Search results for: identification of emotions
3152 Forensic Comparison of Facial Images for Human Identification
Authors: D. P. Gangwar
Abstract:
Identification of human through facial images has got great importance in forensic science. The video recordings, CCTV footage, passports, driver licenses and other related documents are invariably sent to the laboratory for comparison of the questioned photographs as well as video recordings with suspected photographs/recordings to prove the identity of a person. More than 300 questioned and 300 control photographs received in actual crime cases, received from various investigation agencies, have been compared by me so far using various familiar analysis and comparison techniques such as Holistic comparison, Morphological analysis, Photo-anthropometry and superimposition. On the basis of findings obtained during the examination huge photo exhibits, a realistic and comprehensive technique has been proposed which could be very useful for forensic.Keywords: CCTV Images, facial features, photo-anthropometry, superimposition
Procedia PDF Downloads 5283151 Scientific Investigation for an Ancient Egyptian Polychrome Wooden Stele
Authors: Ahmed Abdrabou, Medhat Abdalla
Abstract:
The studied stele dates back to Third Intermediate Period (1075-664) B.C in an ancient Egypt. It is made of wood and covered with painted gesso layers. This study aims to use a combination of multi spectral imaging {visible, infrared (IR), Visible-induced infrared luminescence (VIL), Visible-induced ultraviolet luminescence (UVL) and ultraviolet reflected (UVR)}, along with portable x-ray fluorescence in order to map and identify the pigments as well as to provide a deeper understanding of the painting techniques. Moreover; the authors were significantly interested in the identification of wood species. Multispectral imaging acquired in 3 spectral bands, ultraviolet (360-400 nm), visible (400-780 nm) and infrared (780-1100 nm) using (UV Ultraviolet-induced luminescence (UVL), UV Reflected (UVR), Visible (VIS), Visible-induced infrared luminescence (VIL) and Infrared photography. False color images are made by digitally editing the VIS with IR or UV images using Adobe Photoshop. Optical Microscopy (OM), potable X-ray fluorescence spectroscopy (p-XRF) and Fourier Transform Infrared Spectroscopy (FTIR) were used in this study. Mapping and imaging techniques provided useful information about the spatial distribution of pigments, in particular visible-induced luminescence (VIL) which allowed the spatial distribution of Egyptian blue pigment to be mapped and every region containing Egyptian blue, even down to single crystals in some instances, is clearly visible as a bright white area; however complete characterization of the pigments requires the use of p. XRF spectroscopy. Based on the elemental analysis found by P.XRF, we conclude that the artists used mixtures of the basic mineral pigments to achieve a wider palette of hues. Identification of wood species Microscopic identification indicated that the wood used was Sycamore Fig (Ficus sycomorus L.) which is recorded as being native to Egypt and was used to make wooden artifacts since at least the Fifth Dynasty.Keywords: polychrome wooden stele, multispectral imaging, IR luminescence, Wood identification, Sycamore Fig, p-XRF
Procedia PDF Downloads 2643150 Comparing Russian and American Students’ Metaphorical Competence
Authors: Svetlana L. Mishlanova, Evgeniia V. Ermakova, Mariia E. Timirkina
Abstract:
The paper is concerned with the study of metaphor production in essays written by Russian and English native speakers in the framework of cognitive metaphor theory. It considers metaphorical competence as individual’s ability to recognize, understand and use metaphors in speech. The work analyzes the influence of visual metaphor on production and density of conventional and novel verbal metaphors. The main methods of research include experiment connected with image interpretation, metaphor identification procedure (MIPVU) and visual conventional metaphors identification procedure proposed by VisMet group. The research findings will be used in the project aimed at comparing metaphorical competence of native and non-native English speakers.Keywords: metaphor, metaphorical competence, conventional, novel
Procedia PDF Downloads 2863149 A Mixed-Method Study Exploring Expressive Writing as a Brief Intervention Targeting Mental Health and Wellbeing in Higher Education Students: A Focus on the Qualitative Findings
Authors: Deborah Bailey-Rodriguez, Maria Paula Valdivieso Rueda, Gemma Reynolds
Abstract:
In recent years, the mental health of Higher Education (HE) students has been a growing concern. This has been further exacerbated by the stresses associated with the Covid-19 pandemic, placing students at even greater risk of developing mental health issues. Support available to students in HE tends to follow an established and traditional route. The demands for counseling services have grown, not only with the increase in student numbers but with the number of students seeking support for mental health issues, with 94% of HE institutions recently reporting an increase in the need for counseling services. One way of improving the well-being and mental health of HE students is through the use of brief interventions, such as expressive writing (EW). This intervention involves encouraging individuals to write continuously for at least 15-20 minutes for three to five sessions (often on consecutive days) about their deepest thoughts and feelings to explore significant personal experiences in a meaningful way. Given the brevity, simplicity and cost-effectiveness of EW, this intervention has considerable potential as an intervention for HE populations. The current study, therefore, employed a mixed-methods design to explore the effectiveness of EW in reducing anxiety, general stress, academic stress and depression in HE students while improving well-being. HE students at MDX were randomly assigned to one of three conditions: (1) The UniExp-EW group was required to write about their emotions and thoughts about any stressors they have faced that are directly relevant to their university experience (2) The NonUniExp-EW group was required to write about their emotions and thoughts about any stressors that are NOT directly relevant to their university experience, and (3) The Control group were required to write about how they spent their weekend, with no reference to thoughts or emotions, and without thinking about university. Participants were required to carry out the EW intervention for 15 minutes per day for four consecutive days. Baseline mental health and well-being measures were taken before the intervention via a battery of standardized questionnaires. Following completion of the intervention on day four, participants were required to complete the questionnaires a second time and again one week later. Participants were also invited to attend focus groups to discuss their experience of the intervention. This will allow an in-depth investigation into students’ perceptions of EW as an effective intervention to determine whether they would choose to use this intervention in the future. Preliminary findings will be discussed at the conference as well as a discussion of the important implications of the findings. The study is fundamental because if EW is an effective intervention for improving mental health and well-being in HE students, its brevity and simplicity mean it can be easily implemented and can be freely available to students. Improving the mental health and well-being of HE students can have knock-on implications for improving academic skills and career development.Keywords: expressive writing, higher education, psychology in education, mixed-methods, mental health, academic stress
Procedia PDF Downloads 693148 How Children Synchronize with Their Teacher: Evidence from a Real-World Elementary School Classroom
Authors: Reiko Yamamoto
Abstract:
This paper reports on how synchrony occurs between children and their teacher, and what prevents or facilitates synchrony. The aim of the experiment conducted in this study was to precisely analyze their movements and synchrony and reveal the process of synchrony in a real-world classroom. Specifically, the experiment was conducted for around 20 minutes during an English as a foreign language (EFL) lesson. The participants were 11 fourth-grade school children and their classroom teacher in a public elementary school in Japan. Previous researchers assert that synchrony causes the state of flow in a class. For checking the level of flow, Short Flow State Scale (SFSS) was adopted. The experimental procedure had four steps: 1) The teacher read aloud the first half of an English storybook to the children. Both the teacher and the children were at their own desks. 2) The children were subjected to an SFSS check. 3) The teacher read aloud the remaining half of the storybook to the children. She made the children remove their desks before reading. 4) The children were again subjected to an SFSS check. The movements of all participants were recorded with a video camera. From the movement analysis, it was found that the children synchronized better with the teacher in Step 3 than in Step 1, and that the teacher’s movement became free and outstanding without a desk. This implies that the desk acted as a barrier between the children and the teacher. Removal of this barrier resulted in the children’s reactions becoming synchronized with those of the teacher. The SFSS results proved that the children experienced more flow without a barrier than with a barrier. Apparently, synchrony is what caused flow or social emotions in the classroom. The main conclusion is that synchrony leads to cognitive outcomes such as children’s academic performance in EFL learning.Keywords: engagement in a class, English as a foreign language (EFL) learning, interactional synchrony, social emotions
Procedia PDF Downloads 1403147 Experiences and Coping of Adults with Death of Siblings during Childhood in Chinese Context: Implications for Therapeutic Interventions
Authors: Sze Yee Lee
Abstract:
The death of a sibling in childhood leads to significant impacts on both the personal and family development of the surviving siblings. Yet, the effects of sibling loss in Chinese societies such as Hong Kong have been inadequately documented in the literature. In particular, there is a gap in the literature about the long term impacts on surviving siblings. This paper explores the experience of adult siblings encountering siblings’ death during childhood with the use of in-depth interviews. Through thematic analysis and in-depth interviews, the author explores the impacts on surviving siblings’ emotions, coping styles, struggles and challenges, and personal development. Furthermore, the influences on family dynamics are explored thoroughly, including the changes in a family atmosphere, family roles, family relationships, family communication, and parenting styles. More importantly, the author identifies (i) existing continuing bonds, (ii) crying, (iii) adequate social support, (iv) hiding own emotions as a gesture of protecting parents as the crucial elements pertinent to surviving siblings’ successful adaptation in the face of sibling loss. In addition, 'child-centered' and 'family-centered' interventions for families with siblings' death in a Chinese context are discussed. With the use of age-appropriate language and children’s participation in the preparation of death and after-death arrangements, surviving siblings could be assisted in transforming bereavement into opportunities for growth. In addition, the bereaved family could better cope with grief with open communication platforms, adequate social support, and family education resources. Meanwhile, life-and-death education at both school and community levels could enhance the public’s awareness and understanding of the bereaved individuals to prevent creating further harm to them.Keywords: children and adolescent bereavement, children-centered, family-centered, sibling’s death
Procedia PDF Downloads 1093146 The Marker Active Compound Identification of Calotropis gigantea Roots Extract as an Anticancer
Authors: Roihatul Mutiah, Sukardiman, Aty Widyawaruyanti
Abstract:
Calotropis gigantiea (L.) R. Br (Apocynaceae) commonly called as “Biduri” or “giant milk weed” is a well-known weed to many cultures for treating various disorders. Several studies reported that C.gigantea roots has anticancer activity. The main aim of this research was to isolate and identify an active marker compound of C.gigantea roots for quality control purpose of its extract in the development as anticancer natural product. The isolation methods was bioactivity guided column chromatography, TLC, and HPLC. Evaluated anticancer activity of there substances using MTT assay methods. Identification structure active compound by UV, 1HNMR, 13CNMR, HMBC, HMQC spectral and other references. The result showed that the marker active compound was identical as Calotropin.Keywords: calotropin, Calotropis gigantea, anticancer, marker active
Procedia PDF Downloads 3333145 The Relationships among Learning Emotion, Major Satisfaction, Learning Flow, and Academic Achievement in Medical School Students
Authors: S. J. Yune, S. Y. Lee, S. J. Im, B. S. Kam, S. Y. Baek
Abstract:
This study explored whether academic emotion, major satisfaction, and learning flow are associated with academic achievement in medical school. We know that emotion and affective factors are important factors in students' learning and performance. Emotion has taken the stage in much of contemporary educational psychology literature, no longer relegated to secondary status behind traditionally studied cognitive constructs. Medical school students (n=164) completed academic emotion, major satisfaction, and learning flow online survey. Academic performance was operationalized as students' average grade on two semester exams. For data analysis, correlation analysis, multiple regression analysis, hierarchical multiple regression analyses and ANOVA were conducted. The results largely confirmed the hypothesized relations among academic emotion, major satisfaction, learning flow and academic achievement. Positive academic emotion had a correlation with academic achievement (β=.191). Positive emotion had 8.5% explanatory power for academic achievement. Especially, sense of accomplishment had a significant impact on learning performance (β=.265). On the other hand, negative emotion, major satisfaction, and learning flow did not affect academic performance. Also, there were differences in sense of great (F=5.446, p=.001) and interest (F=2.78, p=.043) among positive emotion, boredom (F=3.55, p=.016), anger (F=4.346, p=.006), and petulance (F=3.779, p=.012) among negative emotion by grade. This study suggested that medical students' positive emotion was an important contributor to their academic achievement. At the same time, it is important to consider that some negative emotions can act to increase one’s motivation. Of particular importance is the notion that instructors can and should create learning environment that foster positive emotion for students. In doing so, instructors improve their chances of positively impacting students’ achievement emotions, as well as their subsequent motivation, learning, and performance. This result had an implication for medical educators striving to understand the personal emotional factors that influence learning and performance in medical training.Keywords: academic achievement, learning emotion, learning flow, major satisfaction
Procedia PDF Downloads 2713144 Emotional Characteristics of Preschoolers Due to Parameters of Family Interaction
Authors: Nadezda Sergunicheva, Victoria Vasilenko
Abstract:
The emotional sphere is one of the most important aspects of the child's development and significant factor in his psychological well-being. Present research aims to identify the relationships between emotional characteristics of preschoolers and parameters of family interaction: emotional interaction, parental styles, family adaptation, and cohesion. The study involved 40 people from Saint-Petersburg: 20 children (10 boys and 10 girls) from 5 to 6 years, Mage = 5 years 4 months and 20 mothers. Methods used were: Test 'Emotional identification' by E.Izotova, Empathy test by T. Gavrilova, Children's fears test by A. Zakharov, M. Panfilova, 'Parent-child emotional interaction questionnaire' by E. Zakharova, 'Analysis of family relationships questionnaire by E. Eidemiller and V. Yustitskis, Family Adaptation and Cohesion Scales (FACES III) by D. X. Olson, J. Portner, I. Lavi. Сorrelation analysis revealed that the higher index of underdevelopment of parental feelings, the lower the child’s ability to identify emotions (p < 0,05), but at the same time, the higher ability to understand emotional states (p < 0,01), as in the case of hypoprotection (p < 0,05). Two last correlations can be explained by compensatory mechanism. This is also confirmed by negative correlations between maternal educational uncertainty and child’s ability to understand emotional states and between indulgence and child’s ability to perceive emotional states (p < 0,05). The more pronounced the phobia of a child's loss, the higher egocentric nature of child’s empathy (p < 0,05). The child’s fears have the greatest number of relationships with the characteristics of family interaction. The more pronounced mother’s positive feelings in interaction, emotional support, acceptance of himself as a parent, desire for physical contact with child and the more adaptive the family system, the less the total number of child’s fears (p < 0,05). The more the mother's ability to perceive the child's state, positive feelings in interaction, emotional support (p < 0,01), unconditional acceptance of the child, acceptance of himself as a parent and the desire for physical contact (p < 0,05), the less the amount child’s spatial fears. Socially-mediated fears are associated with less pronounced mother's positive feelings in interaction, less emotional support and deficiency of demands, obligations (p < 0,05). Fears of animals and fairy-tale characters positively correlated with the excessive demands, obligations and excessive sanctions (p < 0,05). The more emotional support (p < 0,01), mother's ability to perceive the child's state, positive feelings in interaction, unconditional acceptance of the child, acceptance of himself as a parent (p < 0,05), the less the amount child’s fears of nightmares. This kind of fears is positively correlated with excessive demands, prohibitions (p < 0,05). The more adaptive the family system (p < 0,01), the higher family cohesion, mother's acceptance of himself as a parent and preference to childish traits (p < 0,05), the less fear of death. Thus, the children's fears have the closest relationships with the characteristics of family interaction. The severity of fears, especially spatial, is connected, first of all, with the emotional side of the mother-parent interaction. Fears of animals and fairy-tale characters are associated with some characteristics of the parental styles, connected with the rigor of mothers. Correlations of the emotional identification are contradictory and require further clarification. Research is supported by RFBR №18-013-00990.Keywords: emotional characteristics, family interaction, fears, parental styles, preschoolers
Procedia PDF Downloads 2713143 Fault Location Identification in High Voltage Transmission Lines
Authors: Khaled M. El Naggar
Abstract:
This paper introduces a digital method for fault section identification in transmission lines. The method uses digital set of the measured short circuit current to locate faults in electrical power systems. The digitized current is used to construct a set of overdetermined system of equations. The problem is then constructed and solved using the proposed digital optimization technique to find the fault distance. The proposed optimization methodology is an application of simulated annealing optimization technique. The method is tested using practical case study to evaluate the proposed method. The accurate results obtained show that the algorithm can be used as a powerful tool in the area of power system protection.Keywords: optimization, estimation, faults, measurement, high voltage, simulated annealing
Procedia PDF Downloads 3923142 2017 Survey on Correlation between Connection and Emotions for Children and Adolescents
Authors: Ya-Hsing Yeh, I-Chun Tai, Ming-Chieh Lin, Li-Ting Lee, Ping-Ting Hsieh, Yi-Chen Ling, Jhia-Ying Du, Li-Ping Chang, Guan-Long Yu
Abstract:
Objective: To understand the connection between children/adolescents and those who they miss, as well as the correlation between connection and their emotions. Method: Based on the objective, a close-ended questionnaire was made into a formal questionnaire after experts evaluated its validity. In February 2017, the paper-based questionnaire was adopted. Twenty-one elementary schools and junior high schools in Taiwan were sampled by purposive sampling approach and the fifth to ninth graders were our participants. A total of 2,502 valid questionnaires were retrieved. Results: Forty-four-point three percent of children/adolescents missed a person in mind, or they thought a person as a significant other in mind, but they had no connection with them. The highest proportion of those they wanted to contact with was ‘Friends and classmates’, and the others were ‘immediate family’, such as parents and grandparents, and ‘academic or vocational instructors, such as home-room teachers, coaches, cram school teachers and so on, respectively. Only 14% of children/adolescents would actively contact those they missed. The proportion of what children/adolescents ‘often’ actively keeping in touch with those they missed felt happy or cheerful was higher compared with those who ‘seldom’ actively keeping in touch with people they missed whenever they recalled who they missed, or the person actively contacted with them. Sixty-one-point seven percent of participants haven’t connected with those they missed for more than one year. The main reason was ‘environmental factors’, such as school/class transfer or moving, and then ‘academic or personal factors’, ‘communication tools’, and ‘personalities’, respectively. In addition to ‘greetings during festivals and holidays’, ‘hearing from those they missed’, and ‘knowing the latest information about those they missed on their Internet communities’, children/adolescents would like to actively contact with them when they felt ‘happy’ and ‘depressed or frustrated. The first three opinions of what children/adolescents regarded truly connection were ‘listening to people they missed attentively’, ‘sharing their secrets’, and ‘contacting with people they regularly missed with real actions’. In terms of gender, girls’ proportion on ‘showing with actions, including contacting with people they missed regularly or expressing their feelings openly’, and ‘sharing secrets’ was higher than boys’, while boy’s proportion on ‘the attitudes when contacting people they missed, including listening attentively or without being distracted’ was higher than girls’. Conclusions: I. The more ‘active’ connection they have, the more happiness they feel. II. Teachers can teach children how to manage their emotions and express their feelings appropriately. III. It is very important to turn connection into ‘action.’ Teachers can set a good example and share their moods with others whatever they are in the mood. This is a kind of connection.Keywords: children, connection, emotion, mental health
Procedia PDF Downloads 1543141 Identification of Wiener Model Using Iterative Schemes
Authors: Vikram Saini, Lillie Dewan
Abstract:
This paper presents the iterative schemes based on Least square, Hierarchical Least Square and Stochastic Approximation Gradient method for the Identification of Wiener model with parametric structure. A gradient method is presented for the parameter estimation of wiener model with noise conditions based on the stochastic approximation. Simulation results are presented for the Wiener model structure with different static non-linear elements in the presence of colored noise to show the comparative analysis of the iterative methods. The stochastic gradient method shows improvement in the estimation performance and provides fast convergence of the parameters estimates.Keywords: hard non-linearity, least square, parameter estimation, stochastic approximation gradient, Wiener model
Procedia PDF Downloads 4053140 A Convolutional Neural Network Based Vehicle Theft Detection, Location, and Reporting System
Authors: Michael Moeti, Khuliso Sigama, Thapelo Samuel Matlala
Abstract:
One of the principal challenges that the world is confronted with is insecurity. The crime rate is increasing exponentially, and protecting our physical assets especially in the motorist industry, is becoming impossible when applying our own strength. The need to develop technological solutions that detect and report theft without any human interference is inevitable. This is critical, especially for vehicle owners, to ensure theft detection and speedy identification towards recovery efforts in cases where a vehicle is missing or attempted theft is taking place. The vehicle theft detection system uses Convolutional Neural Network (CNN) to recognize the driver's face captured using an installed mobile phone device. The location identification function uses a Global Positioning System (GPS) to determine the real-time location of the vehicle. Upon identification of the location, Global System for Mobile Communications (GSM) technology is used to report or notify the vehicle owner about the whereabouts of the vehicle. The installed mobile app was implemented by making use of python as it is undoubtedly the best choice in machine learning. It allows easy access to machine learning algorithms through its widely developed library ecosystem. The graphical user interface was developed by making use of JAVA as it is better suited for mobile development. Google's online database (Firebase) was used as a means of storage for the application. The system integration test was performed using a simple percentage analysis. Sixty (60) vehicle owners participated in this study as a sample, and questionnaires were used in order to establish the acceptability of the system developed. The result indicates the efficiency of the proposed system, and consequently, the paper proposes the use of the system can effectively monitor the vehicle at any given place, even if it is driven outside its normal jurisdiction. More so, the system can be used as a database to detect, locate and report missing vehicles to different security agencies.Keywords: CNN, location identification, tracking, GPS, GSM
Procedia PDF Downloads 1663139 Measuring Multi-Class Linear Classifier for Image Classification
Authors: Fatma Susilawati Mohamad, Azizah Abdul Manaf, Fadhillah Ahmad, Zarina Mohamad, Wan Suryani Wan Awang
Abstract:
A simple and robust multi-class linear classifier is proposed and implemented. For a pair of classes of the linear boundary, a collection of segments of hyper planes created as perpendicular bisectors of line segments linking centroids of the classes or part of classes. Nearest Neighbor and Linear Discriminant Analysis are compared in the experiments to see the performances of each classifier in discriminating ripeness of oil palm. This paper proposes a multi-class linear classifier using Linear Discriminant Analysis (LDA) for image identification. Result proves that LDA is well capable in separating multi-class features for ripeness identification.Keywords: multi-class, linear classifier, nearest neighbor, linear discriminant analysis
Procedia PDF Downloads 5383138 Using Structural Equation Modeling to Analyze the Impact of Remote Work on Job Satisfaction
Authors: Florian Pfeffel, Valentin Nickolai, Christian Louis Kühner
Abstract:
Digitalization has disrupted the traditional workplace environment by allowing many employees to work from anywhere at any time. This trend of working from home was further accelerated due to the COVID-19 crisis, which forced companies to rethink their workplace models. While in many companies, this shift happened out of pure necessity; many employees were left more satisfied with their job due to the opportunity to work from home. This study focuses on employees’ job satisfaction in the service sector in dependence on the different work models, which are defined as a “work from home” model, the traditional “work in office” model, and a hybrid model. Using structural equation modeling (SEM), these three work models have been analyzed based on 13 influencing factors on job satisfaction that have been further summarized in the three groups “classic influencing factors”, “influencing factors changed by remote working”, and “new remote working influencing factors”. Based on the influencing factors on job satisfaction, a survey has been conducted with n = 684 employees in the service sector. Cronbach’s alpha of the individual constructs was shown to be suitable. Furthermore, the construct validity of the constructs was confirmed by face validity, content validity, convergent validity (AVE > 0.5: CR > 0.7), and discriminant validity. Additionally, confirmatory factor analysis (CFA) confirmed the model fit for the investigated sample (CMIN/DF: 2.567; CFI: 0.927; RMSEA: 0.048). The SEM-analysis has shown that the most significant influencing factor on job satisfaction is “identification with the work” with β = 0.540, followed by “Appreciation” (β = 0.151), “Compensation” (β = 0.124), “Work-Life-Balance” (β = 0.116), and “Communication and Exchange of Information” (β = 0.105). While the significance of each factor can vary depending on the work model, the SEM-analysis shows that the identification with the work is the most significant factor in all three work models and, in the case of the traditional office work model, it is the only significant influencing factor. The study shows that employees who work entirely remotely or have a hybrid work model are significantly more satisfied with their job, with a job satisfaction score of 5.0 respectively on a scale from 1 (very dissatisfied) to 7 (very satisfied), than employees do not have the option to work from home with a score of 4.6. This comes as a result of the lower identification with the work in the model without any remote working. Furthermore, the responses indicate that it is important to consider the individual preferences of each employee when it comes to the work model to achieve overall higher job satisfaction. Thus, it can be argued that companies can profit off of more motivation and higher productivity by considering the individual work model preferences, therefore, increasing the identification with the respective work.Keywords: home-office, identification with work, job satisfaction, new work, remote work, structural equation modeling
Procedia PDF Downloads 823137 The Impact of the Number of Neurons in the Hidden Layer on the Performance of MLP Neural Network: Application to the Fast Identification of Toxics Gases
Authors: Slimane Ouhmad, Abdellah Halimi
Abstract:
In this work, we have applied neural networks method MLP type to a database from an array of six sensors for the detection of three toxic gases. As the choice of the number of hidden layers and the weight values has a great influence on the convergence of the learning algorithm, we proposed, in this article, a mathematical formulation to determine the optimal number of hidden layers and good weight values based on the method of back propagation of errors. The results of this modeling have improved discrimination of these gases on the one hand, and optimize the computation time on the other hand, the comparison to other results achieved in this case.Keywords: MLP Neural Network, back-propagation, number of neurons in the hidden layer, identification, computing time
Procedia PDF Downloads 3473136 Systematic Review of Associations between Interoception, Vagal Tone, and Emotional Regulation
Authors: Darren Edwards, Thomas Pinna
Abstract:
Background: Interoception and heart rate variability have been found to predict outcomes of mental health and well-being. However, these have usually been investigated independently of one another. Objectives: This review aimed to explore the associations between interoception and heart rate variability (HRV) with emotion regulation (ER) and ER strategies within the existing literature and utilizing systematic review methodology. Methods: The process of article retrieval and selection followed the preferred reporting items for systematic review and meta-analyses (PRISMA) guidelines. Databases PsychINFO, Web of Science, PubMed, CINAHL, and MEDLINE were scanned for papers published. Preliminary inclusion and exclusion criteria were specified following the patient, intervention, comparison, and outcome (PICO) framework, whilst the checklist for critical appraisal and data extraction for systematic reviews of prediction modeling studies (CHARMS) framework was used to help formulate the research question, and to critically assess for bias in the identified full-length articles. Results: 237 studies were identified after initial database searches. Of these, eight studies were included in the final selection. Six studies explored the associations between HRV and ER, whilst three investigated the associations between interoception and ER (one of which was included in the HRV selection too). Overall, the results seem to show that greater HRV and interoception are associated with better ER. Specifically, high parasympathetic activity largely predicted the use of adaptive ER strategies such as reappraisal, and better acceptance of emotions. High interoception, instead, was predictive of effective down-regulation of negative emotions and handling of social uncertainty, there was no association with any specific ER strategy. Conclusions: Awareness of one’s own bodily feelings and vagal activation seem to be of central importance for the effective regulation of emotional responses.Keywords: emotional regulation, vagal tone, interoception, chronic conditions, health and well-being, psychological flexibility
Procedia PDF Downloads 1123135 Development of Partial Discharge Defect Recognition and Status Diagnosis System with Adaptive Deep Learning
Authors: Chien-kuo Chang, Bo-wei Wu, Yi-yun Tang, Min-chiu Wu
Abstract:
This paper proposes a power equipment diagnosis system based on partial discharge (PD), which is characterized by increasing the readability of experimental data and the convenience of operation. This system integrates a variety of analysis programs of different data formats and different programming languages and then establishes a set of interfaces that can follow and expand the structure, which is also helpful for subsequent maintenance and innovation. This study shows a case of using the developed Convolutional Neural Networks (CNN) to integrate with this system, using the designed model architecture to simplify the complex training process. It is expected that the simplified training process can be used to establish an adaptive deep learning experimental structure. By selecting different test data for repeated training, the accuracy of the identification system can be enhanced. On this platform, the measurement status and partial discharge pattern of each equipment can be checked in real time, and the function of real-time identification can be set, and various training models can be used to carry out real-time partial discharge insulation defect identification and insulation state diagnosis. When the electric power equipment entering the dangerous period, replace equipment early to avoid unexpected electrical accidents.Keywords: partial discharge, convolutional neural network, partial discharge analysis platform, adaptive deep learning
Procedia PDF Downloads 783134 Multimodal Employee Attendance Management System
Authors: Khaled Mohammed
Abstract:
This paper presents novel face recognition and identification approaches for the real-time attendance management problem in large companies/factories and government institutions. The proposed uses the Minimum Ratio (MR) approach for employee identification. Capturing the authentic face variability from a sequence of video frames has been considered for the recognition of faces and resulted in system robustness against the variability of facial features. Experimental results indicated an improvement in the performance of the proposed system compared to the Previous approaches at a rate between 2% to 5%. In addition, it decreased the time two times if compared with the Previous techniques, such as Extreme Learning Machine (ELM) & Multi-Scale Structural Similarity index (MS-SSIM). Finally, it achieved an accuracy of 99%.Keywords: attendance management system, face detection and recognition, live face recognition, minimum ratio
Procedia PDF Downloads 1553133 Characteristic Matrix Faults for Flight Control System
Authors: Thanh Nga Thai
Abstract:
A major issue in air transportation is in flight safety. Recent developments in control engineering have an attractive potential for resolving new issues related to guidance, navigation, and control of flying vehicles. Many future atmospheric missions will require increased on board autonomy including fault diagnosis and the subsequent control and guidance recovery actions. To improve designing system diagnostic, an efficient FDI- fault detection and identification- methodology is necessary to achieve. Contribute to characteristic of different faults in sensor and actuator in the view of mathematics brings a lot of profit in some condition changes in the system. This research finds some profit to reduce a trade-off to achieve between fault detection and performance of the closed loop system and cost and calculated in simulation.Keywords: fault detection and identification, sensor faults, actuator faults, flight control system
Procedia PDF Downloads 4223132 Sentiment Mapping through Social Media and Its Implications
Authors: G. C. Joshi, M. Paul, B. K. Kalita, V. Ranga, J. S. Rawat, P. S. Rawat
Abstract:
Being a habitat of the global village, every place has established connection through the strength and power of social media piercing through the political boundaries. Social media is a digital platform, where people across the world can interact as it has advantages of being universal, anonymous, easily accessible, indirect interaction, gathering and sharing information. The power of social media lies in the intensity of sharing extreme opinions or feelings, in contrast to the personal interactions which can be easily mapped in the form of Sentiment Mapping. The easy access to social networking sites such as Facebook, Twitter and blogs made unprecedented opportunities for citizens to voice their opinions loaded with dynamics of emotions. These further influence human thoughts where social media plays a very active role. A recent incident of public importance was selected as a case study to map the sentiments of people through Twitter. Understanding those dynamics through the eye of an ordinary people can be challenging. With the help of R-programming language and by the aid of GIS techniques sentiment maps has been produced. The emotions flowing worldwide in the form of tweets were extracted and analyzed. The number of tweets had diminished by 91 % from 25/08/2017 to 31/08/2017. A boom of sentiments emerged near the origin of the case, i.e., Delhi, Haryana and Punjab and the capital showed maximum influence resulting in spillover effect near Delhi. The trend of sentiments was prevailing more as neutral (45.37%), negative (28.6%) and positive (21.6%) after calculating the sentiment scores of the tweets. The result can be used to know the spatial distribution of digital penetration in India, where highest concentration lies in Mumbai and lowest in North East India and Jammu and Kashmir.Keywords: sentiment mapping, digital literacy, GIS, R statistical language, spatio-temporal
Procedia PDF Downloads 1513131 Re-identification Risk and Mitigation in Federated Learning: Human Activity Recognition Use Case
Authors: Besma Khalfoun
Abstract:
In many current Human Activity Recognition (HAR) applications, users' data is frequently shared and centrally stored by third parties, posing a significant privacy risk. This practice makes these entities attractive targets for extracting sensitive information about users, including their identity, health status, and location, thereby directly violating users' privacy. To tackle the issue of centralized data storage, a relatively recent paradigm known as federated learning has emerged. In this approach, users' raw data remains on their smartphones, where they train the HAR model locally. However, users still share updates of their local models originating from raw data. These updates are vulnerable to several attacks designed to extract sensitive information, such as determining whether a data sample is used in the training process, recovering the training data with inversion attacks, or inferring a specific attribute or property from the training data. In this paper, we first introduce PUR-Attack, a parameter-based user re-identification attack developed for HAR applications within a federated learning setting. It involves associating anonymous model updates (i.e., local models' weights or parameters) with the originating user's identity using background knowledge. PUR-Attack relies on a simple yet effective machine learning classifier and produces promising results. Specifically, we have found that by considering the weights of a given layer in a HAR model, we can uniquely re-identify users with an attack success rate of almost 100%. This result holds when considering a small attack training set and various data splitting strategies in the HAR model training. Thus, it is crucial to investigate protection methods to mitigate this privacy threat. Along this path, we propose SAFER, a privacy-preserving mechanism based on adaptive local differential privacy. Before sharing the model updates with the FL server, SAFER adds the optimal noise based on the re-identification risk assessment. Our approach can achieve a promising tradeoff between privacy, in terms of reducing re-identification risk, and utility, in terms of maintaining acceptable accuracy for the HAR model.Keywords: federated learning, privacy risk assessment, re-identification risk, privacy preserving mechanisms, local differential privacy, human activity recognition
Procedia PDF Downloads 113130 Stress Corrosion Crack Identification with Direct Assessment Method in Pipeline Downstream from a Compressor Station
Authors: H. Gholami, M. Jalali Azizpour
Abstract:
Stress Corrosion Crack (SCC) in pipeline is a type of environmentally assisted cracking (EAC), since its discovery in 1965 as a possible cause of failure in pipeline, SCC has caused, on average, one of two failures per year in the U.S, According to the NACE SCC DA a pipe line segment is considered susceptible to SCC if all of the following factors are met: The operating stress exceeds 60% of specified minimum yield strength (SMYS), the operating temperature exceeds 38°C, the segment is less than 32 km downstream from a compressor station, the age of the pipeline is greater than 10 years and the coating type is other than Fusion Bonded Epoxy(FBE). In this paper as a practical experience in NISOC, Direct Assessment (DA) Method is used for identification SCC defect in unpiggable pipeline located downstream of compressor station.Keywords: stress corrosion crack, direct assessment, disbondment, transgranular SCC, compressor station
Procedia PDF Downloads 3863129 Classifying Affective States in Virtual Reality Environments Using Physiological Signals
Authors: Apostolos Kalatzis, Ashish Teotia, Vishnunarayan Girishan Prabhu, Laura Stanley
Abstract:
Emotions are functional behaviors influenced by thoughts, stimuli, and other factors that induce neurophysiological changes in the human body. Understanding and classifying emotions are challenging as individuals have varying perceptions of their environments. Therefore, it is crucial that there are publicly available databases and virtual reality (VR) based environments that have been scientifically validated for assessing emotional classification. This study utilized two commercially available VR applications (Guided Meditation VR™ and Richie’s Plank Experience™) to induce acute stress and calm state among participants. Subjective and objective measures were collected to create a validated multimodal dataset and classification scheme for affective state classification. Participants’ subjective measures included the use of the Self-Assessment Manikin, emotional cards and 9 point Visual Analogue Scale for perceived stress, collected using a Virtual Reality Assessment Tool developed by our team. Participants’ objective measures included Electrocardiogram and Respiration data that were collected from 25 participants (15 M, 10 F, Mean = 22.28 4.92). The features extracted from these data included heart rate variability components and respiration rate, both of which were used to train two machine learning models. Subjective responses validated the efficacy of the VR applications in eliciting the two desired affective states; for classifying the affective states, a logistic regression (LR) and a support vector machine (SVM) with a linear kernel algorithm were developed. The LR outperformed the SVM and achieved 93.8%, 96.2%, 93.8% leave one subject out cross-validation accuracy, precision and recall, respectively. The VR assessment tool and data collected in this study are publicly available for other researchers.Keywords: affective computing, biosignals, machine learning, stress database
Procedia PDF Downloads 1423128 The Impact of a Model's Skin Tone and Ethnic Identification on Consumer Decision Making
Authors: Shanika Y. Koreshi
Abstract:
Sri Lanka housed the lingerie product development and manufacturing subsidiary to renowned brands such as La Senza, Marks & Spencer, H&M, Etam, Lane Bryant, and George. Over the last few years, they have produced local brands such as Amante to cater to the local and regional customers. Past research has identified factors such as quality, price, and design to be vital when marketing lingerie to consumers. However, there has been minimum research that looks into the ethnically targeted market and skin colour within the Asian population. Therefore, the main aim of the research was to identify whether consumer preference for lingerie is influenced by the skin tone of the model wearing it. Moreover, the secondary aim was to investigate if the consumer preference for lingerie is influenced by the consumer’s ethnic identification with the skin tone of the model. An experimental design was used to explore the above aims. The participants constituted of 66 females residing in the western province of Sri Lanka and were gathered via convenience sampling. Six computerized images of a real model were used in the study, and her skin tone was digitally manipulated to express three different skin tones (light, tan and dark). Consumer preferences were measured through a ranking order scale that was constructed via a focus group discussion and ethnic identity was measured by the Multigroup Ethnic Identity Measure-Revised. Wilcoxon signed-rank test, Friedman test, and chi square test of independence were carried out using SPSS version 20. The results indicated that majority of the consumers ethnically identified and preferred the tan skin over the light and dark skin tones. The findings support the existing literature that states there is a preference among consumers when models have a medium skin tone over a lighter skin tone. The preference for a tan skin tone in a model is consistent with the ethnic identification of the Sri Lankan sample. The study implies that lingerie brands should consider the model's skin tones when marketing the brand to different ethnic backgrounds.Keywords: consumer preference, ethnic identification, lingerie, skin tone
Procedia PDF Downloads 2593127 Analytical and Statistical Study of the Parameters of Expansive Soil
Authors: A. Medjnoun, R. Bahar
Abstract:
The disorders caused by the shrinking-swelling phenomenon are prevalent in arid and semi-arid in the presence of swelling clay. This soil has the characteristic of changing state under the effect of water solicitation (wetting and drying). A set of geotechnical parameters is necessary for the characterization of this soil type, such as state parameters, physical and chemical parameters and mechanical parameters. Some of these tests are very long and some are very expensive, hence the use or methods of predictions. The complexity of this phenomenon and the difficulty of its characterization have prompted researchers to use several identification parameters in the prediction of swelling potential. This document is an analytical and statistical study of geotechnical parameters affecting the potential of swelling clays. This work is performing on a database obtained from investigations swelling Algerian soil. The obtained observations have helped us to understand the soil swelling structure and its behavior.Keywords: analysis, estimated model, parameter identification, swelling of clay
Procedia PDF Downloads 4163126 Modern State of the Universal Modeling for Centrifugal Compressors
Authors: Y. Galerkin, K. Soldatova, A. Drozdov
Abstract:
The 6th version of Universal modeling method for centrifugal compressor stage calculation is described. Identification of the new mathematical model was made. As a result of identification the uniform set of empirical coefficients is received. The efficiency definition error is 0,86 % at a design point. The efficiency definition error at five flow rate points (except a point of the maximum flow rate) is 1,22 %. Several variants of the stage with 3D impellers designed by 6th version program and quasi three-dimensional calculation programs were compared by their gas dynamic performances CFD (NUMECA FINE TURBO). Performance comparison demonstrated general principles of design validity and leads to some design recommendations.Keywords: compressor design, loss model, performance prediction, test data, model stages, flow rate coefficient, work coefficient
Procedia PDF Downloads 4123125 Modeling and System Identification of a Variable Excited Linear Direct Drive
Authors: Heiko Weiß, Andreas Meister, Christoph Ament, Nils Dreifke
Abstract:
Linear actuators are deployed in a wide range of applications. This paper presents the modeling and system identification of a variable excited linear direct drive (LDD). The LDD is designed based on linear hybrid stepper technology exhibiting the characteristic tooth structure of mover and stator. A three-phase topology provides the thrust force caused by alternating strengthening and weakening of the flux of the legs. To achieve best possible synchronous operation, the phases are commutated sinusoidal. Despite the fact that these LDDs provide high dynamics and drive forces, noise emission limits their operation in calm workspaces. To overcome this drawback an additional excitation of the magnetic circuit is introduced to LDD using additional enabling coils instead of permanent magnets. The new degree of freedom can be used to reduce force variations and related noise by varying the excitation flux that is usually generated by permanent magnets. Hence, an identified simulation model is necessary to analyze the effects of this modification. Especially the force variations must be modeled well in order to reduce them sufficiently. The model can be divided into three parts: the current dynamics, the mechanics and the force functions. These subsystems are described with differential equations or nonlinear analytic functions, respectively. Ordinary nonlinear differential equations are derived and transformed into state space representation. Experiments have been carried out on a test rig to identify the system parameters of the complete model. Static and dynamic simulation based optimizations are utilized for identification. The results are verified in time and frequency domain. Finally, the identified model provides a basis for later design of control strategies to reduce existing force variations.Keywords: force variations, linear direct drive, modeling and system identification, variable excitation flux
Procedia PDF Downloads 3703124 Speaker Recognition Using LIRA Neural Networks
Authors: Nestor A. Garcia Fragoso, Tetyana Baydyk, Ernst Kussul
Abstract:
This article contains information from our investigation in the field of voice recognition. For this purpose, we created a voice database that contains different phrases in two languages, English and Spanish, for men and women. As a classifier, the LIRA (Limited Receptive Area) grayscale neural classifier was selected. The LIRA grayscale neural classifier was developed for image recognition tasks and demonstrated good results. Therefore, we decided to develop a recognition system using this classifier for voice recognition. From a specific set of speakers, we can recognize the speaker’s voice. For this purpose, the system uses spectrograms of the voice signals as input to the system, extracts the characteristics and identifies the speaker. The results are described and analyzed in this article. The classifier can be used for speaker identification in security system or smart buildings for different types of intelligent devices.Keywords: extreme learning, LIRA neural classifier, speaker identification, voice recognition
Procedia PDF Downloads 1773123 Selection the Most Suitable Method for DNA Extraction from Muscle of Iran's Canned Tuna by Comparison of Different DNA Extraction Methods
Authors: Marjan Heidarzadeh
Abstract:
High quality and purity of DNA isolated from canned tuna is essential for species identification. In this study, the efficiency of five different methods for DNA extraction was compared. Method of national standard in Iran, the CTAB precipitation method, Wizard DNA Clean Up system, Nucleospin and GenomicPrep were employed. DNA was extracted from two different canned tuna in brine and oil of the same tuna species. Three samples of each type of product were analyzed with the different methods. The quantity and quality of DNA extracted was evaluated using the 260 nm absorbance and ratio A260/A280 by spectrophotometer picodrop. Results showed that the DNA extraction from canned tuna preserved in different liquid media could be optimized by employing a specific DNA extraction method in each case. Best results were obtained with CTAB method for canned tuna in oil and with Wizard method for canned tuna in brine.Keywords: canned tuna PCR, DNA, DNA extraction methods, species identification
Procedia PDF Downloads 656