Search results for: modeling platform
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5850

Search results for: modeling platform

1740 The Comparison of Joint Simulation and Estimation Methods for the Geometallurgical Modeling

Authors: Farzaneh Khorram

Abstract:

This paper endeavors to construct a block model to assess grinding energy consumption (CCE) and pinpoint blocks with the highest potential for energy usage during the grinding process within a specified region. Leveraging geostatistical techniques, particularly joint estimation, or simulation, based on geometallurgical data from various mineral processing stages, our objective is to forecast CCE across the study area. The dataset encompasses variables obtained from 2754 drill samples and a block model comprising 4680 blocks. The initial analysis encompassed exploratory data examination, variography, multivariate analysis, and the delineation of geological and structural units. Subsequent analysis involved the assessment of contacts between these units and the estimation of CCE via cokriging, considering its correlation with SPI. The selection of blocks exhibiting maximum CCE holds paramount importance for cost estimation, production planning, and risk mitigation. The study conducted exploratory data analysis on lithology, rock type, and failure variables, revealing seamless boundaries between geometallurgical units. Simulation methods, such as Plurigaussian and Turning band, demonstrated more realistic outcomes compared to cokriging, owing to the inherent characteristics of geometallurgical data and the limitations of kriging methods.

Keywords: geometallurgy, multivariate analysis, plurigaussian, turning band method, cokriging

Procedia PDF Downloads 74
1739 Hybrid Method for Smart Suggestions in Conversations for Online Marketplaces

Authors: Yasamin Rahimi, Ali Kamandi, Abbas Hoseini, Hesam Haddad

Abstract:

Online/offline chat is a convenient approach in the electronic markets of second-hand products in which potential customers would like to have more information about the products to fill the information gap between buyers and sellers. Online peer in peer market is trying to create artificial intelligence-based systems that help customers ask more informative questions in an easier way. In this article, we introduce a method for the question/answer system that we have developed for the top-ranked electronic market in Iran called Divar. When it comes to secondhand products, incomplete product information in a purchase will result in loss to the buyer. One way to balance buyer and seller information of a product is to help the buyer ask more informative questions when purchasing. Also, the short time to start and achieve the desired result of the conversation was one of our main goals, which was achieved according to A/B tests results. In this paper, we propose and evaluate a method for suggesting questions and answers in the messaging platform of the e-commerce website Divar. Creating such systems is to help users gather knowledge about the product easier and faster, All from the Divar database. We collected a dataset of around 2 million messages in Persian colloquial language, and for each category of product, we gathered 500K messages, of which only 2K were Tagged, and semi-supervised methods were used. In order to publish the proposed model to production, it is required to be fast enough to process 10 million messages daily on CPU processors. In order to reach that speed, in many subtasks, faster and simplistic models are preferred over deep neural models. The proposed method, which requires only a small amount of labeled data, is currently used in Divar production on CPU processors, and 15% of buyers and seller’s messages in conversations is directly chosen from our model output, and more than 27% of buyers have used this model suggestions in at least one daily conversation.

Keywords: smart reply, spell checker, information retrieval, intent detection, question answering

Procedia PDF Downloads 190
1738 Career Guidance System Using Machine Learning

Authors: Mane Darbinyan, Lusine Hayrapetyan, Elen Matevosyan

Abstract:

Artificial Intelligence in Education (AIED) has been created to help students get ready for the workforce, and over the past 25 years, it has grown significantly, offering a variety of technologies to support academic, institutional, and administrative services. However, this is still challenging, especially considering the labor market's rapid change. While choosing a career, people face various obstacles because they do not take into consideration their own preferences, which might lead to many other problems like shifting jobs, work stress, occupational infirmity, reduced productivity, and manual error. Besides preferences, people should properly evaluate their technical and non-technical skills, as well as their personalities. Professional counseling has become a difficult undertaking for counselors due to the wide range of career choices brought on by changing technological trends. It is necessary to close this gap by utilizing technology that makes sophisticated predictions about a person's career goals based on their personality. Hence, there is a need to create an automated model that would help in decision-making based on user inputs. Improving career guidance can be achieved by embedding machine learning into the career consulting ecosystem. There are various systems of career guidance that work based on the same logic, such as the classification of applicants, matching applications with appropriate departments or jobs, making predictions, and providing suitable recommendations. Methodologies like KNN, Neural Networks, K-means clustering, D-Tree, and many other advanced algorithms are applied in the fields of data and compute some data, which is helpful to predict the right careers. Besides helping users with their career choice, these systems provide numerous opportunities which are very useful while making this hard decision. They help the candidate to recognize where he/she specifically lacks sufficient skills so that the candidate can improve those skills. They are also capable to offer an e-learning platform, taking into account the user's lack of knowledge. Furthermore, users can be provided with details on a particular job, such as the abilities required to excel in that industry.

Keywords: career guidance system, machine learning, career prediction, predictive decision, data mining, technical and non-technical skills

Procedia PDF Downloads 83
1737 Development of a French to Yorùbá Machine Translation System

Authors: Benjamen Nathaniel, Eludiora Safiriyu Ijiyemi, Egume Oneme Lucky

Abstract:

A review on machine translation systems shows that a lot of computational artefacts has been carried out to translate written or spoken texts from a source language to Yorùbá language through Machine Translation systems. However, there are no work on French to Yorùbá language machine translation system; hence, the study investigated the process involved in the translation of French-to-Yorùbá language equivalent with the view to adopting a rule- based MT approach to build a Machine Translation framework from simple sentences administered through questionnaire. Articles and relevant textbooks were reviewed with key speakers of both languages interviewed to find out the processes involved in the translation of French language and their equivalent in Yorùbálanguage simple sentences using home domain terminologies. Achieving this, a model was formulated using phrase grammar structure, re-write rule, parse tree, automata theory- based techniques, designed and implemented respectively with unified modeling language (UML) and python programming language. Analysing the result, it was observed when carrying out the result that, the Machine Translation system performed 18.45% above Experimental Subject Respondent and 2.7% below Linguistics Expert when analysed with word orthography, sentence syntax and semantic correctness of the sentences. And, when compared with Google Machine Translation system, it was noticed that the developed system performed better on lexicons of the target language.

Keywords: machine translation (MT), rule-based, French language, Yoru`ba´ language

Procedia PDF Downloads 81
1736 150 KVA Multifunction Laboratory Test Unit Based on Power-Frequency Converter

Authors: Bartosz Kedra, Robert Malkowski

Abstract:

This paper provides description and presentation of laboratory test unit built basing on 150 kVA power frequency converter and Simulink RealTime platform. Assumptions, based on criteria which load and generator types may be simulated using discussed device, are presented, as well as control algorithm structure. As laboratory setup contains transformer with thyristor controlled tap changer, a wider scope of setup capabilities is presented. Information about used communication interface, data maintenance, and storage solution as well as used Simulink real-time features is presented. List and description of all measurements are provided. Potential of laboratory setup modifications is evaluated. For purposes of Rapid Control Prototyping, a dedicated environment was used Simulink RealTime. Therefore, load model Functional Unit Controller is based on a PC computer with I/O cards and Simulink RealTime software. Simulink RealTime was used to create real-time applications directly from Simulink models. In the next step, applications were loaded on a target computer connected to physical devices that provided opportunity to perform Hardware in the Loop (HIL) tests, as well as the mentioned Rapid Control Prototyping process. With Simulink RealTime, Simulink models were extended with I/O cards driver blocks that made automatic generation of real-time applications and performing interactive or automated runs on a dedicated target computer equipped with a real-time kernel, multicore CPU, and I/O cards possible. Results of performed laboratory tests are presented. Different load configurations are described and experimental results are presented. This includes simulation of under frequency load shedding, frequency and voltage dependent characteristics of groups of load units, time characteristics of group of different load units in a chosen area and arbitrary active and reactive power regulation basing on defined schedule.

Keywords: MATLAB, power converter, Simulink Real-Time, thyristor-controlled tap changer

Procedia PDF Downloads 328
1735 Competitiveness of a Share Autonomous Electrical Vehicle Fleet Compared to Traditional Means of Transport: A Case Study for Transportation Network Companies

Authors: Maximilian Richter

Abstract:

Implementing shared autonomous electric vehicles (SAEVs) has many advantages. The main advantages are achieved when SAEVs are offered as on-demand services by a fleet operator. However, autonomous mobility on demand (AMoD) will be distributed nationwide only if a fleet operation is economically profitable for the operator. This paper proposes a microscopic approach to modeling two implementation scenarios of an AMoD fleet. The city of Zurich is used as a case study, with the results and findings being generalizable to other similar European and North American cities. The data are based on the traffic model of the canton of Zurich (Gesamtverkehrsmodell des Kantons Zürich (GVM-ZH)). To determine financial profitability, demand is based on the simulation results and combined with analyzing the costs of a SAEV per kilometer. The results demonstrate that depending on the scenario; journeys can be offered profitably to customers for CHF 0.3 up to CHF 0.4 per kilometer. While larger fleets allowed for lower price levels and increased profits in the long term, smaller fleets exhibit elevated efficiency levels and profit opportunities per day. The paper concludes with recommendations for how fleet operators can prepare themselves to maximize profit in the autonomous future.

Keywords: autonomous vehicle, mobility on demand, traffic simulation, fleet provider

Procedia PDF Downloads 128
1734 Multi-Layer Multi-Feature Background Subtraction Using Codebook Model Framework

Authors: Yun-Tao Zhang, Jong-Yeop Bae, Whoi-Yul Kim

Abstract:

Background modeling and subtraction in video analysis has been widely proved to be an effective method for moving objects detection in many computer vision applications. Over the past years, a large number of approaches have been developed to tackle different types of challenges in this field. However, the dynamic background and illumination variations are two of the most frequently occurring issues in the practical situation. This paper presents a new two-layer model based on codebook algorithm incorporated with local binary pattern (LBP) texture measure, targeted for handling dynamic background and illumination variation problems. More specifically, the first layer is designed by block-based codebook combining with LBP histogram and mean values of RGB color channels. Because of the invariance of the LBP features with respect to monotonic gray-scale changes, this layer can produce block-wise detection results with considerable tolerance of illumination variations. The pixel-based codebook is employed to reinforce the precision from the outputs of the first layer which is to eliminate false positives further. As a result, the proposed approach can greatly promote the accuracy under the circumstances of dynamic background and illumination changes. Experimental results on several popular background subtraction datasets demonstrate a very competitive performance compared to previous models.

Keywords: background subtraction, codebook model, local binary pattern, dynamic background, illumination change

Procedia PDF Downloads 224
1733 A Parallel Computation Based on GPU Programming for a 3D Compressible Fluid Flow Simulation

Authors: Sugeng Rianto, P.W. Arinto Yudi, Soemarno Muhammad Nurhuda

Abstract:

A computation of a 3D compressible fluid flow for virtual environment with haptic interaction can be a non-trivial issue. This is especially how to reach good performances and balancing between visualization, tactile feedback interaction, and computations. In this paper, we describe our approach of computation methods based on parallel programming on a GPU. The 3D fluid flow solvers have been developed for smoke dispersion simulation by using combinations of the cubic interpolated propagation (CIP) based fluid flow solvers and the advantages of the parallelism and programmability of the GPU. The fluid flow solver is generated in the GPU-CPU message passing scheme to get rapid development of haptic feedback modes for fluid dynamic data. A rapid solution in fluid flow solvers is developed by applying cubic interpolated propagation (CIP) fluid flow solvers. From this scheme, multiphase fluid flow equations can be solved simultaneously. To get more acceleration in the computation, the Navier-Stoke Equations (NSEs) is packed into channels of texel, where computation models are performed on pixels that can be considered to be a grid of cells. Therefore, despite of the complexity of the obstacle geometry, processing on multiple vertices and pixels can be done simultaneously in parallel. The data are also shared in global memory for CPU to control the haptic in providing kinaesthetic interaction and felling. The results show that GPU based parallel computation approaches provide effective simulation of compressible fluid flow model for real-time interaction in 3D computer graphic for PC platform. This report has shown the feasibility of a new approach of solving the compressible fluid flow equations on the GPU. The experimental tests proved that the compressible fluid flowing on various obstacles with haptic interactions on the few model obstacles can be effectively and efficiently simulated on the reasonable frame rate with a realistic visualization. These results confirm that good performances and balancing between visualization, tactile feedback interaction, and computations can be applied successfully.

Keywords: CIP, compressible fluid, GPU programming, parallel computation, real-time visualisation

Procedia PDF Downloads 435
1732 Modeling Comfort by Thermal Inertia in Eco-Construction for Low-Income People in an Aqueous Environment in the Face of Sustainable Development in Sub-Saharan Africa; Case of the City of Kinshasa, DR Congo

Authors: Mbambu K. Shaloom, Biba Kalengo, Pierre Echard, Olivier Gilson, Tshiswaka Ngalula, Léonard Kabeya Mukeba Yakasham

Abstract:

In this 21st century, while design and eco-construction continue to be governed by considerations of functionality, safety, comfort and initial investment cost. Today, the principles of sustainable development lead us to think over longer time frames, to take into account new issues and the operating costs of green energy. DR Congo (sub-Saharan Africa) still suffers from the unusability of certain bio-sourced materials (such as bamboo, branches, etc.) and the lack of energy, i.e. 9% of the population has access to electricity and 21% of access to water. Ecoconstruction involves the energy performance of buildings which carry out a dynamic thermal simulation, which targets the different assumptions and conventional parameters (weather, occupancy, materials, thermal comfort, green energies, etc.). The objective of this article is to remedy the thermal, economic and technical artisanal problems in an aqueous environment in the city of Kinshasa. In order to establish a behavioral model to mitigate environmental impacts on architectural modifications and low-cost eco-construction through the approach of innovation and design thinking.

Keywords: thermal comfort, bio-sourced material, eco-architecture, eco-construction, squatting, design thinking

Procedia PDF Downloads 91
1731 A Comparative Asessment of Some Algorithms for Modeling and Forecasting Horizontal Displacement of Ialy Dam, Vietnam

Authors: Kien-Trinh Thi Bui, Cuong Manh Nguyen

Abstract:

In order to simulate and reproduce the operational characteristics of a dam visually, it is necessary to capture the displacement at different measurement points and analyze the observed movement data promptly to forecast the dam safety. The accuracy of forecasts is further improved by applying machine learning methods to data analysis progress. In this study, the horizontal displacement monitoring data of the Ialy hydroelectric dam was applied to machine learning algorithms: Gaussian processes, multi-layer perceptron neural networks, and the M5-rules algorithm for modelling and forecasting of horizontal displacement of the Ialy hydropower dam (Vietnam), respectively, for analysing. The database which used in this research was built by collecting time series of data from 2006 to 2021 and divided into two parts: training dataset and validating dataset. The final results show all three algorithms have high performance for both training and model validation, but the MLPs is the best model. The usability of them are further investigated by comparison with a benchmark models created by multi-linear regression. The result show the performance which obtained from all the GP model, the MLPs model and the M5-Rules model are much better, therefore these three models should be used to analyze and predict the horizontal displacement of the dam.

Keywords: Gaussian processes, horizontal displacement, hydropower dam, Ialy dam, M5-Rules, multi-layer perception neural networks

Procedia PDF Downloads 219
1730 Mothers and Moneymakers: A Case Study of How Citizen-Women Shape U.S. Marriage Migration Politics Online

Authors: Gina Longo

Abstract:

Social media, internet technology, and affordable travel have created avenues like tourism and internet chatrooms for Western women to meet foreign partners without paid, third-party intermediaries in regions like the Middle East/North Africa (MENA) and Sub-Saharan Africa (SSA), where men from mid-level developing countries meet and marry Western women and try to relocate. Foreign nationals who marry U.S. citizens have an expedited track to naturalization. U.S. immigration officials require that “green card” petitioning couples demonstrate that their relationships are “valid and subsisting” (i.e., for love) and not fraudulent (i.e., for immigration papers). These requirements are ostensibly gender- and racially-neutral, but migration itself is not; black and white women petitioners who seek partners from these regions and solicit advice from similar others about the potential obstacles to their petitions’ success online. Using an online ethnography and textual analysis of conversation threads on a large on-line immigration forum where U.S. petitioners exchange such information, this study examines how gendered and racialized standards of legitimacy are applied to family and sexuality and used discursively online among women petitioners differently to achieve “genuineness” and define “red flags” indicating potential marriage fraud. This paper argues that forum-women members police immigration requests even before cases reach an immigration officer, and use this social media platform to reconstruct gendered and racialized hierarchies of U.S. citizenship. Women petitioners use the formal criteria of U.S. immigration in ways that reveal gender and racial ideologies, expectations for conformity to a gendered hegemonic family ideal, and policing of women’s sexual agency, fertility, and desirability. These intersectional norms shape their online discussions about the suitability of marriages and of the migration of non-citizen male partners of color to the United States.

Keywords: marriage fraud, migration, online forums, women

Procedia PDF Downloads 123
1729 Career Guidance System Using Machine Learning

Authors: Mane Darbinyan, Lusine Hayrapetyan, Elen Matevosyan

Abstract:

Artificial Intelligence in Education (AIED) has been created to help students get ready for the workforce, and over the past 25 years, it has grown significantly, offering a variety of technologies to support academic, institutional, and administrative services. However, this is still challenging, especially considering the labor market's rapid change. While choosing a career, people face various obstacles because they do not take into consideration their own preferences, which might lead to many other problems like shifting jobs, work stress, occupational infirmity, reduced productivity, and manual error. Besides preferences, people should evaluate properly their technical and non-technical skills, as well as their personalities. Professional counseling has become a difficult undertaking for counselors due to the wide range of career choices brought on by changing technological trends. It is necessary to close this gap by utilizing technology that makes sophisticated predictions about a person's career goals based on their personality. Hence, there is a need to create an automated model that would help in decision-making based on user inputs. Improving career guidance can be achieved by embedding machine learning into the career consulting ecosystem. There are various systems of career guidance that work based on the same logic, such as the classification of applicants, matching applications with appropriate departments or jobs, making predictions, and providing suitable recommendations. Methodologies like KNN, neural networks, K-means clustering, D-Tree, and many other advanced algorithms are applied in the fields of data and compute some data, which is helpful to predict the right careers. Besides helping users with their career choice, these systems provide numerous opportunities which are very useful while making this hard decision. They help the candidate to recognize where he/she specifically lacks sufficient skills so that the candidate can improve those skills. They are also capable of offering an e-learning platform, taking into account the user's lack of knowledge. Furthermore, users can be provided with details on a particular job, such as the abilities required to excel in that industry.

Keywords: career guidance system, machine learning, career prediction, predictive decision, data mining, technical and non-technical skills

Procedia PDF Downloads 73
1728 Network and Sentiment Analysis of U.S. Congressional Tweets

Authors: Chaitanya Kanakamedala, Hansa Pradhan, Carter Gilbert

Abstract:

Social media platforms, such as Twitter, are excellent datasets for understanding human interactions and sentiments. This report explores social dynamics among US Congressional members through a network analysis applied to a dataset of tweets spanning 2008 to 2017 from the ’US Congressional Tweets Dataset’. In this report, we preform network analysis where connections between users (edges) are established based on a similarity threshold: two tweets are connected if the tweets they post are similar. By utilizing the Natural Language Toolkit (NLTK) and NetworkX, we quantified tweet similarity and constructed a graph comprising various interconnected components. Each component represents a cluster of users with closely aligned content. We then preform sentiment analysis on each cluster to explore the prevalent emotions and opinions within these groups. Our findings reveal that despite the initial expectation of distinct ideological divisions typically aligning with party lines, the analysis exposed a high degree of topical convergence across tweets from different political affiliations. The analysis preformed in this report not only highlights the potential of social media as a tool for political communication but also suggests a complex layer of interaction that transcends traditional partisan boundaries, reflecting a complicated landscape of politics in the digital age.

Keywords: natural language processing, sentiment analysis, centrality analysis, topic modeling

Procedia PDF Downloads 41
1727 Comparison of the Hospital Patient Safety Culture between Bulgarian, Croatian and American: Preliminary Results

Authors: R. Stoyanova, R. Dimova, M. Tarnovska, T. Boeva, R. Dimov, I. Doykov

Abstract:

Patient safety culture (PSC) is an essential component of quality of healthcare. Improving PSC is considered a priority in many developed countries. Specialized software platform for registration and evaluation of hospital patient safety culture has been developed with the support of the Medical University Plovdiv Project №11/2017. The aim of the study is to assess the status of PSC in Bulgarian hospitals and to compare it to that in USA and Croatian hospitals. Methods: The study was conducted from June 01 to July 31, 2018 using the web-based Bulgarian Version of the Hospital Survey on Patient Safety Culture Questionnaire (B-HSOPSC). Two hundred and forty-eight medical professionals from different hospitals in Bulgaria participated in the study. To quantify the differences of positive scores distributions for each of the 42 HSOPSC items between Bulgarian, Croatian and USA samples, the x²-test was applied. The research hypothesis assumed that there are no significant differences between the Bulgarian, Croatian and US PSCs. Results: The results revealed 14 significant differences in the positive scores between the Bulgarian and Croatian PSCs and 15 between the Bulgarian and the USA PSC, respectively. Bulgarian medical professionals provided less positive responses to 12 items compared with Croatian and USA respondents. The Bulgarian respondents were more positive compared to Croatians on the feedback and communication of medical errors (Items - C1, C4, C5) as well as on the employment of locum staff (A7) and the frequency of reported mistakes (D1). Bulgarian medical professionals were more positive compared with their USA colleagues on the communication of information at shift handover and across hospital units (F5, F7). The distribution of positive scores on items: ‘Staff worries that their mistakes are kept in their personnel file’ (RA16), ‘Things ‘fall between the cracks’ when transferring patients from one unit to another’ (RF3) and ‘Shift handovers are problematic for patients in this hospital’ (RF11) were significantly higher among Bulgarian respondents compared with Croatian and US respondents. Conclusions: Significant differences of positive scores distribution were found between Bulgarian and USA PSC on one hand and between Bulgarian and Croatian on the other. The study reveals that distribution of positive responses could be explained by the cultural, organizational and healthcare system differences.

Keywords: patient safety culture, healthcare, HSOPSC, medical error

Procedia PDF Downloads 140
1726 Multi-Source Data Fusion for Urban Comprehensive Management

Authors: Bolin Hua

Abstract:

In city governance, various data are involved, including city component data, demographic data, housing data and all kinds of business data. These data reflects different aspects of people, events and activities. Data generated from various systems are different in form and data source are different because they may come from different sectors. In order to reflect one or several facets of an event or rule, data from multiple sources need fusion together. Data from different sources using different ways of collection raised several issues which need to be resolved. Problem of data fusion include data update and synchronization, data exchange and sharing, file parsing and entry, duplicate data and its comparison, resource catalogue construction. Governments adopt statistical analysis, time series analysis, extrapolation, monitoring analysis, value mining, scenario prediction in order to achieve pattern discovery, law verification, root cause analysis and public opinion monitoring. The result of Multi-source data fusion is to form a uniform central database, which includes people data, location data, object data, and institution data, business data and space data. We need to use meta data to be referred to and read when application needs to access, manipulate and display the data. A uniform meta data management ensures effectiveness and consistency of data in the process of data exchange, data modeling, data cleansing, data loading, data storing, data analysis, data search and data delivery.

Keywords: multi-source data fusion, urban comprehensive management, information fusion, government data

Procedia PDF Downloads 399
1725 Mining the Proteome of Fusobacterium nucleatum for Potential Therapeutics Discovery

Authors: Abdul Musaweer Habib, Habibul Hasan Mazumder, Saiful Islam, Sohel Sikder, Omar Faruk Sikder

Abstract:

The plethora of genome sequence information of bacteria in recent times has ushered in many novel strategies for antibacterial drug discovery and facilitated medical science to take up the challenge of the increasing resistance of pathogenic bacteria to current antibiotics. In this study, we adopted subtractive genomics approach to analyze the whole genome sequence of the Fusobacterium nucleatum, a human oral pathogen having association with colorectal cancer. Our study divulged 1499 proteins of Fusobacterium nucleatum, which has no homolog in human genome. These proteins were subjected to screening further by using the Database of Essential Genes (DEG) that resulted in the identification of 32 vitally important proteins for the bacterium. Subsequent analysis of the identified pivotal proteins, using the KEGG Automated Annotation Server (KAAS) resulted in sorting 3 key enzymes of F. nucleatum that may be good candidates as potential drug targets, since they are unique for the bacterium and absent in humans. In addition, we have demonstrated the 3-D structure of these three proteins. Finally, determination of ligand binding sites of the key proteins as well as screening for functional inhibitors that best fitted with the ligands sites were conducted to discover effective novel therapeutic compounds against Fusobacterium nucleatum.

Keywords: colorectal cancer, drug target, Fusobacterium nucleatum, homology modeling, ligands

Procedia PDF Downloads 393
1724 Discrete Choice Modeling in Education: Evaluating Early Childhood Educators’ Practices

Authors: Michalis Linardakis, Vasilis Grammatikopoulos, Athanasios Gregoriadis, Kalliopi Trouli

Abstract:

Discrete choice models belong to the family of Conjoint analysis that are applied on the preferences of the respondents towards a set of scenarios that describe alternative choices. The scenarios have been pre-designed to cover all the attributes of the alternatives that may affect the choices. In this study, we examine how preschool educators integrate physical activities into their everyday teaching practices through the use of discrete choice models. One of the advantages of discrete choice models compared to other more traditional data collection methods (e.g. questionnaires and interviews that use ratings) is that the respondent is called to select among competitive and realistic alternatives, rather than objectively rate each attribute that the alternatives may have. We present the effort to construct and choose representative attributes that would cover all possible choices of the respondents, and the scenarios that have arisen. For the purposes of the study, we used a sample of 50 preschool educators in Greece that responded to 4 scenarios (from the total of 16 scenarios that the orthogonal design resulted), with each scenario having three alternative teaching practices. Seven attributes of the alternatives were used in the scenarios. For the analysis of the data, we used multinomial logit model with random effects, multinomial probit model and generalized mixed logit model. The conclusions drawn from the estimated parameters of the models are discussed.

Keywords: conjoint analysis, discrete choice models, educational data, multivariate statistical analysis

Procedia PDF Downloads 470
1723 The Comparison Study of Human Microbiome in Chronic Rhinosinusitis between Adults and Children

Authors: Il Ho Park, Joong Seob Lee, Sung Hun Kang, Jae-Min Shin, Il Seok Park, Seok Min Hong, Seok Jin Hong

Abstract:

Introduction: The human microbiota is the aggregate of microorganisms, and the bacterial microbiome of the human digestive tract contributes to both health and disease. In health, bacteria are key components in the development of mucosal barrier function and in innate and adaptive immune responses, and they also work to suppress the establishment of pathogens. In human upper airway, the sinonasal microbiota might play an important role in chronic rhinosinusitis (CRS). The purpose of this study is to investigate the human upper airway microbiome in CRS patients and to compare the sinonasal microbiome of adults with children. Materials and methods: A total of 19 samples from 19 patients (Group1; 9 CRS in children, aged 5 to 14 years versus Group 2; 10 CRS in adults aged 21 to 59 years) were examined. Swabs were collected from the middle meatus and/or anterior ethmoid region under general anesthesia during endoscopic sinus surgery or tonsillectomy. After DNA extraction from swab samples, we analysed bacterial microbiome consortia using 16s rRNA gene sequencing approach (the Illumina MiSeq platform). Results: In this study, relatively abundance of the six bacterial phyla and tremendous genus and species found in substantial amounts in the individual sinus swab samples, include Corynebacterium, Hemophilus, Moraxella, and Streptococcus species. Anaerobes like Fusobacterium and Bacteroides were abundantly present in the children group, Bacteroides and Propionibacterium were present in adults group. In genus, Haemophilus was the most common CRS microbiome in children and Corynebacterium was the most common CRS microbiome in adults. Conclusions: Our results show the diversity of human upper airway microbiome, and the findings will suggest that CRS is a polymicrobial infection. The Corynebacterium and Hemophilus may live as commensals on mucosal surfaces of sinus in the upper respiratory tract. The further study will be needed for analysis of microbiome-human interactions in upper airway and CRS.

Keywords: microbiome, upper airway, chronic rhinosinusitis, adult and children

Procedia PDF Downloads 132
1722 A Study on the Effect of Socioeconomic Status on Adolescents' Health Promoting Behaviors: Mediating Effect of Family-Based Activity

Authors: Sue Lynn Kim, Sang-Gyun Lee, Joan P. Yoo

Abstract:

Although adolescents in low socioeconomic status (SES) have been reported to less engage in health promoting behaviors (HPB), the specific mechanism between their SES and HPB has not been extensively studied. Considering the Korean education system which focuses only on college entrance exams while lacking of interest in students’ health, and unique traits of adolescents, such as ego-centric thinking, family members can significantly contribute to develop and enhance adolescents’ HPB. Based on the review of related literature and previous researches, this study examined the mediating effect of family-based activities on the relationship between SES and adolescents' HPB. 636 adolescents (4th graders in elementary and 1st graders in middle school) and their parents from the 1st year survey of Seoul Education & Health Welfare Panel were analyzed by AMOS 19.0 utilizing structural equation modeling. Analytic results show that adolescents in low SES were less likely to engage in family-based activities as well as HPB. This association between SES and HPB was partially mediated by family-based activities. Based on the findings, we suggest that special education programs to enhance HPB should be required in schools and community organizations especially for adolescents in low SES who may have difficulties in doing family-based activities due to parents’ low income and insufficient leisure time. In addition, family-based activities should be encouraged to enhance HPB by raising parents' awareness about the importance of family-based activities on their children's HPB.

Keywords: family-based activity, health promoting behaviors, socioeconomic status, HPB

Procedia PDF Downloads 384
1721 Roller Pump-Induced Tubing Rupture during Cardiopulmonary Bypass

Authors: W. G. Kim, C. H. Jo

Abstract:

We analyzed the effects of variations in the diameter of silicone rubber and polyvinyl chloride (PVC) tubings on the likelihood of tubing rupture during modeling of accidental arterial line clamping in cardiopulmonary bypass with a roller pump. A closed CPB circuit constructed with a roller pump was tested with both PVC and silicone rubber tubings of 1/2, 3/8, and 1/4 inch internal diameter. Arterial line pressure was monitored, and an occlusive clamp was placed across the tubing distal to the pressure monitor site to model an accidental arterial line occlusion. A CCD camera with 512(H) x 492(V) pixels was installed above the roller pump to measure tubing diameters at pump outlet, where the maximum deformations (distension) of the tubings occurred. Quantitative measurement of the changes of tubing diameters with the change of arterial line pressure was performed using computerized image processing techniques. A visible change of tubing diameter was generally noticeable by around 250 psi of arterial line pressure, which was already very high. By 1500 psi, the PVC tubings showed an increase of diameter of between 5-10 %, while the silicone rubber tubings showed an increase between 20-25 %. Silicone rubber tubings of all sizes showed greater distensibility than PVC tubings of equivalent size. In conclusion, although roller-pump induced tubing rupture remains a theoretical problem during cardiopulmonary bypass in terms of the inherent mechanism of the pump, in reality such an occurrence is impossible in real clinical conditions.

Keywords: roller pump, tubing rupture, cardiopulmonary bypass, arterial line

Procedia PDF Downloads 297
1720 Performance Evaluation of a Spouted Bed Bioreactor (SBBR) for the Biodegradation of 2, 4 Dichlorophenol

Authors: Taghreed Al-Khalid, Muftah El-Naas

Abstract:

As an economical and environmentally friendly technology, biological treatment has been shown to be one of the most promising approaches for the removal of numerous types of organic water pollutants such as Chlorophenols, which are hazardous pollutants commonly encountered in wastewater generated by the petroleum and petrochemical industries. This study aimed at evaluating the performance of a spouted bed bioreactor (SBBR) for aerobic biodegradation of 2, 4 dichlorophenol (DCP) by a commercial strain of Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel particles. The SBBR is characterized by systematic intense mixing, resulting in improvement of the biodegradation rates through reducing the mass transfer limitations. The reactor was evaluated in both batch and continuous mode in order to evaluate its hydrodynamics in terms of stability and response to shock loads. The SBBR was able to maintain a stable operation and recovered quickly to its normal operating mode once the shock load had been removed. In comparison to a packed bed reactor bioreactor, the SBBR proved to be more efficient and more stable, achieving a removal percentage and throughput of 80% and 1414 g/m3day, respectively. In addition, the biodegradation of chlorophenols was mathematically modeled using a dynamic modeling approach in order to assess reaction and mass transfer limitations. The results confirmed the effectiveness of the use of the PVA immobilization technique for the biodegradation of phenols.

Keywords: biodegradation, 2, 4 dichlorophenol, immobilization, polyvinyl alcohol (PVA) gel

Procedia PDF Downloads 186
1719 Cyber-Social Networks in Preventing Terrorism: Topological Scope

Authors: Alessandra Rossodivita, Alexei Tikhomirov, Andrey Trufanov, Nikolay Kinash, Olga Berestneva, Svetlana Nikitina, Fabio Casati, Alessandro Visconti, Tommaso Saporito

Abstract:

It is well known that world and national societies are exposed to diverse threats: anthropogenic, technological, and natural. Anthropogenic ones are of greater risks and, thus, attract special interest to researchers within wide spectrum of disciplines in efforts to lower the pertinent risks. Some researchers showed by means of multilayered, complex network models how media promotes the prevention of disease spread. To go further, not only are mass-media sources included in scope the paper suggests but also personificated social bots (socbots) linked according to reflexive theory. The novel scope considers information spread over conscious and unconscious agents while counteracting both natural and man-made threats, i.e., infections and terrorist hazards. Contrary to numerous publications on misinformation disseminated by ‘bad’ bots within social networks, this study focuses on ‘good’ bots, which should be mobilized to counter the former ones. These social bots deployed mixture with real social actors that are engaged in concerted actions at spreading, receiving and analyzing information. All the contemporary complex network platforms (multiplexes, interdependent networks, combined stem networks et al.) are comprised to describe and test socbots activities within competing information sharing tools, namely mass-media hubs, social networks, messengers, and e-mail at all phases of disasters. The scope and concomitant techniques present evidence that embedding such socbots into information sharing process crucially change the network topology of actor interactions. The change might improve or impair robustness of social network environment: it depends on who and how controls the socbots. It is demonstrated that the topological approach elucidates techno-social processes within the field and outline the roadmap to a safer world.

Keywords: complex network platform, counterterrorism, information sharing topology, social bots

Procedia PDF Downloads 169
1718 CFD Analysis of an Aft Sweep Wing in Subsonic Flow and Making Analogy with Roskam Methods

Authors: Ehsan Sakhaei, Ali Taherabadi

Abstract:

In this study, an aft sweep wing with specific characteristic feature was analysis with CFD method in Fluent software. In this analysis wings aerodynamic coefficient was calculated in different rake angle and wing lift curve slope to rake angle was achieved. Wing section was selected among NACA airfoils version 6. The sweep angle of wing is 15 degree, aspect ratio 8 and taper ratios 0.4. Designing and modeling this wing was done in CATIA software. This model was meshed in Gambit software and its three dimensional analysis was done in Fluent software. CFD methods used here were based on pressure base algorithm. SIMPLE technique was used for solving Navier-Stokes equation and Spalart-Allmaras model was utilized to simulate three dimensional wing in air. Roskam method is one of the common and most used methods for determining aerodynamics parameters in the field of airplane designing. In this study besides CFD analysis, an advanced aircraft analysis was used for calculating aerodynamic coefficient using Roskam method. The results of CFD were compared with measured data acquired from Roskam method and authenticity of relation was evaluated. The results and comparison showed that in linear region of lift curve there is a minor difference between aerodynamics parameter acquired from CFD to relation present by Roskam.

Keywords: aft sweep wing, CFD method, fluent, Roskam, Spalart-Allmaras model

Procedia PDF Downloads 506
1717 Vegetables and Fruits Solar Tunnel Dryer for Small-Scale Farmers in Kassala

Authors: Sami Mohamed Sharif

Abstract:

The current study focuses on the design and construction of a solar tunnel dryer intended for small-scale farmers in Kassala, Sudan. To determine the appropriate dimensions of the dryer, the heat and mass balance equations are used, taking into account factors such as the target agricultural product, climate conditions, solar irradiance, and desired drying time. In Kassala, a dryer with a width of 88 cm, length of 600 cm, and height of 25 cm has been built, capable of drying up to 40 kg of vegetables or fruits. The dryer is divided into two chambers of different lengths. The air passing through is heated to the desired drying temperature in a separate heating chamber that is 200 cm long. From there, the heated air enters the drying chamber, which is 400 cm long. In this section, the agricultural product is placed on a slightly elevated net. The tunnel dryer was constructed using materials from the local market. The paper also examines the solar irradiance in Kassala, finding an average of 23.6 MJ/m2/day, with a maximum of 26.6 MJ/m2/day in April and a minimum of 20.2 MJ/m2/day in December. A DC fan powered by a 160Wp solar panel is utilized to circulate air within the tunnel. By connecting the fan and three 12V, 60W bulbs in series, four different speeds can be achieved using a speed controller. Temperature and relative humidity measurements were taken hourly over three days, from 10:00 a.m. to 3:00 p.m. The results demonstrate the promising technology and sizing techniques of solar tunnel dryers, which can significantly increase the temperature within the tunnel by more than 90%.

Keywords: tunnel dryer, solar drying, moisture content, fruits drying modeling, open sun drying

Procedia PDF Downloads 61
1716 Dipeptide Functionalized Nanoporous Anodic Aluminium Oxide Membrane for Capturing Small Molecules

Authors: Abdul Mutalib Md Jani, Abdul Hadi Mahmud, Mohd Tajuddin Mohd Ali

Abstract:

The rapid growth of interest in surface modification of nanostructures materials that exhibit improved structural and functional properties is attracting more researchers. The unique properties of highly ordered nanoporous anodic aluminium oxide (NAAO) membrane have been proposed as a platform for biosensing applications. They exhibit excellent physical and chemical properties with high porosity, high surface area, tunable pore sizes and excellent chemical resistance. In this study, NAAO was functionalized with 3-aminopropyltriethoxysilane (APTES) to prepared silane-modified NAAO. Amine functional groups are formed on the surface of NAAO during silanization and were characterized using Fourier Transform Infrared spectroscopy (FTIR). The synthesis of multi segment of peptide on NAAO surfaces can be realized by changing the surface chemistry of the NAAO membrane via click chemistry. By click reactions, utilizing alkyne terminated with amino group, various peptides tagged on NAAO can be envisioned from chiral natural or unnatural amino acids using standard coupling methods (HOBt, EDCI and HBTU). This strategy seemly versatile since coupling strategy of dipeptide with another amino acids, leading to tripeptide, tetrapeptide or pentapeptide, can be synthesized without purification. When an appropriate terminus is selected, multiple segments of amino acids can be successfully synthesized on the surfaces. The immobilized NAAO should be easily separated from the reaction medium by conventional filtration, thus avoiding complicated purification methods. Herein, we proposed to synthesize multi fragment peptide as a model for capturing and attaching various small biomolecules on NAAO surfaces and can be also applied as biosensing device, drug delivery systems and biocatalyst.

Keywords: nanoporous anodic aluminium oxide, silanization, peptide synthesise, click chemistry

Procedia PDF Downloads 284
1715 Entrepreneurial Intention and Social Entrepreneurship among Students in Malaysian Higher Education

Authors: Radin Siti Aishah Radin A Rahman, Norasmah Othman, Zaidatol Akmaliah Lope Pihie, Hariyaty Ab. Wahid

Abstract:

The recent instability in economy was found to be influencing the situation in Malaysia whether directly or indirectly. Taking that into consideration, the government needs to find the best approach to balance its citizen’s socio-economic strata level urgently. Through education platform is among the efforts planned and acted upon for the purpose of balancing the effects of the influence, through the exposure of social entrepreneurial activity towards youth especially those in higher institution level. Armed with knowledge and skills that they gained, with the support by entrepreneurial culture and environment while in campus; indirectly, the students will lean more on making social entrepreneurship as a career option when they graduate. Following the issues of marketability and workability of current graduates that are becoming dire, research involving how far the willingness of student to create social innovation that contribute to the society without focusing solely on personal gain is relevant enough to be conducted. With that, this research is conducted with the purpose of identifying the level of entrepreneurial intention and social entrepreneurship among higher institution students in Malaysia. Stratified random sampling involves 355 undergraduate students from five public universities had been made as research respondents and data were collected through surveys. The data was then analyzed descriptively using min score and standard deviation. The study found that the entrepreneurial intention of higher education students are on moderate level, however it is the contrary for social entrepreneurship activities, where it was shown on a high level. This means that while the students only have moderate level of willingness to be a social entrepreneur, they are very committed to created social innovation through the social entrepreneurship activities conducted. The implication from this study can be contributed towards the higher institution authorities in prediction the tendency of student in becoming social entrepreneurs. Thus, the opportunities and facilities for realizing the courses related to social entrepreneurship must be created expansively so that the vision of creating as many social entrepreneurs as possible can be achieved.

Keywords: entrepreneurial intention, higher education institutions (HEIs), social entrepreneurship, social entrepreneurial activity, gender

Procedia PDF Downloads 268
1714 Graph Neural Networks and Rotary Position Embedding for Voice Activity Detection

Authors: YingWei Tan, XueFeng Ding

Abstract:

Attention-based voice activity detection models have gained significant attention in recent years due to their fast training speed and ability to capture a wide contextual range. The inclusion of multi-head style and position embedding in the attention architecture are crucial. Having multiple attention heads allows for differential focus on different parts of the sequence, while position embedding provides guidance for modeling dependencies between elements at various positions in the input sequence. In this work, we propose an approach by considering each head as a node, enabling the application of graph neural networks (GNN) to identify correlations among the different nodes. In addition, we adopt an implementation named rotary position embedding (RoPE), which encodes absolute positional information into the input sequence by a rotation matrix, and naturally incorporates explicit relative position information into a self-attention module. We evaluate the effectiveness of our method on a synthetic dataset, and the results demonstrate its superiority over the baseline CRNN in scenarios with low signal-to-noise ratio and noise, while also exhibiting robustness across different noise types. In summary, our proposed framework effectively combines the strengths of CNN and RNN (LSTM), and further enhances detection performance through the integration of graph neural networks and rotary position embedding.

Keywords: voice activity detection, CRNN, graph neural networks, rotary position embedding

Procedia PDF Downloads 79
1713 A Kernel-Based Method for MicroRNA Precursor Identification

Authors: Bin Liu

Abstract:

MicroRNAs (miRNAs) are small non-coding RNA molecules, functioning in transcriptional and post-transcriptional regulation of gene expression. The discrimination of the real pre-miRNAs from the false ones (such as hairpin sequences with similar stem-loops) is necessary for the understanding of miRNAs’ role in the control of cell life and death. Since both their small size and sequence specificity, it cannot be based on sequence information alone but requires structure information about the miRNA precursor to get satisfactory performance. Kmers are convenient and widely used features for modeling the properties of miRNAs and other biological sequences. However, Kmers suffer from the inherent limitation that if the parameter K is increased to incorporate long range effects, some certain Kmer will appear rarely or even not appear, as a consequence, most Kmers absent and a few present once. Thus, the statistical learning approaches using Kmers as features become susceptible to noisy data once K becomes large. In this study, we proposed a Gapped k-mer approach to overcome the disadvantages of Kmers, and applied this method to the field of miRNA prediction. Combined with the structure status composition, a classifier called imiRNA-GSSC was proposed. We show that compared to the original imiRNA-kmer and alternative approaches. Trained on human miRNA precursors, this predictor can achieve an accuracy of 82.34 for predicting 4022 pre-miRNA precursors from eleven species.

Keywords: gapped k-mer, imiRNA-GSSC, microRNA precursor, support vector machine

Procedia PDF Downloads 165
1712 Non-Isothermal Stationary Laminar Oil Flow Numerical Simulation

Authors: Daniyar Bossinov

Abstract:

This paper considers a non-isothermal stationary waxy crude oil flow in a two-dimensional axisymmetric pipe with the transition of a Newtonian fluid to a non-Newtonian fluid. The viscosity and yield stress of waxy crude oil are highly dependent on temperature changes. During the hot pumping of waxy crude oil through a buried pipeline, a non-isothermal flow occurs due to heat transfer to the surrounding soil. This leads to a decrease in flow temperature, an increase in viscosity, the appearance of yield stress, the crystallization of wax, and the deposition of solid particles on the pipeline's inner wall. The deposition of oil solid particles reduces a pipeline flow area and leads to the appearance of a stagnant zone with thermal insulation in the near-wall area. Waxy crude oil properties change. A Newtonian fluid at low temperatures transits to a non-Newtonian fluid. The one-dimensional modeling of a non-isothermal waxy crude oil flow in a two-dimensional axisymmetric pipeline by traditional averaging of temperature and velocity over the pipeline cross-section does not allow for explaining a physics phenomenon. Therefore, in this work, a two-dimensional flow model and the heat transfer of waxy oil are constructed. The calculated data show the transition of a Newtonian fluid to a non-Newtonian fluid due to the heat exchange of waxy oil with the environment.

Keywords: non-isothermal laminar flow, waxy crude oil, stagnant zone, yield stress

Procedia PDF Downloads 35
1711 Regular or Irregular: An Investigation of Medicine Consumption Pattern with Poisson Mixture Model

Authors: Lichung Jen, Yi Chun Liu, Kuan-Wei Lee

Abstract:

Fruitful data has been accumulated in database nowadays and is commonly used as support for decision-making. In the healthcare industry, hospital, for instance, ordering pharmacy inventory is one of the key decision. With large drug inventory, the current cost increases and its expiration dates might lead to future issue, such as drug disposal and recycle. In contrast, underestimating demand of the pharmacy inventory, particularly standing drugs, affects the medical treatment and possibly hospital reputation. Prescription behaviour of hospital physicians is one of the critical factor influencing this decision, particularly irregular prescription behaviour. If a drug’s usage amount in the month is irregular and less than the regular usage, it may cause the trend of subsequent stockpiling. On the contrary, if a drug has been prescribed often than expected, it may result in insufficient inventory. We proposed a hierarchical Bayesian mixture model with two components to identify physicians’ regular/irregular prescription patterns with probabilities. Heterogeneity of hospital is considered in our proposed hierarchical Bayes model. The result suggested that modeling the prescription patterns of physician is beneficial for estimating the order quantity of medication and pharmacy inventory management of the hospital. Managerial implication and future research are discussed.

Keywords: hierarchical Bayesian model, poission mixture model, medicines prescription behavior, irregular behavior

Procedia PDF Downloads 135