the study, forty-eight hours after the last swim training, the animals were dissected. In the skeletal muscle tissue of the thighs of the rats, we determined the concentrations of ATP, ADP, AMP, Ado (HPLC), PGC-1a protein expression (Western blot), PGC1A, Mfn1, Mfn2, Opa1, and Drp1 gene expression (qRT PCR). The study showed that swimming in water at a thermally comfortable temperature improved the energy metabolism of the aging rat muscles by increasing the metabolic rate (increase in ATP, ADP, TAN, AEC) and enhancing mitochondrial fusion (increase in mRNA expression of regulatory proteins Mfn1 and Mfn2). Cold water swimming improved muscle energy metabolism in aging rats by increasing the rate of muscle energy metabolism (increase in ATP, ADP, TAN, AEC concentrations) and enhancing mitochondrial biogenesis and dynamics (increase in the mRNA expression of proteins of fusion-regulating factors – Mfn1, Mfn2, and Opa1, and the factor regulating mitochondrial fission – Drp1). The concentration of high-energy compounds and the expression of proteins regulating mitochondrial dynamics in the muscle may be a useful indicator in monitoring adaptive changes occurring in aging muscles under the influence of exercise in cold water. It represents a short-term adaptation to changing environmental conditions and has a beneficial effect on maintaining the bioenergetic capacity of muscles in the long term. Conclusion: exercise in cold water can exert positive effects on energy metabolism, biogenesis and dynamics of mitochondria in aging rat muscles. Enhancement of mitochondrial dynamics under cold water exercise conditions can improve mitochondrial function and optimize the bioenergetic capacity of mitochondria in aging rat muscles.Keywords: cold water immersion, adaptive responses, muscle energy metabolism, aging
Procedia PDF Downloads 833 Fighting the Crisis with 4.0 Competences: Higher Education Projects in the Times of Pandemic
Authors: Jadwiga Fila, Mateusz Jezowski, Pawel Poszytek
Abstract:
The outbreak of the global COVID-19 pandemic started the times of crisis full of uncertainty, especially in the field of transnational cooperation projects based on the international mobility of their participants. This is notably the case of Erasmus+ Program for higher education, which is the flagship European initiative boosting cooperation between educational institutions, businesses, and other actors, enabling students and staff mobility, as well as strategic partnerships between different parties. The aim of this abstract is to study whether competences 4.0 are able to empower Erasmus+ project leaders in sustaining their international cooperation in times of global crisis, widespread online learning, and common project disruption or cancellation. The concept of competences 4.0 emerged from the notion of the industry 4.0, and it relates to skills that are fundamental for the current labor market. For the aim of the study presented in this abstract, four main 4.0 competences were distinguished: digital, managerial, social, and cognitive competence. The hypothesis for the study stipulated that the above-mentioned highly-developed competences may act as a protective shield against the pandemic challenges in terms of projects’ sustainability and continuation. The objective of the research was to assess to what extent individual competences are useful in managing projects in times of crisis. For this purpose, the study was conducted, involving, among others, 141 Polish higher education project leaders who were running their cooperation projects during the peak of the COVID-19 pandemic (Mar-Nov 2020). The research explored the self-perception of the above-mentioned competences among Erasmus+ project leaders and the contextual data regarding the sustainability of the projects. The quantitative character of data permitted validation of scales (Cronbach’s Alfa measure), and the use of factor analysis made it possible to create a distinctive variable for each competence and its dimensions. Finally, logistic regression was used to examine the association of competences and other factors on project status. The study shows that the project leaders’ competence profile attributed the highest score to digital competence (4.36 on the 1-5 scale). Slightly lower values were obtained for cognitive competence (3.96) and managerial competence (3.82). The lowest score was accorded to one specific dimension of social competence: adaptability and ability to manage stress (1.74), which proves that the pandemic was a real challenge which had to be faced by project coordinators. For higher education projects, 10% were suspended or prolonged because of the COVID-19 pandemic, whereas 90% were undisrupted (continued or already successfully finished). The quantitative analysis showed a positive relationship between the leaders’ levels of competences and the projects status. In the case of all competences, the scores were higher for project leaders who finished projects successfully than for leaders who suspended or prolonged their projects. The research demonstrated that, in the demanding times of the COVID-19 pandemic, competences 4.0, to a certain extent, do play a significant role in the successful management of Erasmus+ projects. The implementation and sustainability of international educational projects, despite mobility and sanitary obstacles, depended, among other factors, on the level of leaders’ competences.Keywords: Competences 4.0, COVID-19 pandemic, Erasmus+ Program, international education, project sustainability
Procedia PDF Downloads 952 Investigation of Chemical Effects on the Lγ2,3 and Lγ4 X-ray Production Cross Sections for Some Compounds of 66dy at Photon Energies Close to L1 Absorption-edge Energy
Authors: Anil Kumar, Rajnish Kaur, Mateusz Czyzycki, Alessandro Migilori, Andreas Germanos Karydas, Sanjiv Puri
Abstract:
The radiative decay of Li(i=1-3) sub-shell vacancies produced through photoionization results in production of the characteristic emission spectrum comprising several X-ray lines, whereas non-radiative vacancy decay results in Auger electron spectrum. Accurate reliable data on the Li(i=1-3) sub-shell X-ray production (XRP) cross sections is of considerable importance for investigation of atomic inner-shell ionization processes as well as for quantitative elemental analysis of different types of samples employing the energy dispersive X-ray fluorescence (EDXRF) analysis technique. At incident photon energies in vicinity of the absorption edge energies of an element, the many body effects including the electron correlation, core relaxation, inter-channel coupling and post-collision interactions become significant in the photoionization of atomic inner-shells. Further, in case of compounds, the characteristic emission spectrum of the specific element is expected to get influenced by the chemical environment (coordination number, oxidation state, nature of ligand/functional groups attached to central atom, etc.). These chemical effects on L X-ray fluorescence parameters have been investigated by performing the measurements at incident photon energies much higher than the Li(i=1-3) sub-shell absorption edge energies using EDXRF spectrometers. In the present work, the cross sections for production of the Lk(k= γ2,3, γ4) X-rays have been measured for some compounds of 66Dy, namely, Dy2O3, Dy2(CO3)3, Dy2(SO4)3.8H2O, DyI2 and Dy metal by tuning the incident photon energies few eV above the L1 absorption-edge energy in order to investigate the influence of chemical effects on these cross sections in presence of the many body effects which become significant at photon energies close to the absorption-edge energies. The present measurements have been performed under vacuum at the IAEA end-station of the X-ray fluorescence beam line (10.1L) of ELETTRA synchrotron radiation facility (Trieste, Italy) using self-supporting pressed pellet targets (1.3 cm diameter, nominal thicknesses ~ 176 mg/cm2) of 66Dy compounds (procured from Sigma Aldrich) and a metallic foil of 66Dy (nominal thickness ~ 3.9 mg/cm2, procured from Good Fellow, UK). The present measured cross sections have been compared with theoretical values calculated using the Dirac-Hartree-Slater(DHS) model based fluorescence and Coster-Kronig yields, Dirac-Fock(DF) model based X-ray emission rates and two sets of L1 sub-shell photoionization cross sections based on the non-relativistic Hartree-Fock-Slater(HFS) model and those deduced from the self-consistent Dirac-Hartree-Fock(DHF) model based total photoionization cross sections. The present measured XRP cross sections for 66Dy as well as for its compounds for the L2,3 and L4 X-rays, are found to be higher by ~14-36% than the two calculated set values. It is worth to be mentioned that L2,3 and L4 X-ray lines are originated by filling up of the L1 sub-shell vacancies by the outer sub-shell (N2,3 and O2,3) electrons which are much more sensitive to the chemical environment around the central atom. The present observed differences between measured and theoretical values are expected due to combined influence of the many-body effects and the chemical effects.Keywords: chemical effects, L X-ray production cross sections, Many body effects, Synchrotron radiation
Procedia PDF Downloads 1331 Tailoring Piezoelectricity of PVDF Fibers with Voltage Polarity and Humidity in Electrospinning
Authors: Piotr K. Szewczyk, Arkadiusz Gradys, Sungkyun Kim, Luana Persano, Mateusz M. Marzec, Oleksander Kryshtal, Andrzej Bernasik, Sohini Kar-Narayan, Pawel Sajkiewicz, Urszula Stachewicz
Abstract:
Piezoelectric polymers have received great attention in smart textiles, wearables, and flexible electronics. Their potential applications range from devices that could operate without traditional power sources, through self-powering sensors, up to implantable biosensors. Semi-crystalline PVDF is often proposed as the main candidate for industrial-scale applications as it exhibits exceptional energy harvesting efficiency compared to other polymers combined with high mechanical strength and thermal stability. Plenty of approaches have been proposed for obtaining PVDF rich in the desired β-phase with electric polling, thermal annealing, and mechanical stretching being the most prevalent. Electrospinning is a highly tunable technique that provides a one-step process of obtaining highly piezoelectric PVDF fibers without the need for post-treatment. In this study, voltage polarity and relative humidity influence on electrospun PVDF, fibers were investigated with the main focus on piezoelectric β-phase contents and piezoelectric performance. Morphology and internal structure of fibers were investigated using scanning (SEM) and transmission electron microscopy techniques (TEM). Fourier Transform Infrared Spectroscopy (FITR), wide-angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC) were used to characterize the phase composition of electrospun PVDF. Additionally, surface chemistry was verified with X-ray photoelectron spectroscopy (XPS). Piezoelectric performance of individual electrospun PVDF fibers was measured using piezoresponse force microscopy (PFM), and the power output from meshes was analyzed via custom-built equipment. To prepare the solution for electrospinning, PVDF pellets were dissolved in dimethylacetamide and acetone solution in a 1:1 ratio to achieve a 24% solution. Fibers were electrospun with a constant voltage of +/-15kV applied to the stainless steel nozzle with the inner diameter of 0.8mm. The flow rate was kept constant at 6mlh⁻¹. The electrospinning of PVDF was performed at T = 25°C and relative humidity of 30 and 60% for PVDF30+/- and PVDF60+/- samples respectively in the environmental chamber. The SEM and TEM analysis of fibers produced at a lower relative humidity of 30% (PVDF30+/-) showed a smooth surface in opposition to fibers obtained at 60% relative humidity (PVDF60+/-), which had wrinkled surface and additionally internal voids. XPS results confirmed lower fluorine content at the surface of PVDF- fibers obtained by electrospinning with negative voltage polarity comparing to the PVDF+ obtained with positive voltage polarity. Changes in surface composition measured with XPS were found to influence the piezoelectric performance of obtained fibers what was further confirmed by PFM as well as by custom-built fiber-based piezoelectric generator. For PVDF60+/- samples humidity led to an increase of β-phase contents in PVDF fibers as confirmed by FTIR, WAXS, and DSC measurements, which showed almost two times higher concentrations of β-phase. A combination of negative voltage polarity with high relative humidity led to fibers with the highest β-phase contents and the best piezoelectric performance of all investigated samples. This study outlines the possibility to produce electrospun PVDF fibers with tunable piezoelectric performance in a one-step electrospinning process by controlling relative humidity and voltage polarity conditions. Acknowledgment: This research was conducted within the funding from m the Sonata Bis 5 project granted by National Science Centre, No 2015/18/E/ST5/00230, and supported by the infrastructure at International Centre of Electron Microscopy for Materials Science (IC-EM) at AGH University of Science and Technology. The PFM measurements were supported by an STSM Grant from COST Action CA17107.Keywords: crystallinity, electrospinning, PVDF, voltage polarity
Procedia PDF Downloads 135