Search results for: elliptic curve digital signature algorithm
2459 Single-Cell Visualization with Minimum Volume Embedding
Authors: Zhenqiu Liu
Abstract:
Visualizing the heterogeneity within cell-populations for single-cell RNA-seq data is crucial for studying the functional diversity of a cell. However, because of the high level of noises, outlier, and dropouts, it is very challenging to measure the cell-to-cell similarity (distance), visualize and cluster the data in a low-dimension. Minimum volume embedding (MVE) projects the data into a lower-dimensional space and is a promising tool for data visualization. However, it is computationally inefficient to solve a semi-definite programming (SDP) when the sample size is large. Therefore, it is not applicable to single-cell RNA-seq data with thousands of samples. In this paper, we develop an efficient algorithm with an accelerated proximal gradient method and visualize the single-cell RNA-seq data efficiently. We demonstrate that the proposed approach separates known subpopulations more accurately in single-cell data sets than other existing dimension reduction methods.Keywords: single-cell RNA-seq, minimum volume embedding, visualization, accelerated proximal gradient method
Procedia PDF Downloads 2282458 Subjective Quality Assessment for Impaired Videos with Varying Spatial and Temporal Information
Authors: Muhammad Rehan Usman, Muhammad Arslan Usman, Soo Young Shin
Abstract:
The new era of digital communication has brought up many challenges that network operators need to overcome. The high demand of mobile data rates require improved networks, which is a challenge for the operators in terms of maintaining the quality of experience (QoE) for their consumers. In live video transmission, there is a sheer need for live surveillance of the videos in order to maintain the quality of the network. For this purpose objective algorithms are employed to monitor the quality of the videos that are transmitted over a network. In order to test these objective algorithms, subjective quality assessment of the streamed videos is required, as the human eye is the best source of perceptual assessment. In this paper we have conducted subjective evaluation of videos with varying spatial and temporal impairments. These videos were impaired with frame freezing distortions so that the impact of frame freezing on the quality of experience could be studied. We present subjective Mean Opinion Score (MOS) for these videos that can be used for fine tuning the objective algorithms for video quality assessment.Keywords: frame freezing, mean opinion score, objective assessment, subjective evaluation
Procedia PDF Downloads 4942457 An Evolutionary Algorithm for Optimal Fuel-Type Configurations in Car Lines
Authors: Charalampos Saridakis, Stelios Tsafarakis
Abstract:
Although environmental concern is on the rise across Europe, current market data indicate that adoption rates of environmentally friendly vehicles remain extremely low. Against this background, the aim of this paper is to a) assess preferences of European consumers for clean-fuel cars and their characteristics and b) design car lines that optimize the combination of fuel types among models in the line-up. In this direction, the authors introduce a new evolutionary mechanism and implement it to stated-preference data derived from a large-scale choice-based conjoint experiment that measures consumer preferences for various factors affecting clean-fuel vehicle (CFV) adoption. The proposed two-step methodology provides interesting insights into how new and existing fuel-types can be combined in a car line that maximizes customer satisfaction.Keywords: clean-fuel vehicles, product line design, conjoint analysis, choice experiment, differential evolution
Procedia PDF Downloads 2792456 Stochastic Modeling of Secretion Dynamics in Inner Hair Cells of the Auditory Pathway
Authors: Jessica A. Soto-Bear, Virginia González-Vélez, Norma Castañeda-Villa, Amparo Gil
Abstract:
Glutamate release of the cochlear inner hair cell (IHC) ribbon synapse is a fundamental step in transferring sound information in the auditory pathway. Otoferlin is the calcium sensor in the IHC and its activity has been related to many auditory disorders. In order to simulate secretion dynamics occurring in the IHC in a few milliseconds timescale and with high spatial resolution, we proposed an active-zone model solved with Monte Carlo algorithms. We included models for calcium buffered diffusion, calcium-binding schemes for vesicle fusion, and L-type voltage-gated calcium channels. Our results indicate that calcium influx and calcium binding is managing IHC secretion as a function of voltage depolarization, which in turn mean that IHC response depends on sound intensity.Keywords: inner hair cells, Monte Carlo algorithm, Otoferlin, secretion
Procedia PDF Downloads 2212455 Impoliteness Principle in Online Chatroom Discourses
Authors: Christiana Darkoah
Abstract:
This study investigated impolite behaviour in online chatroom conversations, looking at its expressions, origins, online chatroom participant responses, impacts, and possible interventions. Online impoliteness has become a major worry as technology improvements move public conversation online, causing communication breakdowns and escalating conflict. The study used a qualitative methodology, including observation and thematic analysis to examine interactions from Facebook, Instagram, and WhatsApp. The findings showed that in online chatrooms, face-threatening behaviours and disputes can be sparked by political remarks, conversational humour, picture interpretations, and personal disclosures. Depending on the situation, the interpreter's job, and the accepted standards, the same statement could be interpreted as disrespectful or courteous. Impolite behaviour in online chatrooms and the possibility of misinterpretation are evident in the furious reactions that can arise from seemingly harmless posts. According to the study's findings, impoliteness is common in online chat rooms, where disputes over politics and personal grievances frequently turn into written attacks. Creating unambiguous community norms in partnership with social media businesses and putting digital literacy campaigns into action are among the recommendations.Keywords: impoliteness, online chatroom, discourses, conflicts
Procedia PDF Downloads 252454 Advanced Concrete Crack Detection Using Light-Weight MobileNetV2 Neural Network
Authors: Li Hui, Riyadh Hindi
Abstract:
Concrete structures frequently suffer from crack formation, a critical issue that can significantly reduce their lifespan by allowing damaging agents to enter. Traditional methods of crack detection depend on manual visual inspections, which heavily relies on the experience and expertise of inspectors using tools. In this study, a more efficient, computer vision-based approach is introduced by using the lightweight MobileNetV2 neural network. A dataset of 40,000 images was used to develop a specialized crack evaluation algorithm. The analysis indicates that MobileNetV2 matches the accuracy of traditional CNN methods but is more efficient due to its smaller size, making it well-suited for mobile device applications. The effectiveness and reliability of this new method were validated through experimental testing, highlighting its potential as an automated solution for crack detection in concrete structures.Keywords: Concrete crack, computer vision, deep learning, MobileNetV2 neural network
Procedia PDF Downloads 662453 Implementation of Distributed Randomized Algorithms for Resilient Peer-to-Peer Networks
Authors: Richard Tanaka, Ying Zhu
Abstract:
This paper studies a few randomized algorithms in application-layer peer-to-peer networks. The significant gain in scalability and resilience that peer-to-peer networks provide has made them widely used and adopted in many real-world distributed systems and applications. The unique properties of peer-to-peer networks make them particularly suitable for randomized algorithms such as random walks and gossip algorithms. Instead of simulations of peer-to-peer networks, we leverage the Docker virtual container technology to develop implementations of the peer-to-peer networks and these distributed randomized algorithms running on top of them. We can thus analyze their behaviour and performance in realistic settings. We further consider the problem of identifying high-risk bottleneck links in the network with the objective of improving the resilience and reliability of peer-to-peer networks. We propose a randomized algorithm to solve this problem and evaluate its performance by simulations.Keywords: distributed randomized algorithms, peer-to-peer networks, virtual container technology, resilient networks
Procedia PDF Downloads 2162452 The Dynamic Nexus of Public Health and Journalism in Informed Societies
Authors: Ali Raza
Abstract:
The dynamic landscape of communication has brought about significant advancements that intersect with the realms of public health and journalism. This abstract explores the evolving synergy between these fields, highlighting how their intersection has contributed to informed societies and improved public health outcomes. In the digital age, communication plays a pivotal role in shaping public perception, policy formulation, and collective action. Public health, concerned with safeguarding and improving community well-being, relies on effective communication to disseminate information, encourage healthy behaviors, and mitigate health risks. Simultaneously, journalism, with its commitment to accurate and timely reporting, serves as the conduit through which health information reaches the masses. Advancements in communication technologies have revolutionized the ways in which public health information is both generated and shared. The advent of social media platforms, mobile applications, and online forums has democratized the dissemination of health-related news and insights. This democratization, however, brings challenges, such as the rapid spread of misinformation and the need for nuanced strategies to engage diverse audiences. Effective collaboration between public health professionals and journalists is pivotal in countering these challenges, ensuring that accurate information prevails. The synergy between public health and journalism is most evident during public health crises. The COVID-19 pandemic underscored the pivotal role of journalism in providing accurate and up-to-date information to the public. However, it also highlighted the importance of responsible reporting, as sensationalism and misinformation could exacerbate the crisis. Collaborative efforts between public health experts and journalists led to the amplification of preventive measures, the debunking of myths, and the promotion of evidence-based interventions. Moreover, the accessibility of information in the digital era necessitates a strategic approach to health communication. Behavioral economics and data analytics offer insights into human decision-making and allow tailored health messages to resonate more effectively with specific audiences. This approach, when integrated into journalism, enables the crafting of narratives that not only inform but also influence positive health behaviors. Ethical considerations emerge prominently in this alliance. The responsibility to balance the public's right to know with the potential consequences of sensational reporting underscores the significance of ethical journalism. Health journalists must meticulously source information from reputable experts and institutions to maintain credibility, thus fortifying the bridge between public health and the public. As both public health and journalism undergo transformative shifts, fostering collaboration between these domains becomes essential. Training programs that familiarize journalists with public health concepts and practices can enhance their capacity to report accurately and comprehensively on health issues. Likewise, public health professionals can gain insights into effective communication strategies from seasoned journalists, ensuring that health information reaches a wider audience. In conclusion, the convergence of public health and journalism, facilitated by communication advancements, is a cornerstone of informed societies. Effective communication strategies, driven by collaboration, ensure the accurate dissemination of health information and foster positive behavior change. As the world navigates complex health challenges, the continued evolution of this synergy holds the promise of healthier communities and a more engaged and educated public.Keywords: public awareness, journalism ethics, health promotion, media influence, health literacy
Procedia PDF Downloads 702451 Role of von Willebrand Factor Antigen as Non-Invasive Biomarker for the Prediction of Portal Hypertensive Gastropathy in Patients with Liver Cirrhosis
Authors: Mohamed El Horri, Amine Mouden, Reda Messaoudi, Mohamed Chekkal, Driss Benlaldj, Malika Baghdadi, Lahcene Benmahdi, Fatima Seghier
Abstract:
Background/aim: Recently, the Von Willebrand factor antigen (vWF-Ag)has been identified as a new marker of portal hypertension (PH) and its complications. Few studies talked about its role in the prediction of esophageal varices. VWF-Ag is considered a non-invasive approach, In order to avoid the endoscopic burden, cost, drawbacks, unpleasant and repeated examinations to the patients. In our study, we aimed to evaluate the ability of this marker in the prediction of another complication of portal hypertension, which is portal hypertensive gastropathy (PHG), the one that is diagnosed also by endoscopic tools. Patients and methods: It is about a prospective study, which include 124 cirrhotic patients with no history of bleeding who underwent screening endoscopy for PH-related complications like esophageal varices (EVs) and PHG. Routine biological tests were performed as well as the VWF-Ag testing by both ELFA and Immunoturbidimetric techniques. The diagnostic performance of our marker was assessed using sensitivity, specificity, positive predictive value, negative predictive value, accuracy, and receiver operating characteristic curves. Results: 124 patients were enrolled in this study, with a mean age of 58 years [CI: 55 – 60 years] and a sex ratio of 1.17. Viral etiologies were found in 50% of patients. Screening endoscopy revealed the presence of PHG in 20.2% of cases, while for EVsthey were found in 83.1% of cases. VWF-Ag levels, were significantly increased in patients with PHG compared to those who have not: 441% [CI: 375 – 506], versus 279% [CI: 253 – 304], respectively (p <0.0001). Using the area under the receiver operating characteristic curve (AUC), vWF-Ag was a good predictor for the presence of PHG. With a value higher than 320% and an AUC of 0.824, VWF-Ag had an 84% sensitivity, 74% specificity, 44.7% positive predictive value, 94.8% negative predictive value, and 75.8% diagnostic accuracy. Conclusion: VWF-Ag is a good non-invasive low coast marker for excluding the presence of PHG in patients with liver cirrhosis. Using this marker as part of a selective screening strategy might reduce the need for endoscopic screening and the coast of the management of these kinds of patients.Keywords: von willebrand factor, portal hypertensive gastropathy, prediction, liver cirrhosis
Procedia PDF Downloads 2052450 Using Single Decision Tree to Assess the Impact of Cutting Conditions on Vibration
Authors: S. Ghorbani, N. I. Polushin
Abstract:
Vibration during machining process is crucial since it affects cutting tool, machine, and workpiece leading to a tool wear, tool breakage, and an unacceptable surface roughness. This paper applies a nonparametric statistical method, single decision tree (SDT), to identify factors affecting on vibration in machining process. Workpiece material (AISI 1045 Steel, AA2024 Aluminum alloy, A48-class30 Gray Cast Iron), cutting tool (conventional, cutting tool with holes in toolholder, cutting tool filled up with epoxy-granite), tool overhang (41-65 mm), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev) and depth of cut (0.05-0.15 mm) were used as input variables, while vibration was the output parameter. It is concluded that workpiece material is the most important parameters for natural frequency followed by cutting tool and overhang.Keywords: cutting condition, vibration, natural frequency, decision tree, CART algorithm
Procedia PDF Downloads 3362449 The Mechanical Properties of a Small-Size Seismic Isolation Rubber Bearing for Bridges
Authors: Yi F. Wu, Ai Q. Li, Hao Wang
Abstract:
Taking a novel type of bridge bearings with the diameter being 100mm as an example, the theoretical analysis, the experimental research as well as the numerical simulation of the bearing were conducted. Since the normal compression-shear machines cannot be applied to the small-size bearing, an improved device to test the properties of the bearing was proposed and fabricated. Besides, the simulation of the bearing was conducted on the basis of the explicit finite element software ANSYS/LS-DYNA, and some parameters of the bearing are modified in the finite element model to effectively reduce the computation cost. Results show that all the research methods are capable of revealing the fundamental properties of the small-size bearings, and a combined use of these methods can better catch both the integral properties and the inner detailed mechanical behaviors of the bearing.Keywords: ANSYS/LS-DYNA, compression shear, contact analysis, explicit algorithm, small-size
Procedia PDF Downloads 1802448 Ultra-High Frequency Passive Radar Coverage for Cars Detection in Semi-Urban Scenarios
Authors: Pedro Gómez-del-Hoyo, Jose-Luis Bárcena-Humanes, Nerea del-Rey-Maestre, María-Pilar Jarabo-Amores, David Mata-Moya
Abstract:
A study of achievable coverages using passive radar systems in terrestrial traffic monitoring applications is presented. The study includes the estimation of the bistatic radar cross section of different commercial vehicle models that provide challenging low values which make detection really difficult. A semi-urban scenario is selected to evaluate the impact of excess propagation losses generated by an irregular relief. A bistatic passive radar exploiting UHF frequencies radiated by digital video broadcasting transmitters is assumed. A general method of coverage estimation using electromagnetic simulators in combination with estimated car average bistatic radar cross section is applied. In order to reduce the computational cost, hybrid solution is implemented, assuming free space for the target-receiver path but estimating the excess propagation losses for the transmitter-target one.Keywords: bistatic radar cross section, passive radar, propagation losses, radar coverage
Procedia PDF Downloads 3362447 Evaluation of the Enablers of Industry 4.0 in the Ready-Made Garments Sector of Bangladesh: A Fuzzy Analytical Hierarchy Process Approach
Authors: Shihab-Uz-Zaman Shah, Sanjeeb Roy, Habiba Akter
Abstract:
Keeping the high impact of the Ready-Made Garments (RMG) on the country’s economic growth in mind, this research paves a way for the implementation of Industry 4.0 in the garments industry of Bangladesh. At present, Industry 4.0 is a common buzzword representing the adoption of digital technologies in the production process to transform the existing industries into smart factories and create a great change in the global value chain. The RMG industry is the largest industrial sector of Bangladesh which provides 12.26% to its National GDP (Gross Domestic Product). The work starts with identifying possible enablers of Industry 4.0. To evaluate the enablers, a Multiple-Criteria Decision-Making (MCDM) procedure named Fuzzy Analytical Hierarchy Process (FAHP) was used. A questionnaire was developed as a part of a survey for collecting and analyzing expert opinions from relevant academicians and industrialists. The responses were eventually used as the input for the FAHP which helped to assign weight matrices to the enablers. This weight matrix indicated the level of importance of these enablers. The full paper will discuss the way of a successful evaluation of the enablers and implementation of Industry 4.0 by using these enablers.Keywords: enablers, fuzzy AHP, industry 4.0, RMG sector
Procedia PDF Downloads 1612446 Use of Artificial Intelligence Based Models to Estimate the Use of a Spectral Band in Cognitive Radio
Authors: Danilo López, Edwin Rivas, Fernando Pedraza
Abstract:
Currently, one of the major challenges in wireless networks is the optimal use of radio spectrum, which is managed inefficiently. One of the solutions to existing problem converges in the use of Cognitive Radio (CR), as an essential parameter so that the use of the available licensed spectrum is possible (by secondary users), well above the usage values that are currently detected; thus allowing the opportunistic use of the channel in the absence of primary users (PU). This article presents the results found when estimating or predicting the future use of a spectral transmission band (from the perspective of the PU) for a chaotic type channel arrival behavior. The time series prediction method (which the PU represents) used is ANFIS (Adaptive Neuro Fuzzy Inference System). The results obtained were compared to those delivered by the RNA (Artificial Neural Network) algorithm. The results show better performance in the characterization (modeling and prediction) with the ANFIS methodology.Keywords: ANFIS, cognitive radio, prediction primary user, RNA
Procedia PDF Downloads 4202445 Flow Duration Curves and Recession Curves Connection through a Mathematical Link
Authors: Elena Carcano, Mirzi Betasolo
Abstract:
This study helps Public Water Bureaus in giving reliable answers to water concession requests. Rapidly increasing water requests can be supported provided that further uses of a river course are not totally compromised, and environmental features are protected as well. Strictly speaking, a water concession can be considered a continuous drawing from the source and causes a mean annual streamflow reduction. Therefore, deciding if a water concession is appropriate or inappropriate seems to be easily solved by comparing the generic demand to the mean annual streamflow value at disposal. Still, the immediate shortcoming for such a comparison is that streamflow data are information available only for few catchments and, most often, limited to specific sites. Subsequently, comparing the generic water demand to mean daily discharge is indeed far from being completely satisfactory since the mean daily streamflow is greater than the water withdrawal for a long period of a year. Consequently, such a comparison appears to be of little significance in order to preserve the quality and the quantity of the river. In order to overcome such a limit, this study aims to complete the information provided by flow duration curves introducing a link between Flow Duration Curves (FDCs) and recession curves and aims to show the chronological sequence of flows with a particular focus on low flow data. The analysis is carried out on 25 catchments located in North-Eastern Italy for which daily data are provided. The results identify groups of catchments as hydrologically homogeneous, having the lower part of the FDCs (corresponding streamflow interval is streamflow Q between 300 and 335, namely: Q(300), Q(335)) smoothly reproduced by a common recession curve. In conclusion, the results are useful to provide more reliable answers to water request, especially for those catchments which show similar hydrological response and can be used for a focused regionalization approach on low flow data. A mathematical link between streamflow duration curves and recession curves is herein provided, thus furnishing streamflow duration curves information upon a temporal sequence of data. In such a way, by introducing assumptions on recession curves, the chronological sequence upon low flow data can also be attributed to FDCs, which are known to lack this information by nature.Keywords: chronological sequence of discharges, recession curves, streamflow duration curves, water concession
Procedia PDF Downloads 1862444 Automatic Extraction of Water Bodies Using Whole-R Method
Authors: Nikhat Nawaz, S. Srinivasulu, P. Kesava Rao
Abstract:
Feature extraction plays an important role in many remote sensing applications. Automatic extraction of water bodies is of great significance in many remote sensing applications like change detection, image retrieval etc. This paper presents a procedure for automatic extraction of water information from remote sensing images. The algorithm uses the relative location of R-colour component of the chromaticity diagram. This method is then integrated with the effectiveness of the spatial scale transformation of whole method. The whole method is based on water index fitted from spectral library. Experimental results demonstrate the improved accuracy and effectiveness of the integrated method for automatic extraction of water bodies.Keywords: feature extraction, remote sensing, image retrieval, chromaticity, water index, spectral library, integrated method
Procedia PDF Downloads 3852443 The Influence of Social Media on Gym Memberships in the UAE
Authors: Mohammad Obeidat
Abstract:
In recent years, social media has revolutionized the way businesses market their products and services. Platforms such as Instagram, Facebook, YouTube, and TikTok have become powerful tools for reaching large audiences and engaging with consumers in real-time. These platforms allow businesses to create visually appealing content, interact with customers, and leverage user-generated content to enhance brand visibility and credibility. Recent statistics indicate that businesses that actively participate in social media marketing see improvements in brand visibility, customer engagement, and revenue generation. For example, several studies reveal that 70% of business-to-consumer marketers have gained customers through Facebook. This study aims to contribute to the academic literature on social media marketing and consumer behavior, specifically within the context of the fitness industry in the UAE. The findings will provide valuable insights for gym and fitness center managers, marketers, and social media strategists looking to enhance their engagement with potential customers. By understanding the impact of social media on purchasing decisions, businesses can tailor their marketing efforts to meet consumer expectations better and drive membership growth.Keywords: social media, consumer behavior, digital native, influencer
Procedia PDF Downloads 472442 Experimental Study of Mixture of R290/R600 to Replace R134a in a Domestic Refrigerator
Authors: T. O. Babarinde, B. O. Bolaji, S. O. Ismaila
Abstract:
Interest in natural refrigerants, such as hydrocarbons has been renewed in recent years because of the environmental problems associated with synthetic chlorofluorocarbon (CFC) and hydro-chlorofluorocarbon (HCFC) refrigerants. Due to the depletion of ozone-layer and global warming effects, synthetic refrigerants are being gradually phased out in accordance with the international protocols that aim to protect the environment. In this work, a refrigerator designed to work with R134a was used for this experiment, Liquefied Petroleum Gas (LPG) which consists of commercial propane and butane in a single evaporator domestic refrigerator with a total volume of 62 litres. In this experiment, type K thermocouples with their probes were used to measure the temperatures of four major components (evaporator, compressor, condenser and expansion device) of the refrigeration system. Also the system was instrumented with two pressure gauges at the inlet and outlet of the compressor for measuring the suction and discharged pressures. The experiments were carried out using 40, 60, 80,100g charges and the charges were measured with a digital charging scale. Thermodynamic properties of the LPG refrigerant were determined. The results obtained showed that using LPG charge of 60g. The system COP increased with 14.6% and the power consumption reduced with 9.8% when compared with R134a. Therefore, LPG can replace R134a in domestic refrigerator.Keywords: domestic refrigerator, experimental, LPG, R134a
Procedia PDF Downloads 4832441 ISAR Imaging and Tracking Algorithm for Maneuvering Non-ellipsoidal Extended Objects Using Jump Markov Systems
Authors: Mohamed Barbary, Mohamed H. Abd El-azeem
Abstract:
Maneuvering non-ellipsoidal extended object tracking (M-NEOT) using high-resolution inverse synthetic aperture radar (ISAR) observations is gaining momentum recently. This work presents a new robust implementation of the Jump Markov (JM) multi-Bernoulli (MB) filter for M-NEOT, where the M-NEOT’s ISAR observations are characterized using a skewed (SK) non-symmetrically normal distribution. To cope with the possible abrupt change of kinematic state, extension, and observation distribution over an extended object when a target maneuvers, a multiple model technique is represented based on an MB-track-before-detect (TBD) filter supported by SK-sub-random matrix model (RMM) or sub-ellipses framework. Simulation results demonstrate this remarkable impact.Keywords: maneuvering extended objects, ISAR, skewed normal distribution, sub-RMM, JM-MB-TBD filter
Procedia PDF Downloads 582440 Novel Coprocessor for DNA Sequence Alignment in Resequencing Applications
Authors: Atef Ibrahim, Hamed Elsimary, Abdullah Aljumah, Fayez Gebali
Abstract:
This paper presents a novel semi-systolic array architecture for an optimized parallel sequence alignment algorithm. This architecture has the advantage that it can be modified to be reused for multiple pass processing in order to increase the number of processing elements that can be packed into a single FPGA and to increase the number of sequences that can be aligned in parallel in a single FPGA. This resolves the potential problem of many FPGA resources left unused for designs that have large values of short read length. When using the previously published conventional hardware design. FPGA implementation results show that, for large values of short read lengths (M>128), the proposed design has a slightly higher speed up and FPGA utilization over the the conventional one.Keywords: bioinformatics, genome sequence alignment, re-sequencing applications, systolic array
Procedia PDF Downloads 5312439 A Foodborne Cholera Outbreak in a School Caused by Eating Contaminated Fried Fish: Hoima Municipality, Uganda, February 2018
Authors: Dativa Maria Aliddeki, Fred Monje, Godfrey Nsereko, Benon Kwesiga, Daniel Kadobera, Alex Riolexus Ario
Abstract:
Background: Cholera is a severe gastrointestinal disease caused by Vibrio cholera. It has caused several pandemics. On 26 February 2018, a suspected cholera outbreak, with one death, occurred in School X in Hoima Municipality, western Uganda. We investigated to identify the scope and mode of transmission of the outbreak, and recommend evidence-based control measures. Methods: We defined a suspected case as onset of diarrhea, vomiting, or abdominal pain in a student or staff of School X or their family members during 14 February–10 March. A confirmed case was a suspected case with V. cholerae cultured from stool. We reviewed medical records at Hoima Hospital and searched for cases at School X. We conducted descriptive epidemiologic analysis and hypothesis-generating interviews of 15 case-patients. In a retrospective cohort study, we compared attack rates between exposed and unexposed persons. Results: We identified 15 cases among 75 students and staff of School X and their family members (attack rate=20%), with onset from 25-28 February. One patient died (case-fatality rate=6.6%). The epidemic curve indicated a point-source exposure. On 24 February, a student brought fried fish from her home in a fishing village, where a cholera outbreak was ongoing. Of the 21 persons who ate the fish, 57% developed cholera, compared with 5.6% of 54 persons who did not eat (RR=10; 95% CI=3.2-33). None of 4 persons who recooked the fish before eating, compared with 71% of 17 who did not recook it, developed cholera (RR=0.0, 95%CIFisher exact=0.0-0.95). Of 12 stool specimens cultured, 6 yielded V. cholerae. Conclusion: This cholera outbreak was caused by eating fried fish, which might have been contaminated with V. cholerae in a village with an ongoing outbreak. Lack of thorough cooking of the fish might have facilitated the outbreak. We recommended thoroughly cooking fish before consumption.Keywords: cholera, disease outbreak, foodborne, global health security, Uganda
Procedia PDF Downloads 1992438 Artificial Intelligence Based Analysis of Magnetic Resonance Signals for the Diagnosis of Tissue Abnormalities
Authors: Kapila Warnakulasuriya, Walimuni Janaka Mendis
Abstract:
In this study, an artificial intelligence-based approach is developed to diagnose abnormal tissues in human or animal bodies by analyzing magnetic resonance signals. As opposed to the conventional method of generating an image from the magnetic resonance signals, which are then evaluated by a radiologist for the diagnosis of abnormalities, in the discussed approach, the magnetic resonance signals are analyzed by an artificial intelligence algorithm without having to generate or analyze an image. The AI-based program compares magnetic resonance signals with millions of possible magnetic resonance waveforms which can be generated from various types of normal tissues. Waveforms generated by abnormal tissues are then identified, and images of the abnormal tissues are generated with the possible location of them in the body for further diagnostic tests.Keywords: magnetic resonance, artificial intelligence, magnetic waveform analysis, abnormal tissues
Procedia PDF Downloads 912437 Diffusion Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy in Detecting Malignancy in Maxillofacial Lesions
Authors: Mohamed Khalifa Zayet, Salma Belal Eiid, Mushira Mohamed Dahaba
Abstract:
Introduction: Malignant tumors may not be easily detected by traditional radiographic techniques especially in an anatomically complex area like maxillofacial region. At the same time, the advent of biological functional MRI was a significant footstep in the diagnostic imaging field. Objective: The purpose of this study was to define the malignant metabolic profile of maxillofacial lesions using diffusion MRI and magnetic resonance spectroscopy, as adjunctive aids for diagnosing of such lesions. Subjects and Methods: Twenty-one patients with twenty-two lesions were enrolled in this study. Both morphological and functional MRI scans were performed, where T1, T2 weighted images, diffusion-weighted MRI with four apparent diffusion coefficient (ADC) maps were constructed for analysis, and magnetic resonance spectroscopy with qualitative and semi-quantitative analyses of choline and lactate peaks were applied. Then, all patients underwent incisional or excisional biopsies within two weeks from MR scans. Results: Statistical analysis revealed that not all the parameters had the same diagnostic performance, where lactate had the highest areas under the curve (AUC) of 0.9 and choline was the lowest with insignificant diagnostic value. The best cut-off value suggested for lactate was 0.125, where any lesion above this value is supposed to be malignant with 90 % sensitivity and 83.3 % specificity. Despite that ADC maps had comparable AUCs still, the statistical measure that had the final say was the interpretation of likelihood ratio. As expected, lactate again showed the best combination of positive and negative likelihood ratios, whereas for the maps, ADC map with 500 and 1000 b-values showed the best realistic combination of likelihood ratios, however, with lower sensitivity and specificity than lactate. Conclusion: Diffusion weighted imaging and magnetic resonance spectroscopy are state-of-art in the diagnostic arena and they manifested themselves as key players in the differentiation process of orofacial tumors. The complete biological profile of malignancy can be decoded as low ADC values, high choline and/or high lactate, whereas that of benign entities can be translated as high ADC values, low choline and no lactate.Keywords: diffusion magnetic resonance imaging, magnetic resonance spectroscopy, malignant tumors, maxillofacial
Procedia PDF Downloads 1712436 Identification of Thermally Critical Zones Based on Inter Seasonal Variation in Temperature
Authors: Sakti Mandal
Abstract:
Varying distribution of land surface temperature in an urbanized environment is a globally addressed phenomenon. Usually has been noticed that criticality of surface temperature increases from the periphery to the urban centre. As the centre experiences maximum severity of heat throughout the year, it also represents most critical zone in terms of thermal condition. In this present study, an attempt has been taken to propose a quantitative approach of thermal critical zonation (TCZ) on the basis of seasonal temperature variation. Here the zonation is done by calculating thermal critical value (TCV). From the Landsat 8 thermal digital data of summer and winter seasons for the year 2014, the land surface temperature maps and thermally critical zonation has been prepared, and corresponding dataset has been computed to conduct the overall study of that particular study area. It is shown that TCZ can be clearly identified and analyzed by the help of inter-seasonal temperature range. The results of this study can be utilized effectively in future urban development and planning projects as well as a framework for implementing rules and regulations by the authorities for a sustainable urban development through an environmentally affable approach.Keywords: thermal critical values (TCV), thermally critical zonation (TCZ), land surface temperature (LST), Landsat 8, Kolkata Municipal Corporation (KMC)
Procedia PDF Downloads 1972435 Conditions for Model Matching of Switched Asynchronous Sequential Machines with Output Feedback
Authors: Jung–Min Yang
Abstract:
Solvability of the model matching problem for input/output switched asynchronous sequential machines is discussed in this paper. The control objective is to determine the existence condition and design algorithm for a corrective controller that can match the stable-state behavior of the closed-loop system to that of a reference model. Switching operations and correction procedures are incorporated using output feedback so that the controlled switched machine can show the desired input/output behavior. A matrix expression is presented to address reachability of switched asynchronous sequential machines with output equivalence with respect to a model. The presented reachability condition for the controller design is validated in a simple example.Keywords: asynchronous sequential machines, corrective control, model matching, input/output control
Procedia PDF Downloads 3422434 Improoving Readability for Tweet Contextualization Using Bipartite Graphs
Authors: Amira Dhokar, Lobna Hlaoua, Lotfi Ben Romdhane
Abstract:
Tweet contextualization (TC) is a new issue that aims to answer questions of the form 'What is this tweet about?' The idea of this task was imagined as an extension of a previous area called multi-document summarization (MDS), which consists in generating a summary from many sources. In both TC and MDS, the summary should ideally contain the most relevant information of the topic that is being discussed in the source texts (for MDS) and related to the query (for TC). Furthermore of being informative, a summary should be coherent, i.e. well written to be readable and grammatically compact. Hence, coherence is an essential characteristic in order to produce comprehensible texts. In this paper, we propose a new approach to improve readability and coherence for tweet contextualization based on bipartite graphs. The main idea of our proposed method is to reorder sentences in a given paragraph by combining most expressive words detection and HITS (Hyperlink-Induced Topic Search) algorithm to make up a coherent context.Keywords: bipartite graphs, readability, summarization, tweet contextualization
Procedia PDF Downloads 1942433 Coastal Flood Mapping of Vulnerability Due to Sea Level Rise and Extreme Weather Events: A Case Study of St. Ives, UK
Authors: S. Vavias, T. R. Brewer, T. S. Farewell
Abstract:
Coastal floods have been identified as an important natural hazard that can cause significant damage to the populated built-up areas, related infrastructure and also ecosystems and habitats. This study attempts to fill the gap associated with the development of preliminary assessments of coastal flood vulnerability for compliance with the EU Directive on the Assessment and Management of Flood Risks (2007/60/EC). In this context, a methodology has been created by taking into account three major parameters; the maximum wave run-up modelled from historical weather observations, the highest tide according to historic time series, and the sea level rise projections due to climate change. A high resolution digital terrain model (DTM) derived from LIDAR data has been used to integrate the estimated flood events in a GIS environment. The flood vulnerability map created shows potential risk areas and can play a crucial role in the coastal zone planning process. The proposed method has the potential to be a powerful tool for policy and decision makers for spatial planning and strategic management.Keywords: coastal floods, vulnerability mapping, climate change, extreme weather events
Procedia PDF Downloads 3972432 An Early Detection Type 2 Diabetes Using K - Nearest Neighbor Algorithm
Authors: Ng Liang Shen, Ngahzaifa Abdul Ghani
Abstract:
This research aimed at developing an early warning system for pre-diabetic and diabetics by analyzing simple and easily determinable signs and symptoms of diabetes among the people living in Malaysia using Particle Swarm Optimized Artificial. With the skyrocketing prevalence of Type 2 diabetes in Malaysia, the system can be used to encourage affected people to seek further medical attention to prevent the onset of diabetes or start managing it early enough to avoid the associated complications. The study sought to find out the best predictive variables of Type 2 Diabetes Mellitus, developed a system to diagnose diabetes from the variables using Artificial Neural Networks and tested the system on accuracy to find out the patent generated from diabetes diagnosis result in machine learning algorithms even at primary or advanced stages.Keywords: diabetes diagnosis, Artificial Neural Networks, artificial intelligence, soft computing, medical diagnosis
Procedia PDF Downloads 3362431 Estimation and Forecasting with a Quantile AR Model for Financial Returns
Authors: Yuzhi Cai
Abstract:
This talk presents a Bayesian approach to quantile autoregressive (QAR) time series model estimation and forecasting. We establish that the joint posterior distribution of the model parameters and future values is well defined. The associated MCMC algorithm for parameter estimation and forecasting converges to the posterior distribution quickly. We also present a combining forecasts technique to produce more accurate out-of-sample forecasts by using a weighted sequence of fitted QAR models. A moving window method to check the quality of the estimated conditional quantiles is developed. We verify our methodology using simulation studies and then apply it to currency exchange rate data. An application of the method to the USD to GBP daily currency exchange rates will also be discussed. The results obtained show that an unequally weighted combining method performs better than other forecasting methodology.Keywords: combining forecasts, MCMC, quantile modelling, quantile forecasting, predictive density functions
Procedia PDF Downloads 3472430 Global Indicators of Successful Remote Monitoring Adoption Applying Diffusion of Innovation Theory
Authors: Danika Tynes
Abstract:
Innovations in technology have implications for sustainable development in health and wellness. Remote monitoring is one innovation for which the evidence-base has grown to support its viability as a quality healthcare delivery adjunct. This research reviews global data on telehealth adoption, in particular, remote monitoring, and the conditions under which its success becomes more likely. System-level indicators were selected to represent four constructs of DoI theory (relative advantage, compatibility, complexity, and observability) and assessed against 5 types of Telehealth (Teleradiology, Teledermatology, Telepathology, Telepsychology, and Remote Monitoring) using ordinal logistic regression. Analyses include data from 84 countries, as extracted from the World Health Organization, World Bank, ICT (Information Communications Technology) Index, and HDI (Human Development Index) datasets. Analyses supported relative advantage and compatibility as the strongest influencers of remote monitoring adoption. Findings from this research may help focus on the allocation of resources, as a sustainability concern, through consideration of systems-level factors that may influence the success of remote monitoring adoption.Keywords: remote monitoring, diffusion of innovation, telehealth, digital health
Procedia PDF Downloads 133