Search results for: hybrid meshless method
19829 Numerical Investigation of Hybrid Ferrofluid Unsteady Flow through Porous Channel
Authors: Wajahat Hussain Khan, M. Zubair Akbar Qureshi
Abstract:
The viscous, two-dimensional, incompressible, and laminar time-dependent heat transfer flow through a ferromagnetic fluid is considered in this paper. Flow takes place in a channel between two porous walls under the influence of the magnetic field located beyond the channel. It is assumed that there are no electric field effects and the variation in the magnetic field vector that could occur within the FKeywords: hybrid ferrofluid, heat transfer, magnetic field, porous channel
Procedia PDF Downloads 17719828 Nanoparticles-Protein Hybrid-Based Magnetic Liposome
Authors: Amlan Kumar Das, Avinash Marwal, Vikram Pareek
Abstract:
Liposome plays an important role in medical and pharmaceutical science as e.g. nano scale drug carriers. Liposomes are vesicles of varying size consisting of a spherical lipid bilayer and an aqueous inner compartment. Magnet-driven liposome used for the targeted delivery of drugs to organs and tissues1. These liposome preparations contain encapsulated drug components and finely dispersed magnetic particles. Liposomes are vesicles of varying size consisting of a spherical lipid bilayer and an aqueous inner compartment that are generated in vitro. These are useful in terms of biocompatibility, biodegradability, and low toxicity, and can control biodistribution by changing the size, lipid composition, and physical characteristics2. Furthermore, liposomes can entrap both hydrophobic and hydrophilic drugs and are able to continuously release the entrapped substrate, thus being useful drug carriers. Magnetic liposomes (MLs) are phospholipid vesicles that encapsulate magneticor paramagnetic nanoparticles. They are applied as contrast agents for magnetic resonance imaging (MRI)3. The biological synthesis of nanoparticles using plant extracts plays an important role in the field of nanotechnology4. Green-synthesized magnetite nanoparticles-protein hybrid has been produced by treating Iron (III)/Iron(II) chloride with the leaf extract of Dhatura Inoxia. The phytochemicals present in the leaf extracts act as a reducing as well stabilizing agents preventing agglomeration, which include flavonoids, phenolic compounds, cardiac glycosides, proteins and sugars. The magnetite nanoparticles-protein hybrid has been trapped inside the aqueous core of the liposome prepared by reversed phase evaporation (REV) method using oleic and linoleic acid which has been shown to be driven under magnetic field confirming the formation magnetic liposome (ML). Chemical characterization of stealth magnetic liposome has been performed by breaking the liposome and release of magnetic nanoparticles. The presence iron has been confirmed by colour complex formation with KSCN and UV-Vis study using spectrophotometer Cary 60, Agilent. This magnet driven liposome using nanoparticles-protein hybrid can be a smart vesicles for the targeted drug delivery.Keywords: nanoparticles-protein hybrid, magnetic liposome, medical, pharmaceutical science
Procedia PDF Downloads 25019827 Development of Cathode for Hybrid Zinc Ion Supercapacitor Using Secondary Marigold Floral Waste for Green Energy Application
Authors: Syali Pradhan, Neetu Jha
Abstract:
The Marigold flower is used in religious places for offering and decoration purpose every day. The flowers are discarded near trees or in aquatic bodies. This floral waste can be used for extracting dyes or oils. Still the secondary waste remains after processing which need to be addressed. This research aims to provide green and clean power using secondary floral waste available after processing. The carbonization of floral waste produce carbon material with high surface area and enhance active site for more reaction. The Hybrid supercapacitors are more stable, offer improved operating temperature and use less toxic material compared to battery. They provide enhanced energy density compared to supercapacitors. Hence, hybrid supercapacitor designed using waste material would be more practicable for future energy application. Here, we present the utilization of carbonized floral waste as supercapacitor electrode material. This material after carbonization gets graphitized and shows high surface area, optimum porosity along with high conductivity. Hence, this material has been tested as cathode electrode material for high performance zinc storage hybrid supercapacitor. High energy storage along with high stability has been obtained using this cathodic waste material as electrode.Keywords: marigold, flower waste, energy storage, cathode, supercapacitor
Procedia PDF Downloads 7519826 Effects of Kenaf and Rice Husk on Water Absorption and Flexural Properties of Kenaf/CaCO3/HDPE and Rice Husk/CaCO3/HDPE Hybrid Composites
Authors: Noor Zuhaira Abd Aziz
Abstract:
Rice husk and kenaf filled with calcium carbonate (CaCO3) and high density polyethylene (HDPE) composite were prepared separately using twin-screw extruder at 50rpm. Different filler loading up to 30 parts of rice husk particulate and kenaf fiber were mixed with the fixed 30% amount of CaCO3 mineral filler to produce rice husk/CaCO3/HDPE and kenaf/CaCO3/HDPE hybrid composites. In this study, the effects of natural fiber for both rice husk and kenaf in CaCO3/HDPE composite on physical and mechanical properties were investigated. The property analyses showed that water absorption increased with the presence of kenaf and rice husk fillers. Natural fibers in composite significantly influence water absorption properties due to natural characters of fibers which contain cellulose, hemicellulose and lignin structures. The result showed that 10% of additional natural fibers into hybrid composite had caused decreased flexural strength, however additional of high natural fiber (>10%) filler loading has proved to increase its flexural strength.Keywords: Hybrid composites, Water absorption, Mechanical properties
Procedia PDF Downloads 46419825 Unlocking the Puzzle of Borrowing Adult Data for Designing Hybrid Pediatric Clinical Trials
Authors: Rajesh Kumar G
Abstract:
A challenging aspect of any clinical trial is to carefully plan the study design to meet the study objective in optimum way and to validate the assumptions made during protocol designing. And when it is a pediatric study, there is the added challenge of stringent guidelines and difficulty in recruiting the necessary subjects. Unlike adult trials, there is not much historical data available for pediatrics, which is required to validate assumptions for planning pediatric trials. Typically, pediatric studies are initiated as soon as approval is obtained for a drug to be marketed for adults, so with the adult study historical information and with the available pediatric pilot study data or simulated pediatric data, the pediatric study can be well planned. Generalizing the historical adult study for new pediatric study is a tedious task; however, it is possible by integrating various statistical techniques and utilizing the advantage of hybrid study design, which will help to achieve the study objective in a smoother way even with the presence of many constraints. This research paper will explain how well the hybrid study design can be planned along with integrated technique (SEV) to plan the pediatric study; In brief the SEV technique (Simulation, Estimation (using borrowed adult data and applying Bayesian methods)) incorporates the use of simulating the planned study data and getting the desired estimates to Validate the assumptions.This method of validation can be used to improve the accuracy of data analysis, ensuring that results are as valid and reliable as possible, which allow us to make informed decisions well ahead of study initiation. With professional precision, this technique based on the collected data allows to gain insight into best practices when using data from historical study and simulated data alike.Keywords: adaptive design, simulation, borrowing data, bayesian model
Procedia PDF Downloads 7719824 An Innovation and Development System for a New Hybrid Composite Technology in Aerospace Industry
Authors: M. Fette, J. P. Wulfsberg, A. Herrmann, R. H. Ladstaetter
Abstract:
Present and future lightweight design represents an important key to successful implementation of energy-saving, fuel-efficient and environmentally friendly means of transport in the aerospace and automotive industry. In this context the use of carbon fibre reinforced plastics (CFRP) which are distinguished by their outstanding mechanical properties at relatively low weight, promise significant improvements. Due to the reduction of the total mass, with the resulting lowered fuel or energy consumption and CO2 emissions during the operational phase, commercial aircraft and future vehicles will increasingly be made of CFRP. An auspicious technology for the efficient and economic production of high performance thermoset composites and hybrid structures for future lightweight applications is the combination of carbon fibre sheet moulding compound (SMC), tailored continuous carbon fibre reinforcements and metallic components in a one-shot pressing and curing process. This paper deals with a new hybrid composite technology for aerospace industries, which was developed with the help of a universal innovation and development system. This system supports the management of idea generation, the methodical development of innovative technologies and the achievement of the industrial readiness of these technologies.Keywords: development system, hybrid composite, innovation system, prepreg, sheet moulding compound
Procedia PDF Downloads 34019823 A Hybrid Algorithm Based on Greedy Randomized Adaptive Search Procedure and Chemical Reaction Optimization for the Vehicle Routing Problem with Hard Time Windows
Authors: Imen Boudali, Marwa Ragmoun
Abstract:
The Vehicle Routing Problem with Hard Time Windows (VRPHTW) is a basic distribution management problem that models many real-world problems. The objective of the problem is to deliver a set of customers with known demands on minimum-cost vehicle routes while satisfying vehicle capacity and hard time windows for customers. In this paper, we propose to deal with our optimization problem by using a new hybrid stochastic algorithm based on two metaheuristics: Chemical Reaction Optimization (CRO) and Greedy Randomized Adaptive Search Procedure (GRASP). The first method is inspired by the natural process of chemical reactions enabling the transformation of unstable substances with excessive energy to stable ones. During this process, the molecules interact with each other through a series of elementary reactions to reach minimum energy for their existence. This property is embedded in CRO to solve the VRPHTW. In order to enhance the population diversity throughout the search process, we integrated the GRASP in our method. Simulation results on the base of Solomon’s benchmark instances show the very satisfactory performances of the proposed approach.Keywords: Benchmark Problems, Combinatorial Optimization, Vehicle Routing Problem with Hard Time Windows, Meta-heuristics, Hybridization, GRASP, CRO
Procedia PDF Downloads 41119822 Finite Element Approach to Evaluate Time Dependent Shear Behavior of Connections in Hybrid Steel-PC Girder under Sustained Loading
Authors: Mohammad Najmol Haque, Takeshi Maki, Jun Sasaki
Abstract:
Headed stud shear connections are widely used in the junction or embedded zone of hybrid girder to achieve whole composite action with continuity that can sustain steel-concrete interfacial tensile and shear forces. In Japan, Japan Road Association (JRA) specifications are used for hybrid girder design that utilizes very low level of stud capacity than those of American Institute of Steel Construction (AISC) specifications, Japan Society of Civil Engineers (JSCE) specifications and EURO code. As low design shear strength is considered in design of connections, the time dependent shear behavior due to sustained external loading is not considered, even not fully studied. In this study, a finite element approach was used to evaluate the time dependent shear behavior for headed studs used as connections at the junction. This study clarified, how the sustained loading distinctively impacted on changing the interfacial shear of connections with time which was sensitive to lodging history, positions of flanges, neighboring studs, position of prestress bar and reinforcing bar, concrete strength, etc. and also identified a shear influence area. Stud strength was also confirmed through pushout tests. The outcome obtained from the study may provide an important basis and reference data in designing connections of hybrid girders with enhanced stud capacity with due consideration of their long-term shear behavior.Keywords: finite element, hybrid girder, shear connections, sustained loading, time dependent behavior
Procedia PDF Downloads 13519821 Control of Stability for PV and Battery Hybrid System in Partial Shading
Authors: Weiying Wang, Qi Li, Huiwen Deng, Weirong Chen
Abstract:
The abrupt light change and uneven illumination will make the PV system get rid of constant output power, which will affect the efficiency of the grid connected inverter as well as the stability of the system. To solve this problem, this paper presents a strategy to control the stability of photovoltaic power system under the condition of partial shading of PV array, leading to constant power output, improving the capacity of resisting interferences. Firstly, a photovoltaic cell model considering the partial shading is established, and the backtracking search algorithm is used as the maximum power point to track algorithm under complex illumination. Then, the energy storage system based on the constant power control strategy is used to achieve constant power output. Finally, the effectiveness and correctness of the proposed control method are verified by the joint simulation of MATLAB/Simulink and RTLAB simulation platform.Keywords: backtracking search algorithm, constant power control, hybrid system, partial shading, stability
Procedia PDF Downloads 29719820 Hybrid Algorithm for Frequency Channel Selection in Wi-Fi Networks
Authors: Cesar Hernández, Diego Giral, Ingrid Páez
Abstract:
This article proposes a hybrid algorithm for spectrum allocation in cognitive radio networks based on the algorithms Analytical Hierarchical Process (AHP) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to improve the performance of the spectrum mobility of secondary users in cognitive radio networks. To calculate the level of performance of the proposed algorithm a comparative analysis between the proposed AHP-TOPSIS, Grey Relational Analysis (GRA) and Multiplicative Exponent Weighting (MEW) algorithm is performed. Four evaluation metrics is used. These metrics are the accumulative average of failed handoffs, the accumulative average of handoffs performed, the accumulative average of transmission bandwidth, and the accumulative average of the transmission delay. The results of the comparison show that AHP-TOPSIS Algorithm provides 2.4 times better performance compared to a GRA Algorithm and, 1.5 times better than the MEW Algorithm.Keywords: cognitive radio, decision making, hybrid algorithm, spectrum handoff, wireless networks
Procedia PDF Downloads 54219819 A Bottom-Up Approach for the Synthesis of Highly Ordered Fullerene-Intercalated Graphene Hybrids
Authors: A. Kouloumpis, P. Zygouri, G. Potsi, K. Spyrou, D. Gournis
Abstract:
Much of the research effort on graphene focuses on its use as building block for the development of new hybrid nanostructures with well-defined dimensions and behavior suitable for applications among else in gas storage, heterogeneous catalysis, gas/liquid separations, nanosensing and biology. Towards this aim, here we describe a new bottom-up approach, which combines the self-assembly with the Langmuir Schaefer technique, for the production of fullerene-intercalated graphene hybrid materials. This new method uses graphene nanosheets as a template for the grafting of various fullerene C60 molecules (pure C60, bromo-fullerenes, C60Br24, and fullerols, C60(OH)24) in a bi-dimensional array, and allows for perfect layer-by-layer growth with control at the molecular level. Our film preparation approach involves a bottom-up layer-by-layer process that includes the formation of a hybrid organo-graphene Langmuir film hosting fullerene molecules within its interlayer spacing. A dilute water solution of chemically oxidized graphene (GO) was used as subphase on the Langmuir-Blodgett deposition system while an appropriate amino surfactant (that binds covalently with the GO) was applied for the formation of hybridized organo-GO. After the horizontal lift of a hydrophobic substrate, a surface modification of the GO platelets was performed by bringing the surface of the transferred Langmuir film in contact with a second amino surfactant solution (capable to interact strongly with the fullerene derivatives). In the final step, the hybrid organo-graphene film was lowered in the solution of the appropriate fullerene derivative. Multilayer films were constructed by repeating this procedure. Hybrid fullerene-based thin films deposited on various hydrophobic substrates were characterized by X-ray diffraction (XRD) and X-ray reflectivity (XRR), FTIR, and Raman spectroscopies, Atomic Force Microscopy, and optical measurements. Acknowledgments. This research has been co‐financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF)‐Research Funding Program: THALES. Investing in knowledge society through the European Social Fund (no. 377285).Keywords: hybrids, graphene oxide, fullerenes, langmuir-blodgett, intercalated structures
Procedia PDF Downloads 32719818 Satellite Image Classification Using Firefly Algorithm
Authors: Paramjit Kaur, Harish Kundra
Abstract:
In the recent years, swarm intelligence based firefly algorithm has become a great focus for the researchers to solve the real time optimization problems. Here, firefly algorithm is used for the application of satellite image classification. For experimentation, Alwar area is considered to multiple land features like vegetation, barren, hilly, residential and water surface. Alwar dataset is considered with seven band satellite images. Firefly Algorithm is based on the attraction of less bright fireflies towards more brightener one. For the evaluation of proposed concept accuracy assessment parameters are calculated using error matrix. With the help of Error matrix, parameters of Kappa Coefficient, Overall Accuracy and feature wise accuracy parameters of user’s accuracy & producer’s accuracy can be calculated. Overall results are compared with BBO, PSO, Hybrid FPAB/BBO, Hybrid ACO/SOFM and Hybrid ACO/BBO based on the kappa coefficient and overall accuracy parameters.Keywords: image classification, firefly algorithm, satellite image classification, terrain classification
Procedia PDF Downloads 40119817 A Pilot Study on Integration of Simulation in the Nursing Educational Program: Hybrid Simulation
Authors: Vesile Unver, Tulay Basak, Hatice Ayhan, Ilknur Cinar, Emine Iyigun, Nuran Tosun
Abstract:
The aim of this study is to analyze the effects of the hybrid simulation. In this simulation, types standardized patients and task trainers are employed simultaneously. For instance, in order to teach the IV activities standardized patients and IV arm models are used. The study was designed as a quasi-experimental research. Before the implementation an ethical permission was taken from the local ethical commission and administrative permission was granted from the nursing school. The universe of the study included second-grade nursing students (n=77). The participants were selected through simple random sample technique and total of 39 nursing students were included. The views of the participants were collected through a feedback form with 12 items. The form was developed by the authors and “Patient intervention self-confidence/competence scale”. Participants reported advantages of the hybrid simulation practice. Such advantages include the following: developing connections between the simulated scenario and real life situations in clinical conditions; recognition of the need for learning more about clinical practice. They all stated that the implementation was very useful for them. They also added three major gains; improvement of critical thinking skills (94.7%) and the skill of making decisions (97.3%); and feeling as if a nurse (92.1%). In regard to the mean scores of the participants in the patient intervention self-confidence/competence scale, it was found that the total mean score for the scale was 75.23±7.76. The findings obtained in the study suggest that the hybrid simulation has positive effects on the integration of theoretical and practical activities before clinical activities for the nursing students.Keywords: hybrid simulation, clinical practice, nursing education, nursing students
Procedia PDF Downloads 29419816 Combining an Optimized Closed Principal Curve-Based Method and Evolutionary Neural Network for Ultrasound Prostate Segmentation
Authors: Tao Peng, Jing Zhao, Yanqing Xu, Jing Cai
Abstract:
Due to missing/ambiguous boundaries between the prostate and neighboring structures, the presence of shadow artifacts, as well as the large variability in prostate shapes, ultrasound prostate segmentation is challenging. To handle these issues, this paper develops a hybrid method for ultrasound prostate segmentation by combining an optimized closed principal curve-based method and the evolutionary neural network; the former can fit curves with great curvature and generate a contour composed of line segments connected by sorted vertices, and the latter is used to express an appropriate map function (represented by parameters of evolutionary neural network) for generating the smooth prostate contour to match the ground truth contour. Both qualitative and quantitative experimental results showed that our proposed method obtains accurate and robust performances.Keywords: ultrasound prostate segmentation, optimized closed polygonal segment method, evolutionary neural network, smooth mathematical model, principal curve
Procedia PDF Downloads 20419815 Preparation and Characterization of Hybrid Perovskite Enhanced with PVDF for Pressure Sensing
Authors: Mohamed E. Harb, Enas Moustafa, Shaker Ebrahim, Moataz Soliman
Abstract:
In this paper pressure detectors were synthesized and characterized using hybrid perovskite/PVDF composites as an active layer. Methylammonium lead iodide (MAPbI₃) was synthesized from methylammonium iodide (MAI) (CH₃NH₃I) and lead iodide (PbI₂). Composites of perovskite/PVDF using different weight ratio were prepared as the active material. PVDF with weights percentages of 6%, 8%, and 10% was used. All prepared materials were investigated by x-ray diffraction (XRD), Fourier transforms infrared spectrum (FTIR) and scanning electron microscopy (SEM). A Versastat 4 Potentiostat Galvanostat instrument was used to perform the current-voltage characteristics of the fabricated sensors. The pressure sensors exhibited a voltage increase with applying different forces. Also, the current-voltage characteristics (CV) showed different effects with applying forces. So, the results showed a good pressure sensing performance.Keywords: perovskite semiconductor, hybrid perovskite, PVDF, Pressure sensing
Procedia PDF Downloads 20819814 Application of Electro-Optical Hybrid Cables in Horizontal Well Production Logging
Authors: Daofan Guo, Dong Yang
Abstract:
For decades, well logging with coiled tubing has relied solely on surface data such as pump pressure, wellhead pressure, depth counter, and weight indicator readings. While this data serves the oil industry well, modern smart logging utilizes real-time downhole information, which automatically increases operational efficiency and optimizes intervention qualities. For example, downhole pressure, temperature, and depth measurement data can be transmitted through the electro-optical hybrid cable in the coiled tubing to surface operators on a real-time base. This paper mainly introduces the unique structural features and various applications of the electro-optical hybrid cables which were deployed into downhole with the help of coiled tubing technology. Fiber optic elements in the cable enable optical communications and distributed measurements, such as distributed temperature and acoustic sensing. The electrical elements provide continuous surface power for downhole tools, eliminating the limitations of traditional batteries, such as temperature, operating time, and safety concerns. The electrical elements also enable cable telemetry operation of cable tools. Both power supply and signal transmission were integrated into an electro-optical hybrid cable, and the downhole information can be captured by downhole electrical sensors and distributed optical sensing technologies, then travels up through an optical fiber to the surface, which greatly improves the accuracy of measurement data transmission.Keywords: electro-optical hybrid cable, underground photoelectric composite cable, seismic cable, coiled tubing, real-time monitoring
Procedia PDF Downloads 14619813 Hybrid Fuzzy Weighted K-Nearest Neighbor to Predict Hospital Readmission for Diabetic Patients
Authors: Soha A. Bahanshal, Byung G. Kim
Abstract:
Identification of patients at high risk for hospital readmission is of crucial importance for quality health care and cost reduction. Predicting hospital readmissions among diabetic patients has been of great interest to many researchers and health decision makers. We build a prediction model to predict hospital readmission for diabetic patients within 30 days of discharge. The core of the prediction model is a modified k Nearest Neighbor called Hybrid Fuzzy Weighted k Nearest Neighbor algorithm. The prediction is performed on a patient dataset which consists of more than 70,000 patients with 50 attributes. We applied data preprocessing using different techniques in order to handle data imbalance and to fuzzify the data to suit the prediction algorithm. The model so far achieved classification accuracy of 80% compared to other models that only use k Nearest Neighbor.Keywords: machine learning, prediction, classification, hybrid fuzzy weighted k-nearest neighbor, diabetic hospital readmission
Procedia PDF Downloads 18619812 Implication of Multi-Walled Carbon Nanotubes on Polymer/MXene Nanocomposites
Authors: Mathias Aakyiir, Qunhui Zheng, Sherif Araby, Jun Ma
Abstract:
MXene nanosheets stack in polymer matrices, while multi-walled carbon nanotubes (MWCNTs) entangle themselves when used to form composites. These challenges are addressed in this work by forming MXene/MWCNT hybrid nanofillers by electrostatic self-assembly and developing elastomer/MXene/MWCNTs nanocomposites using a latex compounding method. In a 3-phase nanocomposite, MWCNTs serve as bridges between MXene nanosheets, leading to nanocomposites with well-dispersed nanofillers. The high aspect ratio of MWCNTs and the interconnection role of MXene serve as a basis for forming nanocomposites of lower percolation threshold of electrical conductivity from the hybrid fillers compared with the 2-phase composites containing either MXene or MWCNTs only. This study focuses on discussing into detail the interfacial interaction of nanofillers and the elastomer matrix and the outstanding mechanical and functional properties of the resulting nanocomposites. The developed nanocomposites have potential applications in the automotive and aerospace industries.Keywords: elastomers, multi-walled carbon nanotubes, MXenes, nanocomposites
Procedia PDF Downloads 16419811 Fly Ash Derived Zeolites as Potential Sorbents for Elemental Mercury Removal from Simulated Gas Stream
Authors: Piotr Kunecki, Magdalena Wdowin
Abstract:
The fly ash produced as waste in the process of conventional coal combustion was utilized in the hybrid synthesis of zeolites X and A from Faujasite (FAU) and Linde Type A (LTA) frameworks, respectively. The applied synthesis method included modification together with the crystallization stage. The sorbent modification was performed by introducing metals into the zeolite structure in order to create an ability to form stable bonds with elemental mercury (Hg0). The use of waste in the form of fly ash as a source of silicon and aluminum, as well as the proposed method of zeolite synthesis, fits the circular economy idea. The effect of zeolite modification on Hg0 removal from a simulated gas stream was studied empirically using prototype installation designed to test the effectiveness of sorption by solid-state sorbents. Both derived zeolites X and A modified with silver nitrate revealed significant mercury uptake during a 150-minute sorption experiment. The amount of elemental mercury removed in the experiment ranged from 5.69 to 6.01 µg Hg0/1g of sorbent for zeolites X and from 4.47 to 4.86 µg Hg0/1g of sorbent for zeolites A. In order to confirm the effectiveness of the sorbents towards mercury bonding, the possible re-emission effect was tested as well. Derived zeolites X and A did not show mercury re-emission after the sorption process, which confirms the stable bonding of Hg0 in the structure of synthesized zeolites. The proposed hybrid synthesis method possesses the potential to be implemented for both fly ash utilization as well as the time and energy-saving production of aluminosilicate, porous materials with high Hg0 removal efficiency. This research was supported by National Science Centre, Poland, grant no 2021/41/N/ST5/03214.Keywords: fly ash, synthetic zeolites, elemental mercury removal, sorption, simulated gas stream
Procedia PDF Downloads 8719810 Prediction of Mechanical Strength of Multiscale Hybrid Reinforced Cementitious Composite
Authors: Salam Alrekabi, A. B. Cundy, Mohammed Haloob Al-Majidi
Abstract:
Novel multiscale hybrid reinforced cementitious composites based on carbon nanotubes (MHRCC-CNT), and carbon nanofibers (MHRCC-CNF) are new types of cement-based material fabricated with micro steel fibers and nanofilaments, featuring superior strain hardening, ductility, and energy absorption. This study focused on established models to predict the compressive strength, and direct and splitting tensile strengths of the produced cementitious composites. The analysis was carried out based on the experimental data presented by the previous author’s study, regression analysis, and the established models that available in the literature. The obtained models showed small differences in the predictions and target values with experimental verification indicated that the estimation of the mechanical properties could be achieved with good accuracy.Keywords: multiscale hybrid reinforced cementitious composites, carbon nanotubes, carbon nanofibers, mechanical strength prediction
Procedia PDF Downloads 16219809 Energy Efficient Microgrid Design with Hybrid Power Systems
Authors: Pedro Esteban
Abstract:
Today’s electrical networks, including microgrids, are evolving into smart grids. The smart grid concept brings the idea that the power comes from various sources (continuous or intermittent), in various forms (AC or DC, high, medium or low voltage, etc.), and it must be integrated into the electric power system in a smart way to guarantee a continuous and reliable supply that complies with power quality and energy efficiency standards and grid code requirements. This idea brings questions for the different players like how the required power will be generated, what kind of power will be more suitable, how to store exceeding levels for short or long-term usage, and how to combine and distribute all the different generation power sources in an efficient way. To address these issues, there has been lots of development in recent years on the field of on-grid and off-grid hybrid power systems (HPS). These systems usually combine one or more modes of electricity generation together with energy storage to ensure optimal supply reliability and high level of energy security. Hybrid power systems combine power generation and energy storage technologies together with real-time energy management and innovative power quality and energy efficiency improvement functionalities. These systems help customers achieve targets for clean energy generation, they add flexibility to the electrical grid, and they optimize the installation by improving its power quality and energy efficiency.Keywords: microgrids, hybrid power systems, energy storage, power quality improvement
Procedia PDF Downloads 14519808 Cladding Technology for Metal-Hybrid Composites with Network-Structure
Authors: Ha-Guk Jeong, Jong-Beom Lee
Abstract:
Cladding process is very typical technology for manufacturing composite materials by the hydrostatic extrusion. Because there is no friction between the metal and the container, it can be easily obtained in uniform flow during the deformation. The general manufacturing process for a metal-matrix composite in the solid state, mixing metal powders and ceramic powders with a suited volume ratio, prior to be compressed or extruded at the cold or hot condition in a can. Since through a plurality of unit processing steps of dispersing the materials having a large difference in their characteristics and physical mixing, the process is complicated and leads to non-uniform dispersion of ceramics. It is difficult and hard to reach a uniform ideal property in the coherence problems at the interface between the metal and the ceramic reinforcements. Metal hybrid composites, which presented in this report, are manufactured through the traditional plastic deformation processes like hydrostatic extrusion, caliber-rolling, and drawing. By the previous process, the realization of uniform macro and microstructure is surely possible. In this study, as a constituent material, aluminum, copper, and titanium have been used, according to the component ratio, excellent characteristics of each material were possible to produce a metal hybrid composite that appears to maximize. MgB₂ superconductor wire also fabricated via the same process. It will be introduced to their unique artistic and thermal characteristics.Keywords: cladding process, metal-hybrid composites, hydrostatic extrusion, electronic/thermal characteristics
Procedia PDF Downloads 18119807 Processing and Evaluation of Jute Fiber Reinforced Hybrid Composites
Authors: Mohammad W. Dewan, Jahangir Alam, Khurshida Sharmin
Abstract:
Synthetic fibers (carbon, glass, aramid, etc.) are generally utilized to make composite materials for better mechanical and thermal properties. However, they are expensive and non-biodegradable. In the perspective of Bangladesh, jute fibers are available, inexpensive, and comprising good mechanical properties. The improved properties (i.e., low cost, low density, eco-friendly) of natural fibers have made them a promising reinforcement in hybrid composites without sacrificing mechanical properties. In this study, jute and e-glass fiber reinforced hybrid composite materials are fabricated utilizing hand lay-up followed by a compression molding technique. Room temperature cured two-part epoxy resin is used as a matrix. Approximate 6-7 mm thick composite panels are fabricated utilizing 17 layers of woven glass and jute fibers with different fiber layering sequences- only jute, only glass, glass, and jute alternatively (g/j/g/j---) and 4 glass - 9 jute – 4 glass (4g-9j-4g). The fabricated composite panels are analyzed through fiber volume calculation, tensile test, bending test, and water absorption test. The hybridization of jute and glass fiber results in better tensile, bending, and water absorption properties than only jute fiber-reinforced composites, but inferior properties as compared to only glass fiber reinforced composites. Among different fiber layering sequences, 4g-9j-4g fibers layering sequence resulted in better tensile, bending, and water absorption properties. The effect of chemical treatment on the woven jute fiber and chopped glass microfiber infusion are also investigated in this study. Chemically treated jute fiber and 2 wt. % chopped glass microfiber infused hybrid composite shows about 12% improvements in flexural strength as compared to untreated and no micro-fiber infused hybrid composite panel. However, fiber chemical treatment and micro-filler do not have a significant effect on tensile strength.Keywords: compression molding, chemical treatment, hybrid composites, mechanical properties
Procedia PDF Downloads 15919806 An Integrated Approach to the Carbonate Reservoir Modeling: Case Study of the Eastern Siberia Field
Authors: Yana Snegireva
Abstract:
Carbonate reservoirs are known for their heterogeneity, resulting from various geological processes such as diagenesis and fracturing. These complexities may cause great challenges in understanding fluid flow behavior and predicting the production performance of naturally fractured reservoirs. The investigation of carbonate reservoirs is crucial, as many petroleum reservoirs are naturally fractured, which can be difficult due to the complexity of their fracture networks. This can lead to geological uncertainties, which are important for global petroleum reserves. The problem outlines the key challenges in carbonate reservoir modeling, including the accurate representation of fractures and their connectivity, as well as capturing the impact of fractures on fluid flow and production. Traditional reservoir modeling techniques often oversimplify fracture networks, leading to inaccurate predictions. Therefore, there is a need for a modern approach that can capture the complexities of carbonate reservoirs and provide reliable predictions for effective reservoir management and production optimization. The modern approach to carbonate reservoir modeling involves the utilization of the hybrid fracture modeling approach, including the discrete fracture network (DFN) method and implicit fracture network, which offer enhanced accuracy and reliability in characterizing complex fracture systems within these reservoirs. This study focuses on the application of the hybrid method in the Nepsko-Botuobinskaya anticline of the Eastern Siberia field, aiming to prove the appropriateness of this method in these geological conditions. The DFN method is adopted to model the fracture network within the carbonate reservoir. This method considers fractures as discrete entities, capturing their geometry, orientation, and connectivity. But the method has significant disadvantages since the number of fractures in the field can be very high. Due to limitations in the amount of main memory, it is very difficult to represent these fractures explicitly. By integrating data from image logs (formation micro imager), core data, and fracture density logs, a discrete fracture network (DFN) model can be constructed to represent fracture characteristics for hydraulically relevant fractures. The results obtained from the DFN modeling approaches provide valuable insights into the East Siberia field's carbonate reservoir behavior. The DFN model accurately captures the fracture system, allowing for a better understanding of fluid flow pathways, connectivity, and potential production zones. The analysis of simulation results enables the identification of zones of increased fracturing and optimization opportunities for reservoir development with the potential application of enhanced oil recovery techniques, which were considered in further simulations on the dual porosity and dual permeability models. This approach considers fractures as separate, interconnected flow paths within the reservoir matrix, allowing for the characterization of dual-porosity media. The case study of the East Siberia field demonstrates the effectiveness of the hybrid model method in accurately representing fracture systems and predicting reservoir behavior. The findings from this study contribute to improved reservoir management and production optimization in carbonate reservoirs with the use of enhanced and improved oil recovery methods.Keywords: carbonate reservoir, discrete fracture network, fracture modeling, dual porosity, enhanced oil recovery, implicit fracture model, hybrid fracture model
Procedia PDF Downloads 7619805 Flexural Analysis of Palm Fiber Reinforced Hybrid Polymer Matrix Composite
Authors: G.Venkatachalam, Gautham Shankar, Dasarath Raghav, Krishna Kuar, Santhosh Kiran, Bhargav Mahesh
Abstract:
Uncertainty in the availability of fossil fuels in the future and global warming increased the need for more environment-friendly materials. In this work, an attempt is made to fabricate a hybrid polymer matrix composite. The blend is a mixture of General Purpose Resin and Cashew Nut Shell Liquid, a natural resin extracted from cashew plant. Palm fiber, which has high strength, is used as a reinforcement material. The fiber is treated with alkali (NaOH) solution to increase its strength and adhesiveness. Parametric study of flexure strength is carried out by varying alkali concentration, duration of alkali treatment and fiber volume. Taguchi L9 Orthogonal array is followed in the design of experiments procedure for simplification. With the help of ANOVA technique, regression equations are obtained which gives the level of influence of each parameter on the flexure strength of the composite.Keywords: Adhesion, CNSL, Flexural Analysis, Hybrid Matrix Composite, Palm Fiber
Procedia PDF Downloads 40519804 Deep Learning for SAR Images Restoration
Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo Ferraioli
Abstract:
In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring. SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.Keywords: SAR image, polarimetric SAR image, convolutional neural network, deep learnig, deep neural network
Procedia PDF Downloads 7119803 Robust and Dedicated Hybrid Cloud Approach for Secure Authorized Deduplication
Authors: Aishwarya Shekhar, Himanshu Sharma
Abstract:
Data deduplication is one of important data compression techniques for eliminating duplicate copies of repeating data, and has been widely used in cloud storage to reduce the amount of storage space and save bandwidth. In this process, duplicate data is expunged, leaving only one copy means single instance of the data to be accumulated. Though, indexing of each and every data is still maintained. Data deduplication is an approach for minimizing the part of storage space an organization required to retain its data. In most of the company, the storage systems carry identical copies of numerous pieces of data. Deduplication terminates these additional copies by saving just one copy of the data and exchanging the other copies with pointers that assist back to the primary copy. To ignore this duplication of the data and to preserve the confidentiality in the cloud here we are applying the concept of hybrid nature of cloud. A hybrid cloud is a fusion of minimally one public and private cloud. As a proof of concept, we implement a java code which provides security as well as removes all types of duplicated data from the cloud.Keywords: confidentiality, deduplication, data compression, hybridity of cloud
Procedia PDF Downloads 38419802 Titanium Nitride @ Nitrogen-doped Carbon Nanocage as High-performance Cathodes for Aqueous Zn-ion Hybrid Supercapacitors
Authors: Ye Ling, Ruan Haihui
Abstract:
Aqueous Zn-ion hybrid supercapacitors (AZHSCs) pertain to a new type of electrochemical energy storage device that has received considerable attention. They integrate the advantages of high-energy Zn-ion batteries and high-power supercapacitors to meet the demand for low-cost, long-term durability, and high safety. Nevertheless, the challenge caused by the finite ion adsorption/desorption capacity of carbon electrodes gravely limits their energy densities. This work describes titanium nitride@nitrogen-doped carbon nanocage (TiN@NCNC) composite cathodes for AZHSCs to achieve a greatly improved energy density, and the composites can be facile synthesized based on the calcination of a mixture of tetrabutyl titanate and zeolitic imidazolate framework-8 in argon atmosphere. The resulting composites are featured by the ultra-fine TiN particles dispersed uniformly on the NCNC surfaces, enhancing the Zn2+ storage capabilities. Using TiN@NCNC cathodes, the AZHSCs can operate stably with a high energy density of 154 Wh kg-¹ at a specific power of 270 W kg-¹ and achieve a remarkable capacity retention of 88.9% after 104 cycles at 5 A g-¹. At an extreme specific power of 8.7 kW kg-1, the AZHSCs can retain an energy density of 97.2 Wh kg-1. With these results, we stress that the TiN@NCNC cathodes render high-performance AZHSCs, and the facile one-pot method can easily be scaled up, which enables AZHSCs a new energy-storage component for managing intermitted renewable energy sources.Keywords: Zn-ion hybrid supercapacitors, ion absorption/desorption reactions, titanium nitride, zeolitic imidazolate framework-8
Procedia PDF Downloads 5219801 The Relationship between Working Models and Psychological Safety
Authors: Rosyellen Rabelo Szvarça, Pedro Fialho, Auristela Duarte de Lima Moser
Abstract:
Background: New ways of working, such as teleworking or hybrid working, have changed and have impacted both employees and organizations. To understand the individuals' perceptions among different working models, this study aimed to investigate levels of psychological safety among employees working in person, hybrid, and remote environments and the correlation of demographic or professional characteristics. Methods: A cross-sectional survey was distributed electronically. A self-administered questionnaire was composed of sociodemographic data, academic status, professional contexts, working models, and the seven-item instrument of psychological safety. The psychological safety instrument was computed to determine its reliability, showing a Cronbach’s 0.75, considering a good scale when compared to the original, analyzed with 51 teams from a North American company, with a Cronbach's alpha coefficient of 0.82. Results: The survey was completed by 328 individuals, 60% of whom were in-person, 29.3% hybrid, and 10.7% remote. The Chi-Square test with the Bonferroni post-test for qualitative variables associated with the working models indicates a significant association (p 0.001) for academic qualifications. In-person models present 29.4% of individuals with secondary education and 38.1% undergraduate; hybrid present 51% postgraduate and 35.4% undergraduate. This was similar to remote workers, with 48.6% postgraduate and 34.3% undergraduate. There were no significant differences in gender composition between work models (p = 0.738), with most respondents being female in all three work groups. Remote workers predominated in areas such as commerce, marketing, and services; education and the public sector were common in the in-person group, while technology and the financial sector were predominant among hybrid workers (p < 0.001). As for leadership roles, there was no significant association with working models (p = 0.126). The decision on the working model was predominantly made by the organization for in-person and hybrid workers (p < 0.001). Preference for the working model was in line with the workers' scenario at that time (p < 0.001). Kruskal-Wallis test with Bonferroni's post hoc test compared the psychological safety scores between working groups, reveling statistically higher scores in hybrid group x̃ = 5.64 compared to in-person group x̃ = 5, with remote workers showing scores similar to other groups x̃ = 5.43 (p = 0.004). Age demonstrated no significant difference between the working groups (p = 0.052). On the other hand, organization tenure and job tenure were higher in in-person groups compared to the hybrid and remote groups (p < 0.001). The hybrid model illustrates a balance between in-person and remote models. The results highlight that higher levels of psychological safety can be correlated with the flexibility of hybrid work, as well as physical interaction, spontaneity, and informal relationships, which are considered determinants of high levels of psychological safety. Conclusions: Psychological safety at the group level using the seven-item scale is widely employed in comparison to other commonly employed measures. Despite psychological safety having been around for decades, primarily studied in in-person work contexts, the current findings contribute to expanding research with hybrid or remote settings. Ultimately, this investigation has demonstrated the significance of work models in assessing psychological safety levels.Keywords: hybrid work, new ways of working, psychological safety, workplace, working models
Procedia PDF Downloads 1219800 Deep Learning Based Polarimetric SAR Images Restoration
Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo ferraioli
Abstract:
In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring . SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.Keywords: SAR image, deep learning, convolutional neural network, deep neural network, SAR polarimetry
Procedia PDF Downloads 93