Search results for: inertial navigation
63 Improving Fingerprinting-Based Localization System Using Generative Artificial Intelligence
Authors: Getaneh Berie Tarekegn
Abstract:
A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 39 cm, and more than 90% of the errors are less than 82 cm. That is, numerical results proved that, in comparison to traditional methods, the proposed SRCLoc method can significantly improve positioning performance and reduce radio map construction costs.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 7162 Machine Learning for Exoplanetary Habitability Assessment
Authors: King Kumire, Amos Kubeka
Abstract:
The synergy of machine learning and astronomical technology advancement is giving rise to the new space age, which is pronounced by better habitability assessments. To initiate this discussion, it should be recorded for definition purposes that the symbiotic relationship between astronomy and improved computing has been code-named the Cis-Astro gateway concept. The cosmological fate of this phrase has been unashamedly plagiarized from the cis-lunar gateway template and its associated LaGrange points which act as an orbital bridge to the moon from our planet Earth. However, for this study, the scientific audience is invited to bridge toward the discovery of new habitable planets. It is imperative to state that cosmic probes of this magnitude can be utilized as the starting nodes of the astrobiological search for galactic life. This research can also assist by acting as the navigation system for future space telescope launches through the delimitation of target exoplanets. The findings and the associated platforms can be harnessed as building blocks for the modeling of climate change on planet earth. The notion that if the human genus exhausts the resources of the planet earth or there is a bug of some sort that makes the earth inhabitable for humans explains the need to find an alternative planet to inhabit. The scientific community, through interdisciplinary discussions of the International Astronautical Federation so far has the common position that engineers can reduce space mission costs by constructing a stable cis-lunar orbit infrastructure for refilling and carrying out other associated in-orbit servicing activities. Similarly, the Cis-Astro gateway can be envisaged as a budget optimization technique that models extra-solar bodies and can facilitate the scoping of future mission rendezvous. It should be registered as well that this broad and voluminous catalog of exoplanets shall be narrowed along the way using machine learning filters. The gist of this topic revolves around the indirect economic rationale of establishing a habitability scoping platform.Keywords: machine-learning, habitability, exoplanets, supercomputing
Procedia PDF Downloads 8961 Machine Learning for Exoplanetary Habitability Assessment
Authors: King Kumire, Amos Kubeka
Abstract:
The synergy of machine learning and astronomical technology advancement is giving rise to the new space age, which is pronounced by better habitability assessments. To initiate this discussion, it should be recorded for definition purposes that the symbiotic relationship between astronomy and improved computing has been code-named the Cis-Astro gateway concept. The cosmological fate of this phrase has been unashamedly plagiarized from the cis-lunar gateway template and its associated LaGrange points which act as an orbital bridge to the moon from our planet Earth. However, for this study, the scientific audience is invited to bridge toward the discovery of new habitable planets. It is imperative to state that cosmic probes of this magnitude can be utilized as the starting nodes of the astrobiological search for galactic life. This research can also assist by acting as the navigation system for future space telescope launches through the delimitation of target exoplanets. The findings and the associated platforms can be harnessed as building blocks for the modeling of climate change on planet earth. The notion that if the human genus exhausts the resources of the planet earth or there is a bug of some sort that makes the earth inhabitable for humans explains the need to find an alternative planet to inhabit. The scientific community, through interdisciplinary discussions of the International Astronautical Federation so far, has the common position that engineers can reduce space mission costs by constructing a stable cis-lunar orbit infrastructure for refilling and carrying out other associated in-orbit servicing activities. Similarly, the Cis-Astro gateway can be envisaged as a budget optimization technique that models extra-solar bodies and can facilitate the scoping of future mission rendezvous. It should be registered as well that this broad and voluminous catalog of exoplanets shall be narrowed along the way using machine learning filters. The gist of this topic revolves around the indirect economic rationale of establishing a habitability scoping platform.Keywords: exoplanets, habitability, machine-learning, supercomputing
Procedia PDF Downloads 11760 Methods and Techniques for Lower Danube Sturgeon Monitoring Used for the Assessment of Anthropic Activities Pressures and the Quantification of Risks on These Species
Authors: Gyorgy Deak, Marius C. Raischi, Lucian P. Georgescu, Tiberius M. Danalache, Elena Holban, Madalina G. Boboc, Monica Matei, Catalina Iticescu, Marius V. Olteanu, Stefan Zamfir, Gabriel Cornateanu
Abstract:
At present, on the Lower Danube, different types of pressures have been identified that affect the anadromous sturgeons stocks with an impact that leads to their decline. This paper presents techniques and procedures used by Romanian experts in the tagging and monitoring of anadromous sturgeons, as well as unique results at international level obtained on the basis of an informational volume collected in over 7 years of monitoring on these species behavior (both for adults as well as for ultrasonically tagged juveniles) on the Lower Danube. The local impact of hydrotechnical constructions (bottom sill, maritime navigation channel), the global impact of the poaching phenomenon and the impact of the restocking programs with sturgeon juveniles were assessed. Thus, the bottom sill impact on the Bala branch, the Bastroe Channel (cross-border impact) and the poaching phenomenon at the level of the Lower Danube was analyzed on the basis of a unique informational volume obtained through the use of patented monitoring systems by the Romanian experts (DKTB respectively, DKMR-01T). At the same time, the results from the monitoring of ultrasonically tagged sturgeon juveniles from the 2015 repopulation program are presented. Conclusions resulting from research can ensure favorable premises for finding some conservation solutions for CITES-protected sturgeon species that have survived for millions of years, currently being 1 species on the brink of extinction - Russian sturgeon, 2 species in danger of extinction - Beluga sturgeon and Stellate sturgeon and 2 species already extinct from the Lower Danube, namely common sturgeon and ship sturgeon.Keywords: Lower Danube, sturgeons monitoring (adults and juveniles), tagging, impact on conservation
Procedia PDF Downloads 24059 GAILoc: Improving Fingerprinting-Based Localization System Using Generative Artificial Intelligence
Authors: Getaneh Berie Tarekegn
Abstract:
A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 39 cm, and more than 90% of the errors are less than 82 cm. That is, numerical results proved that, in comparison to traditional methods, the proposed SRCLoc method can significantly improve positioning performance and reduce radio map construction costs.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 7558 Hydrodynamics of Undulating Ribbon-fin and Its Application in Bionic Underwater Robot
Authors: Zhang Jun, Zhai Shucheng, Bai Yaqiang, Zhang Guoping
Abstract:
The Gymnarchus Niioticus fish(GNF) cruises generally with high efficiency by undulating ribbon-fin propulsion while keeping its body for straight line. The swing amplitude of GNF fins is usually in 60° to 90°, and in normal state the amplitude is close to 90°, only in the control of hovering or swimming at very low speed, the amplitude is smaller (about 60°). It provides inspiration for underwater robot design. In the paper, the unsteady flow of undulating ribbon-fin propulsion is numerical simulated by the dynamic grid technique including spring-based smoothing model and local grid remeshing to adapt to the fin surface significantly deforming, and the swing amplitude of fin ray reaches 850. The numerical simulation method is validated by thrust experiments. The spatial vortex structure and its evolution with phase angle is analyzed. The propulsion mechanism is investigated by comprehensive analysis of the hydrodynamics, vortex structure, and pressure distribution on the fin surface. The numerical results indicates that there are mainly three kinds of vortexes, i.e. streamwise vortex, crescent vortex and toroidal vortex. The intensity of streamwise vortex is the strongest among all kinds of vortexes. Streamwise vortexes and crescent vortexes all alternately distribute on the two sides of mid-sagittal plane. Inside the crescent vortexes is high-speed flow, while outside is low-speed flow. The crescent vortexes mainly induce high-speed axial jet, which produces the primary thrust. This is hydrodynamic mechanism undulating ribbon-fin propulsion. The streamwise vortexes mainly induce the vertical jet, which generates the primary heave force. The effect on hydrodynamics of main geometry and movement parameters including wave length, amplitude and advanced coefficients is investigated. A bionic underwater robot with bilateral undulating ribbon-fins is designed, and its navigation performance and maneuverability are measured.Keywords: bionic propulsion, mobile robot, underwater robot, undulating ribbon-fins
Procedia PDF Downloads 28457 Design and Evaluation of an Online Case-Based Library for Technology Integration in Teacher Education
Authors: Mustafa Tevfik Hebebci, Ismail Sahin, Sirin Kucuk, Ismail Celik, Ahmet Oguz Akturk
Abstract:
ADDIE is an instructional design model which has the five core elements: analyze, design, develop, implement, and evaluate. The ADDIE approach provides a systematic process for the analysis of instructional needs, the design and development of instructional programs and materials, implementation of a program, and the evaluation of the effectiveness of an instruction. The case-based study is an instructional design model that is a variant of project-oriented learning. Collecting and analyzing stories can be used in two primary ways -perform task analysis and as a learning support during instruction- by instructional designers. Besides, teachers use technology to develop students’ thinking, enriching the learning environment and providing permanent learning. The purpose of this paper is to introduce an interactive online case-study library website developed in a national project. The design goal of the website is to provide interactive, enhanced, case-based and online educational resource for educators through the purpose and within the scope of a national project. The ADDIE instructional design model was used in the development of the website for the interactive case-based library. This web-based library contains the navigation menus as the follows: “Homepage”, "Registration", "Branches", "Aim of The Research", "About TPACK", "National Project", "Contact Us", etc. This library is developed on a web-based platform, which is important in terms of manageability, accessibility, and updateability of data. Users are able to sort the displayed case-studies by their titles, dates, ratings, view counts, etc. In addition, they encouraged to rate and comment on the case-studies. The usability test is used and the expert opinion is taken for the evaluation of the website. This website is a tool to integrate technology in education. It is believed that this website will be beneficial for pre-service and in-service teachers in terms of their professional developments.Keywords: design, ADDIE, case based library, technology integration
Procedia PDF Downloads 47956 A Method for Precise Vertical Position of the Implant When Using Computerized Surgical Guides and Bone Reduction
Authors: Abraham Finkelman
Abstract:
Computerized Surgical Guides have been proven to be a predictable way to perform dental implants, with a relatively high accuracy in comparison to a treatment plan. When using the CSG Bone supported, it allows us to make the necessary changes of the hard tissue prior to the implant placement and after the implant placement. The CSG gives us an accurate position for the drilling, and during the implant placement it allows us to alter the vertical position of the implant altering the final position of the abutment and avoiding any risk of any damage to the adjacent anatomical structures. Any Changes required to the bone level can be done prior to the fixation of the CSG using a reduction guide, which incur extra surgical fees and the need of a second surgical guide. Any changes of the bone level after the implant placement are at the risk of damaging the implant neck surface. The technique consists of a universal system that allows us to remove the excess bone around the implant sockets prior to the implant placement which then enables us to place the implant in the vertical position with accuracy as planned with the CSG. The systems consist of a hollow pin of different sizes and diameters. Depending on the implant system that we are using. Length sizes are from 6mm-16mm and a diameter of 2.6mm-4.8mm. Upon the completion of the drilling, the pin is then inserted into the implant socket-using the insertion tool. Once the insertion tool has unscrewed the pin, we can continue with the bone reduction. The bone reduction can be done using conventional methods upon the removal of all the excess bone around the pin. The insertion tool is then screwed into the pin and the pin is then removed. We now, have the new bone level at the crest of the implant socket which is our mark for the vertical position of the implant. In some cases, when we are locating the implant very close to anatomical structures, any form of deviation to the vertical position of the implant during the surgery, can cause damage to such anatomical structures, creating irreversible damages such as paresthesia or dysesthesia of the mandibular nerve. If we are planning for immediate loading and we have done our temporary restauration in base of our computerized plan, deviation in the vertical position of the implant will affect the position of the abutment, affecting the accuracy of the temporary prosthesis, extending the working time till we adapt the prosthesis to the new position.Keywords: bone reduction, computer aided navigation, dental implant placement, surgical guides
Procedia PDF Downloads 33155 Location Uncertainty – A Probablistic Solution for Automatic Train Control
Authors: Monish Sengupta, Benjamin Heydecker, Daniel Woodland
Abstract:
New train control systems rely mainly on Automatic Train Protection (ATP) and Automatic Train Operation (ATO) dynamically to control the speed and hence performance. The ATP and the ATO form the vital element within the CBTC (Communication Based Train Control) and within the ERTMS (European Rail Traffic Management System) system architectures. Reliable and accurate measurement of train location, speed and acceleration are vital to the operation of train control systems. In the past, all CBTC and ERTMS system have deployed a balise or equivalent to correct the uncertainty element of the train location. Typically a CBTC train is allowed to miss only one balise on the track, after which the Automatic Train Protection (ATP) system applies emergency brake to halt the service. This is because the location uncertainty, which grows within the train control system, cannot tolerate missing more than one balise. Balises contribute a significant amount towards wayside maintenance and studies have shown that balises on the track also forms a constraint for future track layout change and change in speed profile.This paper investigates the causes of the location uncertainty that is currently experienced and considers whether it is possible to identify an effective filter to ascertain, in conjunction with appropriate sensors, more accurate speed, distance and location for a CBTC driven train without the need of any external balises. An appropriate sensor fusion algorithm and intelligent sensor selection methodology will be deployed to ascertain the railway location and speed measurement at its highest precision. Similar techniques are already in use in aviation, satellite, submarine and other navigation systems. Developing a model for the speed control and the use of Kalman filter is a key element in this research. This paper will summarize the research undertaken and its significant findings, highlighting the potential for introducing alternative approaches to train positioning that would enable removal of all trackside location correction balises, leading to huge reduction in maintenances and more flexibility in future track design.Keywords: ERTMS, CBTC, ATP, ATO
Procedia PDF Downloads 41054 Role of Web Graphics and Interface in Creating Visitor Trust
Authors: Pramika J. Muthya
Abstract:
This paper investigates the impact of web graphics and interface design on building visitor trust in websites. A quantitative survey approach was used to examine how aesthetic and usability elements of website design influence user perceptions of trustworthiness. 133 participants aged 18-25 who live in urban Bangalore and engage in online transactions were recruited via convenience sampling. Data was collected through an online survey measuring trust levels based on website design, using validated constructs like the Visual Aesthetic of Websites Inventory (VisAWI). Statistical analysis, including ordinal regression, was conducted to analyze the results. The findings show a statistically significant relationship between web graphics and interface design and the level of trust visitors place in a website. The goodness-of-fit statistics and highly significant model fitting information provide strong evidence for rejecting the null hypothesis of no relationship. Well-designed visual aesthetics like simplicity, diversity, colorfulness, and craftsmanship are key drivers of perceived credibility. Intuitive navigation and usability also increase trust. The results emphasize the strategic importance for companies to invest in appealing graphic design, consistent with existing theoretical frameworks. There are also implications for taking a user-centric approach to web design and acknowledging the reciprocal link between pre-existing user trust and perception of visuals. While generalizable, limitations include possible sampling and self-report biases. Further research can build on these findings to deepen understanding of nuanced cultural and temporal factors influencing online trust. Overall, this study makes a significant contribution by providing empirical evidence that reinforces the crucial impact of thoughtful graphic design in fostering lasting user trust in websites.Keywords: web graphics, interface design, visitor trust, website design, aesthetics, user experience, online trust, visual design, graphic design, user perceptions, user expectations
Procedia PDF Downloads 5153 Study of a Complete Free Route Implementation in the European Airspace
Authors: Cesar A. Nava-Gaxiola, C. Barrado
Abstract:
Harmonized with SESAR (Single European Sky Research) initiatives, a new concept related with airspace structures have been introduced in Europe, the Free Route Airspace. The key of free route is based in an airspace where users may freely plan a route between a defined entry and exit waypoint, with the possibility of routing via intermediate points, the free route flights remain subject to air traffic control (ATC) for the established separations. Free route airspace does not present anymore fixed airways to airspace users, as a consequence it brings a new paradigm for managing safe separations of aircrafts inside these airspace blocks . Nowadays, several European nations have been introduced the concept, some of them in a complete or partial stage, but finally offering limited benefits to airspace users for this condition. This research evaluates the future scenario of free route implementation across Europe, considering a unique airspace block configuration with a complete upper airspace with free route. The paper is centered in investigating the benefits for airspace users, and the study of possible increments of Air Traffic Controllers task loads with a full application. In this research, fast time simulations are carrying out for discovering how much flight time and distance aircrafts can save with an overall free route establishment. In the other side, the paper explains the evolution of conflicts derivate from possible separation losses between aircrafts in this new environment. Free route conflicts can emerges in any points of the airspace, requiring a great effort for solving it, in comparison with fixed airways, where conflicts normally were found by controllers in known waypoints, and they solved using the fixed network as reference. The airspace configuration modelled in this study take into account the actual navigation waypoints structure, moving into a future scenario, where new ones waypoints are added and new traffic flow patterns appears. In this sense, this research explores the advantages and unknown difficulties that a large scale application of free route concept can carry out in the European airspace.Keywords: ATC conflicts, efficiency, free route airspace, SESAR
Procedia PDF Downloads 18852 Map UI Design of IoT Application Based on Passenger Evacuation Behaviors in Underground Station
Authors: Meng-Cong Zheng
Abstract:
When the public space is in an emergency, how to quickly establish spatial cognition and emergency shelter in the closed underground space is the urgent task. This study takes Taipei Station as the research base and aims to apply the use of Internet of things (IoT) application for underground evacuation mobility design. The first experiment identified passengers' evacuation behaviors and spatial cognition in underground spaces by wayfinding tasks and thinking aloud, then defined the design conditions of User Interface (UI) and proposed the UI design. The second experiment evaluated the UI design based on passengers' evacuation behaviors by wayfinding tasks and think aloud again as same as the first experiment. The first experiment found that the design conditions that the subjects were most concerned about were "map" and hoping to learn the relative position of themselves with other landmarks by the map and watch the overall route. "Position" needs to be accurately labeled to determine the location in underground space. Each step of the escape instructions should be presented clearly in "navigation bar." The "message bar" should be informed of the next or final target exit. In the second experiment with the UI design, we found that the "spatial map" distinguishing between walking and non-walking areas with shades of color is useful. The addition of 2.5D maps of the UI design increased the user's perception of space. Amending the color of the corner diagram in the "escape route" also reduces the confusion between the symbol and other diagrams. The larger volume of toilets and elevators can be a judgment of users' relative location in "Hardware facilities." Fire extinguisher icon should be highlighted. "Fire point tips" of the UI design indicated fire with a graphical fireball can convey precise information to the escaped person. "Fire point tips" of the UI design indicated fire with a graphical fireball can convey precise information to the escaped person. However, "Compass and return to present location" are less used in underground space.Keywords: evacuation behaviors, IoT application, map UI design, underground station
Procedia PDF Downloads 20751 Co-Design of Accessible Speech Recognition for Users with Dysarthric Speech
Authors: Elizabeth Howarth, Dawn Green, Sean Connolly, Geena Vabulas, Sara Smolley
Abstract:
Through the EU Horizon 2020 Nuvoic Project, the project team recruited 70 individuals in the UK and Ireland to test the Voiceitt speech recognition app and provide user feedback to developers. The app is designed for people with dysarthric speech, to support communication with unfamiliar people and access to speech-driven technologies such as smart home equipment and smart assistants. Participants with atypical speech, due to a range of conditions such as cerebral palsy, acquired brain injury, Down syndrome, stroke and hearing impairment, were recruited, primarily through organisations supporting disabled people. Most had physical or learning disabilities in addition to dysarthric speech. The project team worked with individuals, their families and local support teams, to provide access to the app, including through additional assistive technologies where needed. Testing was user-led, with participants asked to identify and test use cases most relevant to their daily lives over a period of three months or more. Ongoing technical support and training were provided remotely and in-person throughout the testing period. Structured interviews were used to collect feedback on users' experiences, with delivery adapted to individuals' needs and preferences. Informal feedback was collected through ongoing contact between participants, their families and support teams and the project team. Focus groups were held to collect feedback on specific design proposals. User feedback shared with developers has led to improvements to the user interface and functionality, including faster voice training, simplified navigation, the introduction of gamification elements and of switch access as an alternative to touchscreen access, with other feature requests from users still in development. This work offers a case-study in successful and inclusive co-design with the disabled community.Keywords: co-design, assistive technology, dysarthria, inclusive speech recognition
Procedia PDF Downloads 11050 Design and Development of an Autonomous Beach Cleaning Vehicle
Authors: Mahdi Allaoua Seklab, Süleyman BaşTürk
Abstract:
In the quest to enhance coastal environmental health, this study introduces a fully autonomous beach cleaning machine, a breakthrough in leveraging green energy and advanced artificial intelligence for ecological preservation. Designed to operate independently, the machine is propelled by a solar-powered system, underscoring a commitment to sustainability and the use of renewable energy in autonomous robotics. The vehicle's autonomous navigation is achieved through a sophisticated integration of LIDAR and a camera system, utilizing an SSD MobileNet V2 object detection model for accurate and real-time trash identification. The SSD framework, renowned for its efficiency in detecting objects in various scenarios, is coupled with the lightweight and precise highly MobileNet V2 architecture, making it particularly suited for the computational constraints of on-board processing in mobile robotics. Training of the SSD MobileNet V2 model was conducted on Google Colab, harnessing cloud-based GPU resources to facilitate a rapid and cost-effective learning process. The model was refined with an extensive dataset of annotated beach debris, optimizing the parameters using the Adam optimizer and a cross-entropy loss function to achieve high-precision trash detection. This capability allows the machine to intelligently categorize and target waste, leading to more effective cleaning operations. This paper details the design and functionality of the beach cleaning machine, emphasizing its autonomous operational capabilities and the novel application of AI in environmental robotics. The results showcase the potential of such technology to fill existing gaps in beach maintenance, offering a scalable and eco-friendly solution to the growing problem of coastal pollution. The deployment of this machine represents a significant advancement in the field, setting a new standard for the integration of autonomous systems in the service of environmental stewardship.Keywords: autonomous beach cleaning machine, renewable energy systems, coastal management, environmental robotics
Procedia PDF Downloads 2749 Formation Flying Design Applied for an Aurora Borealis Monitoring Mission
Authors: Thais Cardoso Franco, Caio Nahuel Sousa Fagonde, Willer Gomes dos Santos
Abstract:
Aurora Borealis is an optical phenomenon composed of luminous events observed in the night skies in the polar regions resulting from disturbances in the magnetosphere due to the impact of solar wind particles with the Earth's upper atmosphere, channeled by the Earth's magnetic field, which causes atmospheric molecules to become excited and emit electromagnetic spectrum, leading to the display of lights in the sky. However, there are still different implications of this phenomenon under study: high intensity auroras are often accompanied by geomagnetic storms that cause blackouts on Earth and impair the transmission of signals from the Global Navigation Satellite Systems (GNSS). Auroras are also known to occur on other planets and exoplanets, so the activity is an indication of active space weather conditions that can aid in learning about the planetary environment. In order to improve understanding of the phenomenon, this research aims to design a satellite formation flying solution for collecting and transmitting data for monitoring aurora borealis in northern hemisphere, an approach that allows studying the event with multipoint data collection in a reduced time interval, in order to allow analysis from the beginning of the phenomenon until its decline. To this end, the ideal number of satellites, the spacing between them, as well as the ideal topology to be used will be analyzed. From an orbital study, approaches from different altitudes, eccentricities and inclinations will also be considered. Given that at large relative distances between satellites in formation, controllers tend to fail, a study on the efficiency of nonlinear adaptive control methods from the point of view of position maintenance and propellant consumption will be carried out. The main orbital perturbations considered in the simulation: non-homogeneity terrestrial, atmospheric drag, gravitational action of the Sun and the Moon, accelerations due to solar radiation pressure and relativistic effects.Keywords: formation flying, nonlinear adaptive control method, aurora borealis, adaptive SDRE method
Procedia PDF Downloads 3848 Transition Dynamic Analysis of the Urban Disparity in Iran “Case Study: Iran Provinces Center”
Authors: Marzieh Ahmadi, Ruhullah Alikhan Gorgani
Abstract:
The usual methods of measuring regional inequalities can not reflect the internal changes of the country in terms of their displacement in different development groups, and the indicators of inequalities are not effective in demonstrating the dynamics of the distribution of inequality. For this purpose, this paper examines the dynamics of the urban inertial transport in the country during the period of 2006-2016 using the CIRD multidimensional index and stochastic kernel density method. it firstly selects 25 indicators in five dimensions including macroeconomic conditions, science and innovation, environmental sustainability, human capital and public facilities, and two-stage Principal Component Analysis methodology are developed to create a composite index of inequality. Then, in the second stage, using a nonparametric analytical approach to internal distribution dynamics and a stochastic kernel density method, the convergence hypothesis of the CIRD index of the Iranian provinces center is tested, and then, based on the ergodic density, long-run equilibrium is shown. Also, at this stage, for the purpose of adopting accurate regional policies, the distribution dynamics and process of convergence or divergence of the Iranian provinces for each of the five. According to the results of the first Stage, in 2006 & 2016, the highest level of development is related to Tehran and zahedan is at the lowest level of development. The results show that the central cities of the country are at the highest level of development due to the effects of Tehran's knowledge spillover and the country's lower cities are at the lowest level of development. The main reason for this may be the lack of access to markets in the border provinces. Based on the results of the second stage, which examines the dynamics of regional inequality transmission in the country during 2006-2016, the first year (2006) is not multifaceted and according to the kernel density graph, the CIRD index of about 70% of the cities. The value is between -1.1 and -0.1. The rest of the sequence on the right is distributed at a level higher than -0.1. In the kernel distribution, a convergence process is observed and the graph points to a single peak. Tends to be a small peak at about 3 but the main peak at about-0.6. According to the chart in the final year (2016), the multidimensional pattern remains and there is no mobility in the lower level groups, but at the higher level, the CIRD index accounts for about 45% of the provinces at about -0.4 Take it. That this year clearly faces the twin density pattern, which indicates that the cities tend to be closely related to each other in terms of development, so that the cities are low in terms of development. Also, according to the distribution dynamics results, the provinces of Iran follow the single-density density pattern in 2006 and the double-peak density pattern in 2016 at low and moderate inequality index levels and also in the development index. The country diverges during the years 2006 to 2016.Keywords: Urban Disparity, CIRD Index, Convergence, Distribution Dynamics, Random Kernel Density
Procedia PDF Downloads 12447 The Gender Digital Divide in Education: The Case of Students from Rural Area from Republic of Moldova
Authors: Bărbuță Alina
Abstract:
The inter-causal relationship between social inequalities and the digital divide raises the relation issue of gender and information and communication technologies (ICT) - a key element in achieving sustainable development. In preparing generations as future digital citizens and for active socio-economic participation, ICT plays a key role in respecting gender equality. Although several studies over the years have shown that gender plays an important role in digital exclusion, in recent years, many studies with a focus on economically developed or developing countries identify an improvement in these aspects and a gap narrowing. By measuring students' digital competencies level, this paper aims to identify and analyse the existing gender digital inequalities among students. Our analyses are based on a sample of 1526 middle school students residing in rural areas from Republic of Moldova (54.2% girls, mean age 14,00, SD = 1.02). During the online survey they filled in a questionnaire adapted from the (yDSI) ”The Youth Digital Skills Indicator”. The instrument measures the level of five digital competence areas indicated in The European Digital Competence Framework (DigiCom 2.3.). Our results, based on t-test, indicate that depending on gender, there are no statistically significant differences regarding the levels of digital skills in 3 areas: Information navigation and processing; Communication and interaction; Problem solving. However, were identified significant differences in the level of digital skills in the area of ”Digital content creation” [t(1425) = 4.20, p = .000] and ”Safety” [t(1421) = 2.49, p = .000], with higher scores recorded by girls. Our results contradicts the general stereotype regarding the low level of digital competence among girls, in our sample girls scores being on pear with boys and even bigger in knowledge related to digital content creation and online safety skills. Additional investigations related to boys competence on digital safety are necessary as the implication of their low scores on this dimension may suggest boys exposure to digital threats.Keywords: digital divide, education, gender digital divide, digital literacy, remote learning
Procedia PDF Downloads 10146 Derivation of Bathymetry from High-Resolution Satellite Images: Comparison of Empirical Methods through Geographical Error Analysis
Authors: Anusha P. Wijesundara, Dulap I. Rathnayake, Nihal D. Perera
Abstract:
Bathymetric information is fundamental importance to coastal and marine planning and management, nautical navigation, and scientific studies of marine environments. Satellite-derived bathymetry data provide detailed information in areas where conventional sounding data is lacking and conventional surveys are inaccessible. The two empirical approaches of log-linear bathymetric inversion model and non-linear bathymetric inversion model are applied for deriving bathymetry from high-resolution multispectral satellite imagery. This study compares these two approaches by means of geographical error analysis for the site Kankesanturai using WorldView-2 satellite imagery. Based on the Levenberg-Marquardt method calibrated the parameters of non-linear inversion model and the multiple-linear regression model was applied to calibrate the log-linear inversion model. In order to calibrate both models, Single Beam Echo Sounding (SBES) data in this study area were used as reference points. Residuals were calculated as the difference between the derived depth values and the validation echo sounder bathymetry data and the geographical distribution of model residuals was mapped. The spatial autocorrelation was calculated by comparing the performance of the bathymetric models and the results showing the geographic errors for both models. A spatial error model was constructed from the initial bathymetry estimates and the estimates of autocorrelation. This spatial error model is used to generate more reliable estimates of bathymetry by quantifying autocorrelation of model error and incorporating this into an improved regression model. Log-linear model (R²=0.846) performs better than the non- linear model (R²=0.692). Finally, the spatial error models improved bathymetric estimates derived from linear and non-linear models up to R²=0.854 and R²=0.704 respectively. The Root Mean Square Error (RMSE) was calculated for all reference points in various depth ranges. The magnitude of the prediction error increases with depth for both the log-linear and the non-linear inversion models. Overall RMSE for log-linear and the non-linear inversion models were ±1.532 m and ±2.089 m, respectively.Keywords: log-linear model, multi spectral, residuals, spatial error model
Procedia PDF Downloads 29745 Automatic Furrow Detection for Precision Agriculture
Authors: Manpreet Kaur, Cheol-Hong Min
Abstract:
The increasing advancement in the robotics equipped with machine vision sensors applied to precision agriculture is a demanding solution for various problems in the agricultural farms. An important issue related with the machine vision system concerns crop row and weed detection. This paper proposes an automatic furrow detection system based on real-time processing for identifying crop rows in maize fields in the presence of weed. This vision system is designed to be installed on the farming vehicles, that is, submitted to gyros, vibration and other undesired movements. The images are captured under image perspective, being affected by above undesired effects. The goal is to identify crop rows for vehicle navigation which includes weed removal, where weeds are identified as plants outside the crop rows. The images quality is affected by different lighting conditions and gaps along the crop rows due to lack of germination and wrong plantation. The proposed image processing method consists of four different processes. First, image segmentation based on HSV (Hue, Saturation, Value) decision tree. The proposed algorithm used HSV color space to discriminate crops, weeds and soil. The region of interest is defined by filtering each of the HSV channels between maximum and minimum threshold values. Then the noises in the images were eliminated by the means of hybrid median filter. Further, mathematical morphological processes, i.e., erosion to remove smaller objects followed by dilation to gradually enlarge the boundaries of regions of foreground pixels was applied. It enhances the image contrast. To accurately detect the position of crop rows, the region of interest is defined by creating a binary mask. The edge detection and Hough transform were applied to detect lines represented in polar coordinates and furrow directions as accumulations on the angle axis in the Hough space. The experimental results show that the method is effective.Keywords: furrow detection, morphological, HSV, Hough transform
Procedia PDF Downloads 23144 Applying the Eye Tracking Technique for the Evaluation of Oculomotor System in Patients Survived after Cerebellar Tumors
Authors: Marina Shurupova, Victor Anisimov, Alexander Latanov
Abstract:
Background: The cerebellar lesions inevitably provoke oculomotor impairments in patients of different age. Symptoms of subtentorial tumors, particularly medulloblastomas, include static and dynamic coordination disorders (ataxia, asynergia, imbalance), hypo-muscle tonus, disruption of the cranial nerves, and within the oculomotor system - nystagmus (fine or gross). Subtentorial tumors can also affect the areas of cerebellum that control the oculomotor system. The noninvasive eye-tracking technology allows obtaining multiple oculomotor characteristics such as the number of fixations and their duration, amplitude, latency and velocity of saccades, trajectory and scan path of gaze during the process of the visual field navigation. Eye tracking could be very useful in clinical studies serving as convenient and effective tool for diagnostics. The aim: We studied the dynamics of oculomotor system functioning in patients undergoing remission from cerebellar tumors removal surgeries and following neurocognitive rehabilitation. Methods: 38 children (23 boys, 15 girls, 9-17 years old) that have recovered from the cerebellar tumor-removal surgeries, radiation therapy and chemotherapy and were undergoing course of neurocognitive rehabilitation participated in the study. Two tests were carried out to evaluate oculomotor performance - gaze stability test and counting test. The monocular eye movements were recorded with eye tracker ArringtonResearch (60 Hz). Two experimental sessions with both tests were conducted before and after rehabilitation courses. Results: Within the final session of both tests we observed remarkable improvement in oculomotor performance: 1) in the gaze stability test the spread of gaze positions significantly declined compared to the first session, and 2) the visual path in counting test significantly shortened both compared to the first session. Thus, neurocognitive rehabilitation improved the functioning of the oculomotor system in patients following the cerebellar tumor removal surgeries and subsequent therapy. Conclusions: The experimental data support the effectiveness of the utilization of the eye tracking technique as diagnostic tool in the field of neurooncology.Keywords: eye tracking, rehabilitation, cerebellar tumors, oculomotor system
Procedia PDF Downloads 16143 A New Model to Perform Preliminary Evaluations of Complex Systems for the Production of Energy for Buildings: Case Study
Authors: Roberto de Lieto Vollaro, Emanuele de Lieto Vollaro, Gianluca Coltrinari
Abstract:
The building sector is responsible, in many industrialized countries, for about 40% of the total energy requirements, so it seems necessary to devote some efforts in this area in order to achieve a significant reduction of energy consumption and of greenhouse gases emissions. The paper presents a study aiming at providing a design methodology able to identify the best configuration of the system building/plant, from a technical, economic and environmentally point of view. Normally, the classical approach involves a building's energy loads analysis under steady state conditions, and subsequent selection of measures aimed at improving the energy performance, based on previous experience made by architects and engineers in the design team. Instead, the proposed approach uses a sequence of two well known scientifically validated calculation methods (TRNSYS and RETScreen), that allow quite a detailed feasibility analysis. To assess the validity of the calculation model, an existing, historical building in Central Italy, that will be the object of restoration and preservative redevelopment, was selected as a case-study. The building is made of a basement and three floors, with a total floor area of about 3,000 square meters. The first step has been the determination of the heating and cooling energy loads of the building in a dynamic regime by means of TRNSYS, which allows to simulate the real energy needs of the building in function of its use. Traditional methodologies, based as they are on steady-state conditions, cannot faithfully reproduce the effects of varying climatic conditions and of inertial properties of the structure. With TRNSYS it is possible to obtain quite accurate and reliable results, that allow to identify effective combinations building-HVAC system. The second step has consisted of using output data obtained with TRNSYS as input to the calculation model RETScreen, which enables to compare different system configurations from the energy, environmental and financial point of view, with an analysis of investment, and operation and maintenance costs, so allowing to determine the economic benefit of possible interventions. The classical methodology often leads to the choice of conventional plant systems, while RETScreen provides a financial-economic assessment for innovative energy systems and low environmental impact. Computational analysis can help in the design phase, particularly in the case of complex structures with centralized plant systems, by comparing the data returned by the calculation model RETScreen for different design options. For example, the analysis performed on the building, taken as a case study, found that the most suitable plant solution, taking into account technical, economic and environmental aspects, is the one based on a CCHP system (Combined Cooling, Heating, and Power) using an internal combustion engine.Keywords: energy, system, building, cooling, electrical
Procedia PDF Downloads 57342 The Impact of Artificial Intelligence on Digital Factory
Authors: Mona Awad Wanis Gad
Abstract:
The method of factory making plans has changed loads, in particular, whilst it's miles approximately making plans the factory building itself. Factory making plans have the venture of designing merchandise, plants, tactics, organization, regions, and the construction of a factory. Ordinary restructuring is turning into greater essential for you to preserve the competitiveness of a manufacturing unit. Regulations in new regions, shorter lifestyle cycles of product and manufacturing era, in addition to a VUCA global (Volatility, Uncertainty, Complexity and Ambiguity) cause extra common restructuring measures inside a factory. A digital factory model is the planning foundation for rebuilding measures and turns into a critical device. Furthermore, digital building fashions are increasingly being utilized in factories to help facility management and manufacturing processes. First, exclusive styles of digital manufacturing unit fashions are investigated, and their residences and usabilities to be used instances are analyzed. Within the scope of research are point cloud fashions, building statistics fashions, photogrammetry fashions, and those enriched with sensor information are tested. It investigated which digital fashions permit a simple integration of sensor facts and in which the variations are. In the end, viable application areas of virtual manufacturing unit models are determined by a survey, and the respective digital manufacturing facility fashions are assigned to the application areas. Ultimately, an application case from upkeep is selected and implemented with the assistance of the best virtual factory version. It is shown how a completely digitalized preservation process can be supported by a digital manufacturing facility version by offering facts. Among different functions, the virtual manufacturing facility version is used for indoor navigation, facts provision, and display of sensor statistics. In summary, the paper suggests a structuring of virtual factory fashions that concentrates on the geometric representation of a manufacturing facility building and its technical facilities. A practical application case is proven and implemented. For that reason, the systematic selection of virtual manufacturing facility models with the corresponding utility cases is evaluated.Keywords: augmented reality, digital factory model, factory planning, restructuring digital factory model, photogrammetry, factory planning, restructuring building information modeling, digital factory model, factory planning, maintenance
Procedia PDF Downloads 3741 Tactile Sensory Digit Feedback for Cochlear Implant Electrode Insertion
Authors: Yusuf Bulale, Mark Prince, Geoff Tansley, Peter Brett
Abstract:
Cochlear Implantation (CI) which became a routine procedure for the last decades is an electronic device that provides a sense of sound for patients who are severely and profoundly deaf. Today, cochlear implantation technology uses electrode array (EA) implanted manually into the cochlea. The optimal success of this implantation depends on the electrode technology and deep insertion techniques. However, this manual insertion procedure may cause mechanical trauma which can lead to a severe destruction of the delicate intracochlear structure. Accordingly, future improvement of the cochlear electrode implant insertion needs reduction of the excessive force application during the cochlear implantation which causes tissue damage and trauma. This study is examined tool-tissue interaction of large prototype scale digit embedded with distributive tactile sensor based upon cochlear electrode and large prototype scale cochlea phantom for simulating the human cochlear which could lead to small-scale digit requirements. The digit, distributive tactile sensors embedded with silicon-substrate was inserted into the cochlea phantom to measure any digit/phantom interaction and position of the digit in order to minimize tissue and trauma damage during the electrode cochlear insertion. The digit has provided tactile information from the digit-phantom insertion interaction such as contact status, tip penetration, obstacles, relative shape and location, contact orientation and multiple contacts. The tests demonstrated that even devices of such a relative simple design with low cost have a potential to improve cochlear implant surgery and other lumen mapping applications by providing tactile sensory feedback information and thus controlling the insertion through sensing and control of the tip of the implant during the insertion. In that approach, the surgeon could minimize the tissue damage and potential damage to the delicate structures within the cochlear caused by current manual electrode insertion of the cochlear implantation. This approach also can be applied to other minimally invasive surgery applications as well as diagnosis and path navigation procedures.Keywords: cochlear electrode insertion, distributive tactile sensory feedback information, flexible digit, minimally invasive surgery, tool/tissue interaction
Procedia PDF Downloads 39740 Comparison of Hydrogen and Electrification Perspectives in Decarbonizing the Transport Sector
Authors: Matteo Nicoli, Gianvito Colucci, Valeria Di Cosmo, Daniele Lerede, Laura Savoldi
Abstract:
The transport sector is currently responsible for approximately 1/3 of greenhouse gas emissions in Europe. In the wider context of achieving carbon neutrality of the global energy system, different alternatives are available to decarbonizethe transport sector. In particular, while electricity is already the most consumed energy commodity in rail transport, battery electric vehicles are one of the zero-emissions options on the market for road transportation. On the other hand, hydrogen-based fuel cell vehicles are available for road and non-road vehicles. The European Commission is strongly pushing toward the integration of hydrogen in the energy systems of European countries and its widespread adoption as an energy vector to achieve the Green Deal targets. Furthermore, the Italian government is defining hydrogen-related objectives with the publication of a dedicated Hydrogen Strategy. The adoption of energy system optimization models to study the possible penetration of alternative zero-emitting transport technologies gives the opportunity to perform an overall analysis of the effects that the development of innovative technologies has on the entire energy system and on the supply-side, devoted to the production of energy carriers such as hydrogen and electricity. Using an open-source modeling framework such as TEMOA, this work aims to compare the role of hydrogen and electric vehicles in the decarbonization of the transport sector. The analysis investigates the advantages and disadvantages of adopting the two options, from the economic point of view (costs associated with the two options) and the environmental one (looking at the emissions reduction perspectives). Moreover, an analysis on the profitability of the investments in hydrogen and electric vehicles will be performed. The study investigates the evolution of energy consumption and greenhouse gas emissions in different transportation modes (road, rail, navigation, and aviation) by detailed analysis of the full range of vehicles included in the techno-economic database used in the TEMOA model instance adopted for this work. The transparency of the analysis is guaranteed by the accessibility of the TEMOA models, based on an open-access source code and databases.Keywords: battery electric vehicles, decarbonization, energy system optimization models, fuel cell vehicles, hydrogen, open-source modeling, TEMOA, transport
Procedia PDF Downloads 11139 Efficient Residual Road Condition Segmentation Network Based on Reconstructed Images
Authors: Xiang Shijie, Zhou Dong, Tian Dan
Abstract:
This paper focuses on the application of real-time semantic segmentation technology in complex road condition recognition, aiming to address the critical issue of how to improve segmentation accuracy while ensuring real-time performance. Semantic segmentation technology has broad application prospects in fields such as autonomous vehicle navigation and remote sensing image recognition. However, current real-time semantic segmentation networks face significant technical challenges and optimization gaps in balancing speed and accuracy. To tackle this problem, this paper conducts an in-depth study and proposes an innovative Guided Image Reconstruction Module. By resampling high-resolution images into a set of low-resolution images, this module effectively reduces computational complexity, allowing the network to more efficiently extract features within limited resources, thereby improving the performance of real-time segmentation tasks. In addition, a dual-branch network structure is designed in this paper to fully leverage the advantages of different feature layers. A novel Hybrid Attention Mechanism is also introduced, which can dynamically capture multi-scale contextual information and effectively enhance the focus on important features, thus improving the segmentation accuracy of the network in complex road condition. Compared with traditional methods, the proposed model achieves a better balance between accuracy and real-time performance and demonstrates competitive results in road condition segmentation tasks, showcasing its superiority. Experimental results show that this method not only significantly improves segmentation accuracy while maintaining real-time performance, but also remains stable across diverse and complex road conditions, making it highly applicable in practical scenarios. By incorporating the Guided Image Reconstruction Module, dual-branch structure, and Hybrid Attention Mechanism, this paper presents a novel approach to real-time semantic segmentation tasks, which is expected to further advance the development of this field.Keywords: hybrid attention mechanism, image reconstruction, real-time, road status recognition
Procedia PDF Downloads 2338 Roboweeder: A Robotic Weeds Killer Using Electromagnetic Waves
Authors: Yahoel Van Essen, Gordon Ho, Brett Russell, Hans-Georg Worms, Xiao Lin Long, Edward David Cooper, Avner Bachar
Abstract:
Weeds reduce farm and forest productivity, invade crops, smother pastures and some can harm livestock. Farmers need to spend a significant amount of money to control weeds by means of biological, chemical, cultural, and physical methods. To solve the global agricultural labor shortage and remove poisonous chemicals, a fully autonomous, eco-friendly, and sustainable weeding technology is developed. This takes the form of a weeding robot, ‘Roboweeder’. Roboweeder includes a four-wheel-drive self-driving vehicle, a 4-DOF robotic arm which is mounted on top of the vehicle, an electromagnetic wave generator (magnetron) which is mounted on the “wrist” of the robotic arm, 48V battery packs, and a control/communication system. Cameras are mounted on the front and two sides of the vehicle. Using image processing and recognition, distinguish types of weeds are detected before being eliminated. The electromagnetic wave technology is applied to heat the individual weeds and clusters dielectrically causing them to wilt and die. The 4-DOF robotic arm was modeled mathematically based on its structure/mechanics, each joint’s load, brushless DC motor and worm gear’ characteristics, forward kinematics, and inverse kinematics. The Proportional-Integral-Differential control algorithm is used to control the robotic arm’s motion to ensure the waveguide aperture pointing to the detected weeds. GPS and machine vision are used to traverse the farm and avoid obstacles without the need of supervision. A Roboweeder prototype has been built. Multiple test trials show that Roboweeder is able to detect, point, and kill the pre-defined weeds successfully although further improvements are needed, such as reducing the “weeds killing” time and developing a new waveguide with a smaller waveguide aperture to avoid killing crops surrounded. This technology changes the tedious, time consuming and expensive weeding processes, and allows farmers to grow more, go organic, and eliminate operational headaches. A patent of this technology is pending.Keywords: autonomous navigation, machine vision, precision heating, sustainable and eco-friendly
Procedia PDF Downloads 25237 High Speed Motion Tracking with Magnetometer in Nonuniform Magnetic Field
Authors: Jeronimo Cox, Tomonari Furukawa
Abstract:
Magnetometers have become more popular in inertial measurement units (IMU) for their ability to correct estimations using the earth's magnetic field. Accelerometer and gyroscope-based packages fail with dead-reckoning errors accumulated over time. Localization in robotic applications with magnetometer-inclusive IMUs has become popular as a way to track the odometry of slower-speed robots. With high-speed motions, the accumulated error increases over smaller periods of time, making them difficult to track with IMU. Tracking a high-speed motion is especially difficult with limited observability. Visual obstruction of motion leaves motion-tracking cameras unusable. When motions are too dynamic for estimation techniques reliant on the observability of the gravity vector, the use of magnetometers is further justified. As available magnetometer calibration methods are limited with the assumption that background magnetic fields are uniform, estimation in nonuniform magnetic fields is problematic. Hard iron distortion is a distortion of the magnetic field by other objects that produce magnetic fields. This kind of distortion is often observed as the offset from the origin of the center of data points when a magnetometer is rotated. The magnitude of hard iron distortion is dependent on proximity to distortion sources. Soft iron distortion is more related to the scaling of the axes of magnetometer sensors. Hard iron distortion is more of a contributor to the error of attitude estimation with magnetometers. Indoor environments or spaces inside ferrite-based structures, such as building reinforcements or a vehicle, often cause distortions with proximity. As positions correlate to areas of distortion, methods of magnetometer localization include the production of spatial mapping of magnetic field and collection of distortion signatures to better aid location tracking. The goal of this paper is to compare magnetometer methods that don't need pre-productions of magnetic field maps. Mapping the magnetic field in some spaces can be costly and inefficient. Dynamic measurement fusion is used to track the motion of a multi-link system with us. Conventional calibration by data collection of rotation at a static point, real-time estimation of calibration parameters each time step, and using two magnetometers for determining local hard iron distortion are compared to confirm the robustness and accuracy of each technique. With opposite-facing magnetometers, hard iron distortion can be accounted for regardless of position, Rather than assuming that hard iron distortion is constant regardless of positional change. The motion measured is a repeatable planar motion of a two-link system connected by revolute joints. The links are translated on a moving base to impulse rotation of the links. Equipping the joints with absolute encoders and recording the motion with cameras to enable ground truth comparison to each of the magnetometer methods. While the two-magnetometer method accounts for local hard iron distortion, the method fails where the magnetic field direction in space is inconsistent.Keywords: motion tracking, sensor fusion, magnetometer, state estimation
Procedia PDF Downloads 8436 Eco-Friendly Silicone/Graphene-Based Nanocomposites as Superhydrophobic Antifouling Coatings
Authors: Mohamed S. Selim, Nesreen A. Fatthallah, Shimaa A. Higazy, Hekmat R. Madian, Sherif A. El-Safty, Mohamed A. Shenashen
Abstract:
After the 2003 prohibition on employing TBT-based antifouling coatings, polysiloxane antifouling nano-coatings have gained in popularity as environmentally friendly and cost-effective replacements. A series of non-toxic polydimethylsiloxane nanocomposites filled with nanosheets of graphene oxide (GO) decorated with magnetite nanospheres (GO-Fe₃O₄ nanospheres) were developed and cured via a catalytic hydrosilation method. Various GO-Fe₃O₄ hybrid concentrations were mixed with the silicone resin via solution casting technique to evaluate the structure–property connection. To generate GO nanosheets, a modified Hummers method was applied. A simple co-precipitation method was used to make spherical magnetite particles under inert nitrogen. Hybrid GO-Fe₃O₄ composite fillers were developed by a simple ultrasonication method. Superhydrophobic PDMS/GO-Fe₃O₄ nanocomposite surface with a micro/nano-roughness, reduced surface-free energy (SFE), high fouling release (FR) efficiency was achieved. The physical, mechanical, and anticorrosive features of the virgin and GO-Fe₃O₄ filled nanocomposites were investigated. The synergistic effects of GO-Fe₃O4 hybrid's well-dispersion on the water-repellency and surface topological roughness of the PDMS/GO-Fe₃O₄ nanopaints were extensively studied. The addition of the GO-Fe₃O₄ hybrid fillers till 1 wt.% could increase the coating's water contact angle (158°±2°), minimize its SFE to 12.06 mN/m, develop outstanding micro/nano-roughness, and improve its bulk mechanical and anticorrosion properties. Several microorganisms were employed for examining the fouling-resistance of the coated specimens for 1 month. Silicone coatings filled with 1 wt.% GO-Fe₃O₄ nanofiller showed the least biodegradability% among all the tested microorganisms. Whereas GO-Fe₃O4 with 5 wt.% nanofiller possessed the highest biodegradability% potency by all the microorganisms. We successfully developed non-toxic and low cost nanostructured FR composite coating with high antifouling-resistance, reproducible superhydrophobic character, and enhanced service-time for maritime navigation.Keywords: silicone antifouling, environmentally friendly, nanocomposites, nanofillers, fouling repellency, hydrophobicity
Procedia PDF Downloads 11435 The Ethics of Documentary Filmmaking Discuss the Ethical Considerations and Responsibilities of Documentary Filmmakers When Portraying Real-life Events and Subjects
Authors: Batatunde Kolawole
Abstract:
Documentary filmmaking stands as a distinctive medium within the cinematic realm, commanding a unique responsibility the portrayal of real-life events and subjects. This research delves into the profound ethical considerations and responsibilities that documentary filmmakers shoulder as they embark on the quest to unveil truth and weave compelling narratives. In the exploration, they embark on a comprehensive review of ethical frameworks and real-world case studies, illuminating the intricate web of challenges that documentarians confront. These challenges encompass an array of ethical intricacies, from securing informed consent to safeguarding privacy, maintaining unwavering objectivity, and sidestepping the snares of narrative manipulation when crafting stories from reality. Furthermore, they dissect the contemporary ethical terrain, acknowledging the emergence of novel dilemmas in the digital age, such as deepfakes and digital alterations. Through a meticulous analysis of ethical quandaries faced by distinguished documentary filmmakers and their strategies for ethical navigation, this study offers invaluable insights into the evolving role of documentaries in molding public discourse. They underscore the indispensable significance of transparency, integrity, and an indomitable commitment to encapsulating the intricacies of reality within the realm of ethical documentary filmmaking. In a world increasingly reliant on visual narratives, an understanding of the subtle ethical dimensions of documentary filmmaking holds relevance not only for those behind the camera but also for the diverse audiences who engage with and interpret the realities unveiled on screen. This research stands as a rigorous examination of the moral compass that steers this potent form of cinematic expression. It emphasizes the capacity of ethical documentary filmmaking to enlighten, challenge, and inspire, all while unwaveringly upholding the core principles of truthfulness and respect for the human subjects under scrutiny. Through this holistic analysis, they illuminate the enduring significance of upholding ethical integrity while uncovering the truths that shape our world. Ethical documentary filmmaking, as exemplified by "Rape" and countless other powerful narratives, serves as a testament to the enduring potential of cinema to inform, challenge, and drive meaningful societal discourse.Keywords: filmmaking, documentary, human right, film
Procedia PDF Downloads 6634 An Examination of the Benefits of Disciplinary Classroom Support of Word Study, Vocabulary and Comprehension for Adolescent Students
Authors: Amanda Watson
Abstract:
The goal of this project is to create the conditions wherein every teacher, especially subjectarea experts, sees themselves as a teacher of language and vocabulary. Assessment and observational data suggest that students are not getting the support they need in vocabulary and reading comprehension, and secondary teachers do not currently have the confidence or expertise to provide this support. This study seeks to examine the impact of 10-20 minutes of daily, targeted instruction around orthography and vocabulary on student competence with the navigation of complex vocabulary and comprehension of subject-specific concepts and texts. The first phase of the pilot included 6 participating classroom teachers of grades 9 and 10 English (95 students in total) who administered an initial reading comprehension assessment. The results of this assessment indicated that the vast majority of students were reading below grade level. Teachers were then provided with a slide deck of complete lessons on orthography, vocabulary (etymology, roots and affixes) and reading comprehension strategies. For five weeks, teachers delivered lessons with their students, implementing the recommended evidence-based teaching strategies. Students and teachers completed surveys to provide feedback on the value and impact of the method. The results confirmed that this was new learning for the students and that the teaching strategies improved engagement. The lessons succeeded in providing equitable access to challenge by simultaneously offering theoretical learning to proficient readers, and exposure and practice to weaker readers. A second reading comprehension was administered after 5 weeks of daily instruction. Average scores increased by 41%, and almost every student experienced progress. The first phase was not long enough to measure the impact of the method on vocabulary acquisition or reading comprehension of subject-specific texts, however. The project will use the results of the first phase to design the second phase, and new teaching and learning strategies will be added. The goals of the second phases are to increase motivation, and to grow the daily practice beyond English class and into science and / or math. This team will continue to document a continuation of the daily lessons, Commented [E1]: Please do not use rhetorical questions in the abstract. measure the impact of the strategies, and address questions about the correlation between daily practice and improvements in the skills students need for vocabulary acquisition and disciplinary reading comprehension.Keywords: adolescent, comprehension, orthography, reading, vocabulary, etymology, word study, disciplinary, teaching strategies
Procedia PDF Downloads 76