Search results for: term counting
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4306

Search results for: term counting

3826 Development of a Delivery System for Statin Targeted Spray is a Breakthrough Therapy in Alzheimer’s Prevention

Authors: Fakhr Eddin Alnaal, Angela Dahdal, Duaa Aladib, Sabeen Ibrahim, Ibrahim Ghoraibi, Bissan Ahmed

Abstract:

Dementia is one of the diseases which had several stages and Alzheimer’s term was selected in respect for the first doctor Alzheimer who defined the first symptoms of this diseases in a woman whom was well treated by him. The fact that this is a type of a silent disease on which you have a long-term process of neurological degradation and suddenly gives symptoms which are most often irreversible, on clinical level likely we can consider it as a malignancy, one in terms of that it is sudden shocking irreversible and on the level of behavior and some mortality beside the lack of early detection tools for diagnosis. Therefore, the goal of our project is to test the concept of the ability of Statin in prevention of such disease and we investigated that both on experimental level and most importantly on clinical one, the clinical part was performed in a recognized house of aged people who had accidently a high cholesterol and were for years given Statin to treat that elevation, however after the symptoms of Alzheimer’s appeared and when diagnosed, they were well treated and rapidly recovered compared to Alzheimer’s patients in the same house who did not receive Statin had a mild improvement in their symptoms after the therapy, on the other hand we confirmed such observation by a well-organized experimental work.

Keywords: Alzheimer's, dementia, silent disease, statin

Procedia PDF Downloads 136
3825 Broad Protection against Avian Influenza Virus by Using a Modified Vaccinia Ankara Virus Expressing a Mosaic Hemagglutinin

Authors: Attapon Kamlangdee, Brock Kingstad-Bakke, Tavis K. Anderson, Tony L. Goldberg, Jorge E. Osorio

Abstract:

A critical failure in our preparedness for an influenza pandemic is the lack of a universal vaccine. Influenza virus strains diverge by 1 to 2% per year, and commercially available vaccines often do not elicit protection from one year to the next, necessitating frequent formulation changes. This represents a major challenge to the development of a cross-protective vaccine that can protect against circulating viral antigenic diversity. We have constructed a recombinant modified vaccinia virus Ankara (MVA) that expresses an H5N1 mosaic hemagglutinin (H5M) (MVA-H5M). This mosaic was generated in silico using 2,145 field-sourced H5N1 isolates. A single dose of MVA-H5M provided 100% protection in mice against clade 0, 1, and 2 avian influenza viruses and also protected against seasonal H1N1 virus (A/Puerto Rico/8/34). It also provided short-term (10 days) and long-term (6 months) protection post vaccination. Both neutralizing antibodies and antigen-specific CD4+and CD8+ T cells were still detected at 5 months post vaccination, suggesting that MVA-H5M provides long-lasting immunity.

Keywords: modified vaccinia Ankara, MVA, H5N1, hemagglutinin, influenza vaccine

Procedia PDF Downloads 282
3824 An Ensemble Deep Learning Architecture for Imbalanced Classification of Thoracic Surgery Patients

Authors: Saba Ebrahimi, Saeed Ahmadian, Hedie Ashrafi

Abstract:

Selecting appropriate patients for surgery is one of the main issues in thoracic surgery (TS). Both short-term and long-term risks and benefits of surgery must be considered in the patient selection criteria. There are some limitations in the existing datasets of TS patients because of missing values of attributes and imbalanced distribution of survival classes. In this study, a novel ensemble architecture of deep learning networks is proposed based on stacking different linear and non-linear layers to deal with imbalance datasets. The categorical and numerical features are split using different layers with ability to shrink the unnecessary features. Then, after extracting the insight from the raw features, a novel biased-kernel layer is applied to reinforce the gradient of the minority class and cause the network to be trained better comparing the current methods. Finally, the performance and advantages of our proposed model over the existing models are examined for predicting patient survival after thoracic surgery using a real-life clinical data for lung cancer patients.

Keywords: deep learning, ensemble models, imbalanced classification, lung cancer, TS patient selection

Procedia PDF Downloads 147
3823 Market Illiquidity and Pricing Errors in the Term Structure of CDS

Authors: Lidia Sanchis-Marco, Antonio Rubia, Pedro Serrano

Abstract:

This paper studies the informational content of pricing errors in the term structure of sovereign CDS spreads. The residuals from a non-arbitrage model are employed to construct a Price discrepancy estimate, or noise measure. The noise estimate is understood as an indicator of market distress and reflects frictions such as illiquidity. Empirically, the noise measure is computed for an extensive panel of CDS spreads. Our results reveal an important fraction of systematic risk is not priced in default swap contracts. When projecting the noise measure onto a set of financial variables, the panel-data estimates show that greater price discrepancies are systematically related to a higher level of offsetting transactions of CDS contracts. This evidence suggests that arbitrage capital flows exit the marketplace during time of distress, and this consistent with a market segmentation among investors and arbitrageurs where professional arbitrageurs are particularly ineffective at bringing prices to their fundamental values during turbulent periods. Our empirical findings are robust for the most common CDS pricing models employed in the industry.

Keywords: credit default swaps, noise measure, illiquidity, capital arbitrage

Procedia PDF Downloads 571
3822 The Impact of Scaffolding on Motivation of Vocational Special Education Students in Kakamega Program for Persons with Hearing Impaired in Kenya

Authors: J. W. Mbogani, B. A. Bunyasi

Abstract:

The special skills for five students in the vocational class in Kakamega program for Hearing impaired were identified within one term period of the Kenyan education system. Three students were identified as having a liking for tailoring. The remaining two students did not show any interest in any vocational subject. The three students were attached to two professionals in practicing general tailors within the school vicinity for scaffolding purposes. The students were allowed to attend general classes under the normal curriculum and were withdrawn after eleven in the morning for tailoring classes. The students were then monitored with the guideline of a checklist. The purpose of monitoring was to establish whether the behavior of the students reflected a motivated student. It was established that two of them improved in their school attendance in terms of regularity, punctuality and responsibility accomplishment. The third student ended up attending only tailoring classes. The socialization aspect of the two students improved a lot. They also tended to identify more with the teachers than their fellow students. We recommend that learners with special needs in education should be subjected to the normal curriculum. They may benefit more and attain a skill that could help them economically. Further study should also be done to in several institutions involving learners in other classes.

Keywords: general tailoring, scaffolding, term, vocational class

Procedia PDF Downloads 142
3821 Safe and Efficient Deep Reinforcement Learning Control Model: A Hydroponics Case Study

Authors: Almutasim Billa A. Alanazi, Hal S. Tharp

Abstract:

Safe performance and efficient energy consumption are essential factors for designing a control system. This paper presents a reinforcement learning (RL) model that can be applied to control applications to improve safety and reduce energy consumption. As hardware constraints and environmental disturbances are imprecise and unpredictable, conventional control methods may not always be effective in optimizing control designs. However, RL has demonstrated its value in several artificial intelligence (AI) applications, especially in the field of control systems. The proposed model intelligently monitors a system's success by observing the rewards from the environment, with positive rewards counting as a success when the controlled reference is within the desired operating zone. Thus, the model can determine whether the system is safe to continue operating based on the designer/user specifications, which can be adjusted as needed. Additionally, the controller keeps track of energy consumption to improve energy efficiency by enabling the idle mode when the controlled reference is within the desired operating zone, thus reducing the system energy consumption during the controlling operation. Water temperature control for a hydroponic system is taken as a case study for the RL model, adjusting the variance of disturbances to show the model’s robustness and efficiency. On average, the model showed safety improvement by up to 15% and energy efficiency improvements by 35%- 40% compared to a traditional RL model.

Keywords: control system, hydroponics, machine learning, reinforcement learning

Procedia PDF Downloads 188
3820 Spatial and Temporal Variability of Meteorological Drought Including Atmospheric Circulation in Central Europe

Authors: Andrzej Wałęga, Marta Cebulska, Agnieszka Ziernicka-Wojtaszek, Wojciech Młocek, Agnieszka Wałęga, Tommaso Caloiero

Abstract:

Drought is one of the natural phenomena influencing many aspects of human activities like food production, agriculture, industry, and the ecological conditions of the environment. In the area of the Polish Carpathians, there are periods with a deficit of rainwater and an increasing frequency in dry months, especially in the cold half of the year. The aim of this work is a spatial and temporal analysis of drought, expressed as SPI in a heterogenous area of the Polish Carpathian and of the highland Region in the Central part of Europe based on long-term precipitation data. Also, to our best knowledge, for the first time in this work, drought characteristics analyzed via the SPI were discussed based on the atmospheric circulation calendar. The study region is the Upper Vistula Basin, located in the southern and south-eastern part of Poland. In this work, monthly precipitation from 56 rainfall stations was analysed from 1961 to 2022. The 3-, 6-, 9-, and 12-month Standardized Precipitation Index (SPI) were used as indicators of meteorological drought. For the 3-month SPI, the main climatic mechanisms determining extreme droughts were defined based on the calendar of synoptic circulations. The Mann-Kendall test was used to detect the trend of extreme droughts. Statistically significant trends of SPI were observed on 52.7% of all analyzed stations, and in most cases, a positive trend was observed. Statistically significant trends were more frequently observed in stations located in the western part of the analyzed region. Long-term droughts, represented by the 12-month SPI, occurred in all stations but not in all years. Short-term droughts (3-month SPI) were most frequent in the winter season, 6 and 9-month SPI in winter and spring, and 12-month SPI in winter and autumn, respectively. The spatial distribution of drought was highly diverse. The most intensive drought occurred in 1984, with the 6-month SPI covering 98% of the analyzed region and the 9 and 12-month SPI covering 90% of the entire region. Droughts exhibit a seasonal pattern, with a dominant 10-year periodicity for all analyzed variants of SPI. Additionally, Fourier analysis revealed a 2-year periodicity for the 3-, 6-, and 9-month SPI and a 31-year periodicity for the 12-month SPI. The results provide insights into the typical climatic conditions in Poland, with strong seasonality in precipitation. The study highlighted that short-term extreme droughts, represented by the 3-month SPI, are often caused by anticyclonic situations with high-pressure wedges Ka and Wa, and anticyclonic West as observed in 52.3% of cases. These findings are crucial for understanding the spatial and temporal variability of short and long-term extreme droughts in Central Europe, particularly for the agriculture sector dominant in the northern part of the analyzed region, where drought frequency is highest.

Keywords: atmospheric circulation, drought, precipitation, SPI, the Upper Vistula Basin

Procedia PDF Downloads 75
3819 Effect of Modified Atmosphere Packaging and Storage Temperatures on Quality of Shelled Raw Walnuts

Authors: M. Javanmard

Abstract:

This study was aimed at analyzing the effects of packaging (MAP) and preservation conditions on the packaged fresh walnut kernel quality. The central composite plan was used for evaluating the effect of oxygen (0–10%), carbon dioxide (0-10%), and temperature (4-26 °C) on qualitative characteristics of walnut kernels. Also, the response level technique was used to find the optimal conditions for interactive effects of factors, as well as estimating the best conditions of process using least amount of testing. Measured qualitative parameters were: peroxide index, color, decreased weight, mould and yeast counting test, and sensory evaluation. The results showed that the defined model for peroxide index, color, weight loss, and sensory evaluation is significant (p < 0.001), so that increase of temperature causes the peroxide value, color variation, and weight loss to increase and it reduces the overall acceptability of walnut kernels. An increase in oxygen percentage caused the color variation level and peroxide value to increase and resulted in lower overall acceptability of the walnuts. An increase in CO2 percentage caused the peroxide value to decrease, but did not significantly affect other indices (p ≥ 0.05). Mould and yeast were not found in any samples. Optimal packaging conditions to achieve maximum quality of walnuts include: 1.46% oxygen, 10% carbon dioxide, and temperature of 4 °C.

Keywords: shelled walnut, MAP, quality, storage temperature

Procedia PDF Downloads 391
3818 Symbol Synchronization and Resource Reuse Schemes for Layered Video Multicast Service in Long Term Evolution Networks

Authors: Chung-Nan Lee, Sheng-Wei Chu, You-Chiun Wang

Abstract:

LTE (Long Term Evolution) employs the eMBMS (evolved Multimedia Broadcast/Multicast Service) protocol to deliver video streams to a multicast group of users. However, it requires all multicast members to receive a video stream in the same transmission rate, which would degrade the overall service quality when some users encounter bad channel conditions. To overcome this problem, this paper provides two efficient resource allocation schemes in such LTE network: The symbol synchronization (S2) scheme assumes that the macro and pico eNodeBs use the same frequency channel to deliver the video stream to all users. It then adopts a multicast transmission index to guarantee the fairness among users. On the other hand, the resource reuse (R2) scheme allows eNodeBs to transmit data on different frequency channels. Then, by introducing the concept of frequency reuse, it can further improve the overall service quality. Extensive simulation results show that the S2 and R2 schemes can respectively improve around 50% of fairness and 14% of video quality as compared with the common maximum throughput method.

Keywords: LTE networks, multicast, resource allocation, layered video

Procedia PDF Downloads 391
3817 Short-Term Load Forecasting Based on Variational Mode Decomposition and Least Square Support Vector Machine

Authors: Jiangyong Liu, Xiangxiang Xu, Bote Luo, Xiaoxue Luo, Jiang Zhu, Lingzhi Yi

Abstract:

To address the problems of non-linearity and high randomness of the original power load sequence causing the degradation of power load forecasting accuracy, a short-term load forecasting method is proposed. The method is based on the Least Square Support Vector Machine optimized by an Improved Sparrow Search Algorithm combined with the Variational Mode Decomposition proposed in this paper. The application of the variational mode decomposition technique decomposes the raw power load data into a series of Intrinsic Mode Functions components, which can reduce the complexity and instability of the raw data while overcoming modal confounding; the proposed improved sparrow search algorithm can solve the problem of difficult selection of learning parameters in the least Square Support Vector Machine. Finally, through comparison experiments, the results show that the method can effectively improve prediction accuracy.

Keywords: load forecasting, variational mode decomposition, improved sparrow search algorithm, least square support vector machine

Procedia PDF Downloads 114
3816 Exploring the Potential of Chatbots in Higher Education: A Preliminary Study

Authors: S. Studente, S. Ellis, S. F. Garivaldis

Abstract:

We report upon a study introducing a chatbot to develop learning communities at a London University, with a largely international student base. The focus of the chatbot was twofold; to ease the transition for students into their first year of university study, and to increase study engagement. Four learning communities were created using the chatbot; level 3 foundation, level 4 undergraduate, level 6 undergraduate and level 7 post-graduate. Students and programme leaders were provided with access to the chat bot via mobile app prior to their study induction and throughout the autumn term of 2019. At the end of the term, data were collected via questionnaires and focus groups with students and teaching staff to allow for identification of benefits and challenges. Findings indicated a positive correlation between study engagement and engagement with peers. Students reported that the chatbot enabled them to obtain support and connect to their programme leader. Both staff and students also made recommendation on how engagement could be further enhanced using the bot in terms of; clearly specified purpose, integration with existing university systems, leading by example and connectivity. Extending upon these recommendations, a second pilot study is planned for September 2020, for which the focus will be upon improving attendance rates, student satisfaction and module pass rates.

Keywords: chatbot, e-learning, learning communities, student engagement

Procedia PDF Downloads 125
3815 Poverty Reduction in European Cities: Local Governments’ Strategies and Programmes to Reduce Poverty; Interview Results from Austria

Authors: Melanie Schinnerl, Dorothea Greiling

Abstract:

In the context of the 2020 strategy, poverty and its fight returned to the center of national political efforts. This served as motivation for an Austrian research grant-funded project to focus on the under-researched local government level with the aim to identify municipal best-practice cases and to derive policy implications for Austria. Designing effective poverty reduction strategies is a complex challenge which calls for an integrated multi-actor in approach. Cities are increasingly confronted to combat poverty, even in rich EU-member states. By doing so cities face substantial demographic, cultural, economic and social challenges as well as changing welfare state regimes. Furthermore, there is a low willingness of (right-wing) governments to support the poor. Against this background, the research questions are: 1. How do local governments define poverty? 2. Who are the main risk groups and what are the most pressing problems when fighting urban poverty? 3. What is regarded as successful anti-poverty initiatives? 4. What is the underlying welfare state concept? To address the research questions a multi-method approach was chosen, consisting of a systematic literature analysis, a comprehensive document analysis, and expert interviews. For interpreting the data the project follows the qualitative-interpretive paradigm. Municipal approaches for reducing poverty are compared based on deductive, as well as inductive identified criteria. In addition to an intensive literature analysis, interviews (40) were conducted in Austria since the project started in March 2018. From the other countries, 14 responses have been collected, providing a first insight. Regarding the definition of poverty the EU SILC-definition as well as counting the persons who receive need-based minimum social benefits, the Austrian form of social welfare, are the predominant approaches in Austria. In addition to homeless people, single-parent families, un-skilled persons, long-term unemployed persons, migrants (first and second generation), refugees and families with at least 3 children were frequently mentioned. The most pressing challenges for Austrian cities are: expected reductions of social budgets, a great insecurity of the central government's social policy reform plans, the growing number of homeless people and a lack of affordable housing. Together with affordable housing, old-age poverty will gain more importance in the future. The Austrian best practice examples, suggested by interviewees, focused primarily on homeless, children and young people (till 25). Central government’s policy changes have already negative effects on programs for refugees and elderly unemployed. Social Housing in Vienna was frequently mentioned as an international best practice case, other growing cities can learn from. The results from Austria indicate a change towards the social investment state, which primarily focuses on children and labour market integration. The first insights from the other countries indicate that affordable housing and labor market integration are cross-cutting issues. Inherited poverty and old-age poverty seems to be more pressing outside Austria.

Keywords: anti-poverty policies, European cities, empirical study, social investment

Procedia PDF Downloads 120
3814 PathoPy2.0: Application of Fractal Geometry for Early Detection and Histopathological Analysis of Lung Cancer

Authors: Rhea Kapoor

Abstract:

Fractal dimension provides a way to characterize non-geometric shapes like those found in nature. The purpose of this research is to estimate Minkowski fractal dimension of human lung images for early detection of lung cancer. Lung cancer is the leading cause of death among all types of cancer and an early histopathological analysis will help reduce deaths primarily due to late diagnosis. A Python application program, PathoPy2.0, was developed for analyzing medical images in pixelated format and estimating Minkowski fractal dimension using a new box-counting algorithm that allows windowing of images for more accurate calculation in the suspected areas of cancerous growth. Benchmark geometric fractals were used to validate the accuracy of the program and changes in fractal dimension of lung images to indicate the presence of issues in the lung. The accuracy of the program for the benchmark examples was between 93-99% of known values of the fractal dimensions. Fractal dimension values were then calculated for lung images, from National Cancer Institute, taken over time to correctly detect the presence of cancerous growth. For example, as the fractal dimension for a given lung increased from 1.19 to 1.27 due to cancerous growth, it represents a significant change in fractal dimension which lies between 1 and 2 for 2-D images. Based on the results obtained on many lung test cases, it was concluded that fractal dimension of human lungs can be used to diagnose lung cancer early. The ideas behind PathoPy2.0 can also be applied to study patterns in the electrical activity of the human brain and DNA matching.

Keywords: fractals, histopathological analysis, image processing, lung cancer, Minkowski dimension

Procedia PDF Downloads 180
3813 Reading and Writing Memories in Artificial and Human Reasoning

Authors: Ian O'Loughlin

Abstract:

Memory networks aim to integrate some of the recent successes in machine learning with a dynamic memory base that can be updated and deployed in artificial reasoning tasks. These models involve training networks to identify, update, and operate over stored elements in a large memory array in order, for example, to ably perform question and answer tasks parsing real-world and simulated discourses. This family of approaches still faces numerous challenges: the performance of these network models in simulated domains remains considerably better than in open, real-world domains, wide-context cues remain elusive in parsing words and sentences, and even moderately complex sentence structures remain problematic. This innovation, employing an array of stored and updatable ‘memory’ elements over which the system operates as it parses text input and develops responses to questions, is a compelling one for at least two reasons: first, it addresses one of the difficulties that standard machine learning techniques face, by providing a way to store a large bank of facts, offering a way forward for the kinds of long-term reasoning that, for example, recurrent neural networks trained on a corpus have difficulty performing. Second, the addition of a stored long-term memory component in artificial reasoning seems psychologically plausible; human reasoning appears replete with invocations of long-term memory, and the stored but dynamic elements in the arrays of memory networks are deeply reminiscent of the way that human memory is readily and often characterized. However, this apparent psychological plausibility is belied by a recent turn in the study of human memory in cognitive science. In recent years, the very notion that there is a stored element which enables remembering, however dynamic or reconstructive it may be, has come under deep suspicion. In the wake of constructive memory studies, amnesia and impairment studies, and studies of implicit memory—as well as following considerations from the cognitive neuroscience of memory and conceptual analyses from the philosophy of mind and cognitive science—researchers are now rejecting storage and retrieval, even in principle, and instead seeking and developing models of human memory wherein plasticity and dynamics are the rule rather than the exception. In these models, storage is entirely avoided by modeling memory using a recurrent neural network designed to fit a preconceived energy function that attains zero values only for desired memory patterns, so that these patterns are the sole stable equilibrium points in the attractor network. So although the array of long-term memory elements in memory networks seem psychologically appropriate for reasoning systems, they may actually be incurring difficulties that are theoretically analogous to those that older, storage-based models of human memory have demonstrated. The kind of emergent stability found in the attractor network models more closely fits our best understanding of human long-term memory than do the memory network arrays, despite appearances to the contrary.

Keywords: artificial reasoning, human memory, machine learning, neural networks

Procedia PDF Downloads 273
3812 A Comparative Evaluation of Broiler Strains Chickens, Arbor Acres, and Ross in Experimental Coccidiosis

Authors: S. S. R. Shojaei, S. Kord Afshari

Abstract:

The study was initiated to compare the production and defecation of Eimerial oocysts of two internationally reputed broiler strains under the local environmental and management conditions. 40 one-day old male chickens of Arbor Acres strain and ROSS strain (20 chicks from each strain) used in this study and were divided randomly into four control and challenge groups. Feed and water were provided for ad libitum consumption. At 15 d of age, chickens of challenge groups (from each strain) were individually inoculated with a mixture of 50000 of sporulated oocysts of 4 species including of E. acervulina (20%), E. maxima (40%), E. tenella (25%) and E. necatrix (15%) and also from the fourth day after Eimerial challenge, faecal droppings (litter samples) were collected 10 days consecutively for counting oocyst per gram (OPG). The results indicated that in the challenge groups, there was an increasing process of OPG in days of 4 to 7 post challenging and the pick level of OPG was seen at seventh day after challenging. From day 8 to 9, decreasing of OPG was happened. This decreasing continues with mild, fast and mild process to day of 13. Respectively and totally the average of OPG in the Arbor Acres group was lower than the group Ross in all days post inoculation and this difference was significant according to t-test. According to the obtained results in this study and since oocyst index almost always is considered as one of the most important indicators for coccidiosis evaluation, it can be realized that in the same surveillance condition the regarding the severity evaluation of coccidiosis, Arbor Acres strain broilers shed less oocysts than Ross strain broilers.

Keywords: arbor acres, ross, coccidiosis, OPG

Procedia PDF Downloads 514
3811 Transboundary Pollution after Natural Disasters: Scenario Analyses for Uranium at Kyrgyzstan-Uzbekistan Border

Authors: Fengqing Li, Petra Schneider

Abstract:

Failure of tailings management facilities (TMF) of radioactive residues is an enormous challenge worldwide and can result in major catastrophes. Particularly in transboundary regions, such failure is most likely to lead to international conflict. This risk occurs in Kyrgyzstan and Uzbekistan, where the current major challenge is the quantification of impacts due to pollution from uranium legacy sites and especially the impact on river basins after natural hazards (i.e., landslides). By means of GoldSim, a probabilistic simulation model, the amount of tailing material that flows into the river networks of Mailuu Suu in Kyrgyzstan after pond failure was simulated for three scenarios, namely 10%, 20%, and 30% of material inputs. Based on Muskingum-Cunge flood routing procedure, the peak value of uranium flood wave along the river network was simulated. Among the 23 TMF, 19 ponds are close to the river networks. The spatiotemporal distributions of uranium along the river networks were then simulated for all the 19 ponds under three scenarios. Taking the TP7 which is 30 km far from the Kyrgyzstan-Uzbekistan border as one example, the uranium concentration decreased continuously along the longitudinal gradient of the river network, the concentration of uranium was observed at the border after 45 min of the pond failure and the highest value was detected after 69 min. The highest concentration of uranium at the border were 16.5, 33, and 47.5 mg/L under scenarios of 10%, 20%, and 30% of material inputs, respectively. In comparison to the guideline value of uranium in drinking water (i.e., 30 µg/L) provided by the World Health Organization, the observed concentrations of uranium at the border were 550‒1583 times higher. In order to mitigate the transboundary impact of a radioactive pollutant release, an integrated framework consisting of three major strategies were proposed. Among, the short-term strategy can be used in case of emergency event, the medium-term strategy allows both countries handling the TMF efficiently based on the benefit-sharing concept, and the long-term strategy intends to rehabilitate the site through the relocation of all TMF.

Keywords: Central Asia, contaminant transport modelling, radioactive residue, transboundary conflict

Procedia PDF Downloads 120
3810 Brand Resonance Strategy For Long-term Market Survival: Does The Brand Resonance Matter For Smes? An Investigation In Smes Digital Branding (Facebook, Twitter, Instagram And Blog) Activities And Strong Brand Development

Authors: Noor Hasmini Abd Ghani

Abstract:

Brand resonance is among of new focused strategy that getting more attention in nowadays by larger companies for their long-term market survival. The brand resonance emphasizing of two main characteristics that are intensity and activity able to generate psychology bond and enduring relationship between a brand and consumer. This strong attachment relationship has represented brand resonance with the concept of consumer brand relationship (CBR) that exhibit competitive advantage for long-term market survival. The main consideration toward this brand resonance approach is not only in the context of larger companies but also can be adapted in Small and Medium Enterprises (SMEs) as well. The SMEs have been recognized as vital pillar to the world economy in both developed and emergence countries are undeniable due to their economic growth contributions, such as opportunity for employment, wealth creation, and poverty reduction. In particular, the facts that SMEs in Malaysia are pivotal to the well-being of the Malaysian economy and society are clearly justified, where the SMEs competent in provided jobs to 66% of the workforce and contributed 40% to the GDP. As regards to it several sectors, the SMEs service category that covers the Food & Beverage (F&B) sector is one of the high-potential industries in Malaysia. For that reasons, SMEs strong brand or brand equity is vital to be developed for their long-term market survival. However, there’s still less appropriate strategies in develop their brand equity. The difficulties have never been so evident until Covid-19 swept across the globe from 2020. Since the pandemic began, more than 150,000 SMEs in Malaysia have shut down, leaving more than 1.2 million people jobless. Otherwise, as the SMEs are the pillar of any economy for the countries in the world, and with negative effect of COVID-19 toward their economic growth, thus, their protection has become important more than ever. Therefore, focusing on strategy that able to develop SMEs strong brand is compulsory. Hence, this is where the strategy of brand resonance is introduced in this study. Mainly, this study aims to investigate the impact of CBR as a predictor and mediator in the context of social media marketing (SMM) activities toward SMEs e-brand equity (or strong brand) building. The study employed the quantitative research design concerning on electronic survey method with the valid response rate of 300 respondents. Interestingly, the result revealed the importance role of CBR either as predictor or mediator in the context of SMEs SMM as well as brand equity development. Further, the study provided several theoretical and practical implications that can benefit the SMEs in enhancing their strategic marketing decision.

Keywords: SME brand equity, SME social media marketing, SME consumer brand relationship, SME brand resonance

Procedia PDF Downloads 61
3809 The Relationship between Competency-Based Learning and Learning Efficiency of Media Communication Students at Suan Sunandha Rajabhat University

Authors: Somtop Keawchuer

Abstract:

This research aims to study (1) the relationship between competency-based learning and learning efficiency of new media communication students at Suan Sunandha University (2) the demographic factor effect on learning efficiency of students at Suan Sunandha University. This research method will use quantitative research; data was collected by questionnaires distributed to students from new media communication in management science faculty of Suan Sunandha Rajabhat University for 1340 sample by purposive sampling method. Data was analyzed by descriptive statistic including percentage, mean, standard deviation and inferential statistic including T-test, ANOVA and Pearson correlation for hypothesis testing. The results showed that the competency-based learning in term of ability to communicate, ability to think and solve the problem, life skills and ability to use technology has a significant relationship with learning efficiency in term of the cognitive domain, psychomotor domain and affective domain at the 0.05 level and which is in harmony with the research hypotheses.

Keywords: competency-based learning, learning efficiency, new media communication students, Suan Sunandha Rajabhat University

Procedia PDF Downloads 246
3808 Safety of Mesenchymal Stem Cells Therapy: Potential Risk of Spontaneous Transformations

Authors: Katarzyna Drela, Miroslaw Wielgos, Mikolaj Wrobel, Barbara Lukomska

Abstract:

Mesenchymal stem cells (MSCs) have a great potential in regenerative medicine. Since the initial number of isolated MSCs is limited, in vitro propagation is often required to reach sufficient numbers of cells for therapeutic applications. During long-term culture MSCs may undergo genetic or epigenetic alterations that subsequently increase the probability of spontaneous malignant transformation. Thus, factors that influence genomic stability of MSCs following long-term expansions need to be clarified before cultured MSCs are employed for clinical application. The aim of our study was to investigate the potential for spontaneous transformation of human neonatal cord blood (HUCB-MSCs) and adult bone marrow (BM-MSCs) derived MSCs. Materials and Methods: HUCB-MSCs and BM-MSCs were isolated by standard Ficoll gradient centrifugations method. Isolated cells were initially plated in high density 106 cells per cm2. After 48 h medium were changed and non-adherent cells were removed. The malignant transformation of MSCs in vitro was evaluated by morphological changes, proliferation rate, ability to enter cell senescence, the telomerase expression and chromosomal abnormality. Proliferation of MSCs was analyzed with WST-1 reduction method and population doubling time (PDT) was calculated at different culture stages. Then the expression pattern of genes characteristic for mesenchymal or epithelial cells, as well as transcriptions factors were examined by RT-PCR. Concomitantly, immunocytochemical analysis of gene-related proteins was employed. Results: Our studies showed that MSCs from all bone marrow isolations ultimately entered senescence and did not undergo spontaneous malignant transformation. However, HUCB-MSCs from one of the 15 donors displayed an increased proliferation rate, failed to enter senescence, and exhibited an altered cell morphology. In this sample we observed two different cell phenotypes: one mesenchymal-like exhibited spindle shaped morphology and express specific mesenchymal surface markers (CD73, CD90, CD105, CD166) with low proliferation rate, and the second one with round, densely package epithelial-like cells with significantly increased proliferation rate. The PDT of epithelial-like populations was around 1day and 100% of cells were positive for proliferation marker Ki-67. Moreover, HUCB-MSCs showed a positive expression of human telomerase reverse transcriptase (hTERT), cMYC and exhibit increased number of CFU during the long-term culture in vitro. Furthermore, karyotype analysis revealed chromosomal abnormalities including duplications. Conclusions: Our studies demonstrate that HUCB-MSCs are susceptible to spontaneous malignant transformation during long-term culture. Spontaneous malignant transformation process following in vitro culture has enormous effect on the biosafety issues of future cell-based therapies and regenerative medicine regimens.

Keywords: mesenchymal stem cells, spontaneous, transformation, long-term culture

Procedia PDF Downloads 268
3807 Evaluating Acid Buffering Capacity of Sewage Sludge Barrier for Inhibiting Remobilization of Heavy Metals in Tailing Impoundment

Authors: Huyuan Zhang, Yi Chen

Abstract:

Compacted sewage sludge has been proved to be feasible as a barrier material for tailing impoundment because of its low permeability and retardation of heavy metals. The long-term penetration of acid mine drainage, however, would acidify the barrier system and result in remobilization of previously immobilized heavy metal pollutants. In this study, the effect of decreasing pH on the mobility of three typical heavy metals (Zn, Pb, and Cu) is investigated by acid titration test on sewage sludge under various conditions. The remobilization of heavy metals is discussed based on the acid buffering capacity of sewage sludge-leachate system. Test results indicate that heavy metals are dramatically released out when pH is decreased below 6.2, and their amounts take the order of Zn > Cu > Pb. The acid buffering capacity of sewage sludge decreases with the solid-liquid ratio but increases with the anaerobic incubation time, and it is mainly governed by dissolution of contained carbonate and organics. These results reveal that the sewage sludge possesses enough acid buffering capacity to consume protons within the acid mine drainage. Thus, this study suggests that an explosive remobilization of heavy metals is not expected in a long-term perspective.

Keywords: acid buffering capacity, barrier, heavy metals, remobilization, sewage sludge

Procedia PDF Downloads 322
3806 Evaluation of Weather Risk Insurance for Agricultural Products Using a 3-Factor Pricing Model

Authors: O. Benabdeljelil, A. Karioun, S. Amami, R. Rouger, M. Hamidine

Abstract:

A model for preventing the risks related to climate conditions in the agricultural sector is presented. It will determine the yearly optimum premium to be paid by a producer in order to reach his required turnover. The model is based on both climatic stability and 'soft' responses of usually grown species to average climate variations at the same place and inside a safety ball which can be determined from past meteorological data. This allows the use of linear regression expression for dependence of production result in terms of driving meteorological parameters, the main ones of which are daily average sunlight, rainfall and temperature. By simple best parameter fit from the expert table drawn with professionals, optimal representation of yearly production is determined from records of previous years, and yearly payback is evaluated from minimum yearly produced turnover. The model also requires accurate pricing of commodity at N+1. Therefore, a pricing model is developed using 3 state variables, namely the spot price, the difference between the mean-term and the long-term forward price, and the long-term structure of the model. The use of historical data enables to calibrate the parameters of state variables, and allows the pricing of commodity. Application to beet sugar underlines pricer precision. Indeed, the percentage of accuracy between computed result and real world is 99,5%. Optimal premium is then deduced and gives the producer a useful bound for negotiating an offer by insurance companies to effectively protect its harvest. The application to beet production in French Oise department illustrates the reliability of present model with as low as 6% difference between predicted and real data. The model can be adapted to almost any agricultural field by changing state parameters and calibrating their associated coefficients.

Keywords: agriculture, production model, optimal price, meteorological factors, 3-factor model, parameter calibration, forward price

Procedia PDF Downloads 379
3805 Detection of Intravenous Infiltration Using Impedance Parameters in Patients in a Long-Term Care Hospital

Authors: Ihn Sook Jeong, Eun Joo Lee, Jae Hyung Kim, Gun Ho Kim, Young Jun Hwang

Abstract:

This study investigated intravenous (IV) infiltration using bioelectrical impedance for 27 hospitalized patients in a long-term care hospital. Impedance parameters showed significant differences before and after infiltration as follows. First, the resistance (R) after infiltration significantly decreased compared to the initial resistance. This indicates that the IV solution flowing from the vein due to infiltration accumulates in the extracellular fluid (ECF). Second, the relative resistance at 50 kHz was 0.94 ± 0.07 in 9 subjects without infiltration and was 0.75 ± 0.12 in 18 subjects with infiltration. Third, the magnitude of the reactance (Xc) decreased after infiltration. This is because IV solution and blood components released from the vein tend to aggregate in the cell membrane (and acts analogously to the linear/parallel circuit), thereby increasing the capacitance (Cm) of the cell membrane and reducing the magnitude of reactance. Finally, the data points plotted in the R-Xc graph were distributed on the upper right before infiltration but on the lower left after infiltration. This indicates that the infiltration caused accumulation of fluid or blood components in the epidermal and subcutaneous tissues, resulting in reduced resistance and reactance, thereby lowering integrity of the cell membrane. Our findings suggest that bioelectrical impedance is an effective method for detection of infiltration in a noninvasive and quantitative manner.

Keywords: intravenous infiltration, impedance, parameters, resistance, reactance

Procedia PDF Downloads 185
3804 Cadaveric Dissection versus Systems-Based Anatomy: Testing Final Year Student Surface Anatomy Knowledge to Compare the Long-Term Effectiveness of Different Course Structures

Authors: L. Sun, T. Hargreaves, Z. Ahmad

Abstract:

Newly-qualified Foundation Year 1 doctors in the United Kingdom are frequently expected to perform practical skills involving the upper limb in clinical practice (for example, venipuncture, cannulation, and blood gas sampling). However, a move towards systems-based undergraduate medical education in the United Kingdom often precludes or limits dedicated time to anatomy teaching with cadavers or prosections, favouring only applied anatomy in the context of pathology. The authors hypothesised that detailed anatomical knowledge may consequently be adversely affected, particularly with respect to long-term retention. A simple picture quiz and accompanying questionnaire testing the identification of 7 upper limb surface landmarks was distributed to a total of 98 final year medical students from two universities - one with a systems-based curriculum, and one with a dedicated longitudinal dissection-based anatomy module in the first year of study. Students with access to dissection and prosection-based anatomy teaching performed more strongly, with a significantly higher rate of correct identification of all but one of the landmarks. Furthermore, it was notable that none of the students who had previously undertaken a systems-based course scored full marks, compared with 20% of those who had participated in the more dedicated anatomy course. This data suggests that a traditional, dissection-based approach to undergraduate anatomy teaching is superior to modern system-based curricula, in terms of aiding long-term retention of anatomical knowledge pertinent to newly-qualified doctors. The authors express concern that this deficit in proficiency could be detrimental to patient care in clinical practice, and propose that, where dissection-led anatomy teaching is not available, further anatomy revision modules are implemented throughout undergraduate education to aid knowledge retention and support clinical excellence.

Keywords: dissection, education, surface anatomy, upper limb

Procedia PDF Downloads 134
3803 A Theoretical to Conceptual Paper: The Use of Phosphodiesterase Inhibitors, Endothelin Receptor Antagonists and/or Prostacyclin Analogs in Acute Pulmonary Embolism

Authors: Ryan M. Monti, Bijal Mehta

Abstract:

In cases of massive pulmonary embolism, defined as acute pulmonary embolism presenting with systemic hypotension or right ventricular dysfunction and impending failure, there is indication that unconventional therapies, such as phosphodiesterase inhibitors, endothelin receptor antagonists, and/or prostacyclin analogs may decrease the morbidity and mortality. Based on the premise that dilating the pulmonary artery will decrease the pulmonary vascular pressure, while simultaneously decreasing the aggregation of platelets, it can be hypothesized that increased blood flow through the pulmonary artery will decrease right heart strain and subsequent morbidity and mortality. While this theory has yet to be formally studied, the recommendations for treating massive pulmonary embolism with phosphodiesterase inhibitors, endothelin receptor antagonists, and/or prostacyclin analogs in conjunction with the current standards of care in massive pulmonary embolism should be formally studied. In particular, patients with massive PE who are unable to undergo thrombolysis/surgical intervention may be the ideal population to study the use of these treatments to determine any decrease in mortality and morbidity (short term and long term).

Keywords: acute pulmonary thromboembolism, treatment of pulmonary embolism, use of phosphodiesterase inhibitors, endothelin receptor antagonists, prostacyclin analogs in PE

Procedia PDF Downloads 228
3802 Life-Saving Design Strategies for Nursing Homes and Long-Term Care Facilities

Authors: Jason M. Hegenauer, Nicholas Fucci

Abstract:

In the late 1990s, a major deinstitutionalization movement of elderly patients took place, since which, the design of long-term care facilities has not been adequately analyzed in the United States. Over the course of the last 25 years, major innovations in construction methods, technology, and medicine have been developed, drastically changing the landscape of healthcare architecture. In light of recent events, and the expected increase in elderly populations with the aging of the baby-boomer generation, it is evident that reconsideration of these facilities is essential for the proper care of aging populations. The global response has been effective in stifling this pandemic; however, widespread disease still poses an imminent threat to the human race. Having witnessed the devastation Covid-19 has reaped throughout nursing homes and long-term care facilities, it is evident that the current strategies for protecting our most vulnerable populations are not enough. Light renovation of existing facilities and previously overlooked considerations for new construction projects can drastically lower the risk at nursing homes and long-term care facilities. A reconfigured entry sequence supplements several of the features which have been long-standing essentials of the design of these facilities. This research focuses on several aspects identified as needing improvement, including indoor environment quality, security measures incorporated into healthcare architecture and design, and architectural mitigation strategies for sick building syndrome. The results of this study have been compiled as 'best practices' for the design of future healthcare construction projects focused on the health, safety, and quality of life of the residents of these facilities. These design strategies, which can easily be implemented through renovation of existing facilities and new construction projects, minimize risk of infection and spread of disease while allowing routine functions to continue with minimal impact, should the need for future lockdowns arise. Through the current lockdown procedures, which were implemented during the Covid-19 pandemic, isolation of residents has caused great unrest and worry for family members and friends as they are cut off from their loved ones. At this time, data is still being reported, leaving infection and death rates inconclusive; however, recent projections in some states list long-term care facility deaths as high as 60% of all deaths in the state. The population of these facilities consists of residents who are elderly, immunocompromised, and have underlying chronic medical conditions. According to the Centers for Disease Control, these populations are particularly susceptible to infection and serious illness. The obligation to protect our most vulnerable population cannot be overlooked, and the harsh measures recently taken as a response to the Covid-19 pandemic prove that the design strategies currently utilized for doing so are inadequate.

Keywords: building security, healthcare architecture and design, indoor environment quality, new construction, sick building syndrome, renovation

Procedia PDF Downloads 100
3801 A Long Short-Term Memory Based Deep Learning Model for Corporate Bond Price Predictions

Authors: Vikrant Gupta, Amrit Goswami

Abstract:

The fixed income market forms the basis of the modern financial market. All other assets in financial markets derive their value from the bond market. Owing to its over-the-counter nature, corporate bonds have relatively less data publicly available and thus is researched upon far less compared to Equities. Bond price prediction is a complex financial time series forecasting problem and is considered very crucial in the domain of finance. The bond prices are highly volatile and full of noise which makes it very difficult for traditional statistical time-series models to capture the complexity in series patterns which leads to inefficient forecasts. To overcome the inefficiencies of statistical models, various machine learning techniques were initially used in the literature for more accurate forecasting of time-series. However, simple machine learning methods such as linear regression, support vectors, random forests fail to provide efficient results when tested on highly complex sequences such as stock prices and bond prices. hence to capture these intricate sequence patterns, various deep learning-based methodologies have been discussed in the literature. In this study, a recurrent neural network-based deep learning model using long short term networks for prediction of corporate bond prices has been discussed. Long Short Term networks (LSTM) have been widely used in the literature for various sequence learning tasks in various domains such as machine translation, speech recognition, etc. In recent years, various studies have discussed the effectiveness of LSTMs in forecasting complex time-series sequences and have shown promising results when compared to other methodologies. LSTMs are a special kind of recurrent neural networks which are capable of learning long term dependencies due to its memory function which traditional neural networks fail to capture. In this study, a simple LSTM, Stacked LSTM and a Masked LSTM based model has been discussed with respect to varying input sequences (three days, seven days and 14 days). In order to facilitate faster learning and to gradually decompose the complexity of bond price sequence, an Empirical Mode Decomposition (EMD) has been used, which has resulted in accuracy improvement of the standalone LSTM model. With a variety of Technical Indicators and EMD decomposed time series, Masked LSTM outperformed the other two counterparts in terms of prediction accuracy. To benchmark the proposed model, the results have been compared with traditional time series models (ARIMA), shallow neural networks and above discussed three different LSTM models. In summary, our results show that the use of LSTM models provide more accurate results and should be explored more within the asset management industry.

Keywords: bond prices, long short-term memory, time series forecasting, empirical mode decomposition

Procedia PDF Downloads 138
3800 The Role of Short-Term Study Abroad Experience on Intercultural Communication Competence

Authors: Zeynep Aksoy

Abstract:

Since global mobility of capital, information and people increase more and more, intercultural communication and management become a growing study field of investigating various aspects of the interaction between people from different cultural backgrounds. Human mobility, caused by several intentions from tourism to forced migration, often put people in facing communication barriers, issues or sometimes conflicts. This reality naturally enforces education institutions to develop international policies and programs for students in order to improve their intercultural experiences along with the educative objectives. Study-abroad programs, particularly the student exchanges in higher education provide an environment for participants to encounter with cultural differences. Therefore, international exchange programs (i.e. Erasmus Student Mobility, Global Exchange Program) are accepted to bring opportunities for intergroup contact, which may lead students to obtain new perspectives about the host culture, either in positive or negative ways, and new intercultural communication skills. This study aims to explore the role of short-term study abroad experience on intercultural communication competence with a qualitative approach. It attempts to reveal a comparative analysis, which is derived from two field studies conducted in Izmir (Turkey) and in Amsterdam (the Netherlands) in 2015 and 2016. They were both organized in two phases as pre-and-posttest to gain an insight into the changes (if any) in students’ attitudes and knowledge regarding the host culture, and their further motivations towards cross-cultural interactions. With this aim, focus group sessions and in-depth interviews have been taken place with participants at the beginning of their stay and at the end of the semester. The sample covers students mainly from Erasmus program (20 students in Izmir and 14 students in Amsterdam), and few from Global Exchange Program (5 students in Amsterdam). Data obtained from both studies were thematically analyzed and essential themes were identified within the framework of intercultural communication competence.

Keywords: Erasmus student mobility, intercultural communication competence, student exchange, short-term study abroad

Procedia PDF Downloads 263
3799 Soil Composition in Different Agricultural Crops under Application of Swine Wastewater

Authors: Ana Paula Almeida Castaldelli Maciel, Gabriela Medeiros, Amanda de Souza Machado, Maria Clara Pilatti, Ralpho Rinaldo dos Reis, Silvio Cesar Sampaio

Abstract:

Sustainable agricultural systems are crucial to ensuring global food security and the long-term production of nutritious food. Comprehensive soil and water management practices, including nutrient management, balanced fertilizer use, and appropriate waste management, are essential for sustainable agriculture. Swine wastewater (SWW) treatment has become a significant focus due to environmental concerns related to heavy metals, antibiotics, resistant pathogens, and nutrients. In South America, small farms use soil to dispose of animal waste, a practice that is expected to increase with global pork production. The potential of SWW as a nutrient source is promising, contributing to global food security, nutrient cycling, and mineral fertilizer reduction. Short- and long-term studies evaluated the effects of SWW on soil and plant parameters, such as nutrients, heavy metals, organic matter (OM), cation exchange capacity (CEC), and pH. Although promising results have been observed in short- and medium-term applications, long-term applications require more attention due to heavy metal concentrations. Organic soil amendment strategies, due to their economic and ecological benefits, are commonly used to reduce the bioavailability of heavy metals. However, the rate of degradation and initial levels of OM must be monitored to avoid changes in soil pH and release of metals. The study aimed to evaluate the long-term effects of SWW application on soil fertility parameters, focusing on calcium (Ca), magnesium (Mg), and potassium (K), in addition to CEC and OM. Experiments were conducted at the Universidade Estadual do Oeste do Paraná, Brazil, using 24 drainage lysimeters for nine years, with different application rates of SWW and mineral fertilization. Principal Component Analysis (PCA) was then conducted to summarize the composite variables, known as principal components (PC), and limit the dimensionality to be evaluated. The retained PCs were then correlated with the original variables to identify the level of association between each variable and each PC. Data were interpreted using Analysis of Variance - ANOVA for general linear models (GLM). As OM was not measured in the 2007 soybean experiment, it was assessed separately from PCA to avoid loss of information. PCA and ANOVA indicated that crop type, SWW, and mineral fertilization significantly influenced soil nutrient levels. Soybeans presented higher concentrations of Ca, Mg, and CEC. The application of SWW influenced K levels, with higher concentrations observed in SWW from biodigesters and higher doses of swine manure. Variability in nutrient concentrations in SWW due to factors such as animal age and feed composition makes standard recommendations challenging. OM levels increased in SWW-treated soils, improving soil fertility and structure. In conclusion, the application of SWW can increase soil fertility and crop productivity, reducing environmental risks. However, careful management and long-term monitoring are essential to optimize benefits and minimize adverse effects.

Keywords: contamination, water research, biodigester, nutrients

Procedia PDF Downloads 63
3798 Long Term Evolution Multiple-Input Multiple-Output Network in Unmanned Air Vehicles Platform

Authors: Ashagrie Getnet Flattie

Abstract:

Line-of-sight (LOS) information, data rates, good quality, and flexible network service are limited by the fact that, for the duration of any given connection, they experience severe variation in signal strength due to fading and path loss. Wireless system faces major challenges in achieving wide coverage and capacity without affecting the system performance and to access data everywhere, all the time. In this paper, the cell coverage and edge rate of different Multiple-input multiple-output (MIMO) schemes in 20 MHz Long Term Evolution (LTE) system under Unmanned Air Vehicles (UAV) platform are investigated. After some background on the enormous potential of UAV, MIMO, and LTE in wireless links, the paper highlights the presented system model which attempts to realize the various benefits of MIMO being incorporated into UAV platform. The performances of the three MIMO LTE schemes are compared with the performance of 4x4 MIMO LTE in UAV scheme carried out to evaluate the improvement in cell radius, BER, and data throughput of the system in different morphology. The results show that significant performance gains such as bit error rate (BER), data rate, and coverage can be achieved by using the presented scenario.

Keywords: LTE, MIMO, path loss, UAV

Procedia PDF Downloads 280
3797 Characterization of Urban Ozone Pollution in Summer and Analysis of Influencing Factors

Authors: Gao Fangting

Abstract:

Ozone acts as an atmospheric shield, protecting organisms from ultraviolet radiation by absorbing it. Currently, a large amount of international environmental epidemiology has confirmed that short- and long-term exposure to ozone has significant effects on population health. Near-surface ozone, as a secondary pollutant in the atmosphere, not only negatively affects the production activities of living organisms but also damages ecosystems and affects climate change to some extent. In this paper, using the hour-by-hour ozone observations given by ground meteorological stations in four cities, namely Beijing, Kunming, Xining, and Guangzhou, from 2015 to 2017, the number of days of exceedance and the long-term change characteristics of ozone are analyzed by using the time series analysis method. On this basis, the effects of changes in meteorological conditions on ozone concentration were discussed in conjunction with the same period of meteorological data, and the similarities and differences of near-surface ozone in different cities were comparatively analyzed to establish a relevant quantitative model of near-surface ozone. This study found that ozone concentrations were highest during the summer months of the year, that ozone concentrations were strongly correlated with meteorological conditions, and that none of the four cities had ozone concentrations that reached the threshold for causing disease.

Keywords: ozone, meteorological conditions, pollution, health

Procedia PDF Downloads 33