Search results for: multi variable decision making
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12453

Search results for: multi variable decision making

8403 A Feminist Historical Institutional Approach and Gender Participation in Queensland Politics

Authors: Liz van Acker, Linda Colley

Abstract:

Political processes are shaped by the gendered culture of parliaments. This paper examines how the institution of parliament has been affected by the changing number of women in politics. In order to understand how and why gender change occurs, the paper employs a feminist historical institutionalism approach. It argues that while it is difficult to change the gendered nature of political institutions, it is possible, from a gender perspective, to understand the processes of change both formally and informally. Increasing women’s representation has been a slow process which has not occurred without political struggles. A broadly defined ‘feminist historical institutionalism’ has critiqued existing approaches to institutions and combined historical institutional analysis with tools of gender to enhance our understanding of institutional processes and change. The paper examines the gendered rules, norms, and practices that influence institutional design choices and processes. Institutions such as Parliament often are able to adjust to women’s entry and absorb them without too much interruption. Exploring the hidden aspects to informal institutions involves identifying unspoken and accepted norms that may guide decision-making – exposing and questioning the gender status quo. This paper examines the representation of women in the Queensland Parliament, Australia. It places the Queensland experience in historical context, as well as in the national and international context. The study is interesting, given that its gender representation has rocketed from one of the worst performing states in 2012 to one of the best performing in 2015 with further improvements in 2017. The state currently has a re-elected female Premier, a female Deputy Premier and a female-dominated cabinet – in fact, Queensland was the first ministry in Australia to have a majority of women in its Cabinet. However, it is unnecessary to dig far below these headlines to see that this is uncharacteristic of its history: progress towards this current position has been slow and patchy. The paper finds that matters such as the glass ceiling and the use of quotas explain women’s recent success in Queensland politics.

Keywords: feminist historical institutional approach, glass ceiling, quotas, women’s participation in politics

Procedia PDF Downloads 155
8402 Representations of Race and Social Movement Strategies in the US

Authors: Lee Artz

Abstract:

Based on content analyses of major US media, immediately following the George Floyd killing in May 2020, some mayors and local, state, and national officials offered favorable representations of protests against police violence. As the protest movement grew to historic proportions with 26 million joining actions in large cities and small towns, dominant representations of racism by elected officials and leading media shifted—replacing both the voices and demands of protestors with representations by elected officials. Major media quoted Black mayors and Congressional representatives who emphasized concerns about looting and the disruption of public safety. Media coverage privileged elected officials who criticized movement demands for defunding police and deplored isolated instances of property damaged by protestors. Subsequently, public opinion polls saw an increase in concern for law and order tropes and a decrease in support for protests against police violence. Black Lives Matter and local organizations had no coordinated response and no effective means of communication to counter dominant representations voiced by politicians and globally disseminated by major media. Politician and media-instigated public opinion shifts indicate that social movements need their own means of communication and collective decision-making--both of which were largely missing from Black Lives Matter leaders, leading to disaffection and a political split by more than 20 local affiliates. By itself, social media by myriad individuals and groups had limited purchase as a means for social movement communication and organization. Lacking a collaborative, coordinated strategy, organization, and independent media, the loose network of Black Lives Matter groups was unable to offer more accurate, democratic, and favorable representations of protests and their demands for more justice and equality. The fight for equality was diverted by the fight for representation.

Keywords: black lives matter, public opinion, racism, representations, social movements

Procedia PDF Downloads 185
8401 Optimization of Economic Order Quantity of Multi-Item Inventory Control Problem through Nonlinear Programming Technique

Authors: Prabha Rohatgi

Abstract:

To obtain an efficient control over a huge amount of inventory of drugs in pharmacy department of any hospital, generally, the medicines are categorized on the basis of their cost ‘ABC’ (Always Better Control), first and then categorize on the basis of their criticality ‘VED’ (Vital, Essential, desirable) for prioritization. About one-third of the annual expenditure of a hospital is spent on medicines. To minimize the inventory investment, the hospital management may like to keep the medicines inventory low, as medicines are perishable items. The main aim of each and every hospital is to provide better services to the patients under certain limited resources. To achieve the satisfactory level of health care services to outdoor patients, a hospital has to keep eye on the wastage of medicines because expiry date of medicines causes a great loss of money though it was limited and allocated for a particular period of time. The objectives of this study are to identify the categories of medicines requiring incentive managerial control. In this paper, to minimize the total inventory cost and the cost associated with the wastage of money due to expiry of medicines, an inventory control model is used as an estimation tool and then nonlinear programming technique is used under limited budget and fixed number of orders to be placed in a limited time period. Numerical computations have been given and shown that by using scientific methods in hospital services, we can give more effective way of inventory management under limited resources and can provide better health care services. The secondary data has been collected from a hospital to give empirical evidence.

Keywords: ABC-VED inventory classification, multi item inventory problem, nonlinear programming technique, optimization of EOQ

Procedia PDF Downloads 259
8400 Enhancing Temporal Extrapolation of Wind Speed Using a Hybrid Technique: A Case Study in West Coast of Denmark

Authors: B. Elshafei, X. Mao

Abstract:

The demand for renewable energy is significantly increasing, major investments are being supplied to the wind power generation industry as a leading source of clean energy. The wind energy sector is entirely dependable and driven by the prediction of wind speed, which by the nature of wind is very stochastic and widely random. This s0tudy employs deep multi-fidelity Gaussian process regression, used to predict wind speeds for medium term time horizons. Data of the RUNE experiment in the west coast of Denmark were provided by the Technical University of Denmark, which represent the wind speed across the study area from the period between December 2015 and March 2016. The study aims to investigate the effect of pre-processing the data by denoising the signal using empirical wavelet transform (EWT) and engaging the vector components of wind speed to increase the number of input data layers for data fusion using deep multi-fidelity Gaussian process regression (GPR). The outcomes were compared using root mean square error (RMSE) and the results demonstrated a significant increase in the accuracy of predictions which demonstrated that using vector components of the wind speed as additional predictors exhibits more accurate predictions than strategies that ignore them, reflecting the importance of the inclusion of all sub data and pre-processing signals for wind speed forecasting models.

Keywords: data fusion, Gaussian process regression, signal denoise, temporal extrapolation

Procedia PDF Downloads 138
8399 Addressing Coastal Community Vulnerabilities with Alternative Marine Energy Projects

Authors: Danielle Preziuso, Kamila Kazimierczuk, Annalise Stein, Bethel Tarekegne

Abstract:

Coastal communities experience a variety of distinct socioeconomic, technical, and environmental vulnerabilities, all of which accrue heightened risk with increasingly frequent and severe climate change impacts. Marine renewable energy (MRE) offers a potential solution for mitigating coastal community vulnerabilities, especially water-energy dependencies while delivering promising co-benefits such as increased resilience and more sustainable energy outcomes. This paper explores coastal community vulnerabilities and service dependencies based on the local drivers that create them, with attention to climate change impacts and how they catalyze water-energy unmet needs in these communities. We examine the vulnerabilities through the lens of coastal Tribal communities (i.e., the Makah Tribe, the Kenaitze Tribe, Quinault Nation), as indigenous communities often face compounded impacts of technical, economic, and environmental vulnerabilities due to their underlying socio-demographic inequalities. We offer an environmental and energy justice indicators framework to understand how these vulnerabilities disproportionately manifest and impact the most vulnerable community members, and we subsequently utilize the framework to inform a weighted decision matrix tool that compares the viability of MRE-based alternative energy futures in addressing these vulnerabilities. The framework and complementary tool highlight opportunities for future MRE research and pilot demonstrations that directly respond to the vulnerabilities of coastal communities.

Keywords: coastal communities, decision matrix, energy equity, energy vulnerability, marine energy, service dependency

Procedia PDF Downloads 80
8398 Rethinking Classical Concerts in the Digital Era: Transforming Sound, Experience, and Engagement for the New Generation

Authors: Orit Wolf

Abstract:

Classical music confronts a crucial challenge: updating cherished concert traditions for the digital age. This paper is a journey, and a quest to make classical concerts resonate with a new generation. It's not just about asking questions; it's about exploring the future of classical concerts and their potential to captivate and connect with today's audience in an era defined by change. The younger generation, known for their love of diversity, interactive experiences, and multi-sensory immersion, cannot be overlooked. This paper explores innovative strategies that forge deep connections with audiences whose relationship with classical music differs from the past. The urgency of this challenge drives the transformation of classical concerts. Examining classical concerts is necessary to understand how they can harmonize with contemporary sensibilities. New dimensions in audiovisual experiences that enchant the emerging generation are sought. Classical music must embrace the technological era while staying open to fusion and cross-cultural collaboration possibilities. The role of technology and Artificial Intelligence (AI) in reshaping classical concerts is under research. The fusion of classical music with digital experiences and dynamic interdisciplinary collaborations breathes new life into the concert experience. It aligns classical music with the expectations of modern audiences, making it more relevant and engaging. Exploration extends to the structure of classical concerts. Conventions are challenged, and ways to make classical concerts more accessible and captivating are sought. Inspired by innovative artistic collaborations, musical genres and styles are redefined, transforming the relationship between performers and the audience. This paper, therefore, aims to be a catalyst for dialogue and a beacon of innovation. A set of critical inquiries integral to reshaping classical concerts for the digital age is presented. As the world embraces digital transformation, classical music seeks resonance with contemporary audiences, redefining the concert experience while remaining true to its roots and embracing revolutions in the digital age.

Keywords: new concert formats, reception of classical music, interdiscplinary concerts, innovation in the new musical era, mash-up, cross culture, innovative concerts, engaging musical performances

Procedia PDF Downloads 68
8397 Applications of Drones in Infrastructures: Challenges and Opportunities

Authors: Jin Fan, M. Ala Saadeghvaziri

Abstract:

Unmanned aerial vehicles (UAVs), also referred to as drones, equipped with various kinds of advanced detecting or surveying systems, are effective and low-cost in data acquisition, data delivery and sharing, which can benefit the building of infrastructures. This paper will give an overview of applications of drones in planning, designing, construction and maintenance of infrastructures. The drone platform, detecting and surveying systems, and post-data processing systems will be introduced, followed by cases with details of the applications. Challenges from different aspects will be addressed. Opportunities of drones in infrastructure include but not limited to the following. Firstly, UAVs equipped with high definition cameras or other detecting equipment are capable of inspecting the hard to reach infrastructure assets. Secondly, UAVs can be used as effective tools to survey and map the landscape to collect necessary information before infrastructure construction. Furthermore, an UAV or multi-UVAs are useful in construction management. UVAs can also be used in collecting roads and building information by taking high-resolution photos for future infrastructure planning. UAVs can be used to provide reliable and dynamic traffic information, which is potentially helpful in building smart cities. The main challenges are: limited flight time, the robustness of signal, post data analyze, multi-drone collaboration, weather condition, distractions to the traffic caused by drones. This paper aims to help owners, designers, engineers and architects to improve the building process of infrastructures for higher efficiency and better performance.

Keywords: bridge, construction, drones, infrastructure, information

Procedia PDF Downloads 127
8396 Scoring System for the Prognosis of Sepsis Patients in Intensive Care Units

Authors: Javier E. García-Gallo, Nelson J. Fonseca-Ruiz, John F. Duitama-Munoz

Abstract:

Sepsis is a syndrome that occurs with physiological and biochemical abnormalities induced by severe infection and carries a high mortality and morbidity, therefore the severity of its condition must be interpreted quickly. After patient admission in an intensive care unit (ICU), it is necessary to synthesize the large volume of information that is collected from patients in a value that represents the severity of their condition. Traditional severity of illness scores seeks to be applicable to all patient populations, and usually assess in-hospital mortality. However, the use of machine learning techniques and the data of a population that shares a common characteristic could lead to the development of customized mortality prediction scores with better performance. This study presents the development of a score for the one-year mortality prediction of the patients that are admitted to an ICU with a sepsis diagnosis. 5650 ICU admissions extracted from the MIMICIII database were evaluated, divided into two groups: 70% to develop the score and 30% to validate it. Comorbidities, demographics and clinical information of the first 24 hours after the ICU admission were used to develop a mortality prediction score. LASSO (least absolute shrinkage and selection operator) and SGB (Stochastic Gradient Boosting) variable importance methodologies were used to select the set of variables that make up the developed score; each of this variables was dichotomized and a cut-off point that divides the population into two groups with different mean mortalities was found; if the patient is in the group that presents a higher mortality a one is assigned to the particular variable, otherwise a zero is assigned. These binary variables are used in a logistic regression (LR) model, and its coefficients were rounded to the nearest integer. The resulting integers are the point values that make up the score when multiplied with each binary variables and summed. The one-year mortality probability was estimated using the score as the only variable in a LR model. Predictive power of the score, was evaluated using the 1695 admissions of the validation subset obtaining an area under the receiver operating characteristic curve of 0.7528, which outperforms the results obtained with Sequential Organ Failure Assessment (SOFA), Oxford Acute Severity of Illness Score (OASIS) and Simplified Acute Physiology Score II (SAPSII) scores on the same validation subset. Observed and predicted mortality rates within estimated probabilities deciles were compared graphically and found to be similar, indicating that the risk estimate obtained with the score is close to the observed mortality, it is also observed that the number of events (deaths) is indeed increasing as the outcome go from the decile with the lowest probabilities to the decile with the highest probabilities. Sepsis is a syndrome that carries a high mortality, 43.3% for the patients included in this study; therefore, tools that help clinicians to quickly and accurately predict a worse prognosis are needed. This work demonstrates the importance of customization of mortality prediction scores since the developed score provides better performance than traditional scoring systems.

Keywords: intensive care, logistic regression model, mortality prediction, sepsis, severity of illness, stochastic gradient boosting

Procedia PDF Downloads 226
8395 Fijian Women’s Role in Disaster Risk Management: Climate Change

Authors: Priyatma Singh, Manpreet Kaur

Abstract:

Climate change is progressively being identified as a global crisis and this has immediate repercussions for Fiji Islands due to its geographical location being prone to natural disasters. In the Pacific, it is common to find significant differences between men and women, in terms of their roles and responsibilities. In the pursuit of prudent preparedness before disasters, Fijian women’s engagement is constrained due to socially constructed roles and expectation of women here in Fiji. This vulnerability is aggravated by viewing women as victims, rather than as key people who have vital information of their society, economy, and environment, as well as useful skills, which, when recognized and used, can be effective in disaster risk reduction. The focus of this study on disaster management is to outline ways in which Fijian women can be actively engaged in disaster risk management, articulating in decision-making, negating the perceived ideology of women’s constricted roles in Fiji and unveiling social constraints that limit women’s access to practical disaster management strategic plan. This paper outlines the importance of gender mainstreaming in disaster risk reduction and the ways of mainstreaming gender based on a literature review. It analyses theoretical study of academic literature as well as papers and reports produced by various national and international institutions and explores ways to better inform and engage women for climate change per ser disaster management in Fiji. The empowerment of women is believed to be a critical element in constructing disaster resilience as women are often considered to be the designers of community resilience at the local level. Gender mainstreaming as a way of bringing a gender perspective into climate related disasters can be applied to distinguish the varying needs and capacities of women, and integrate them into climate change adaptation strategies. This study will advocate women articulation in disaster risk management, thus giving equal standing to females in Fiji and also identify the gaps and inform national and local Disaster Risk Management authorities to implement processes that enhance gender equality and women’s empowerment towards a more equitable and effective disaster practice.

Keywords: disaster risk management, climate change, gender mainstreaming, women empowerment

Procedia PDF Downloads 395
8394 Leveraging Natural Language Processing for Legal Artificial Intelligence: A Longformer Approach for Taiwanese Legal Cases

Authors: Hsin Lee, Hsuan Lee

Abstract:

Legal artificial intelligence (LegalAI) has been increasing applications within legal systems, propelled by advancements in natural language processing (NLP). Compared with general documents, legal case documents are typically long text sequences with intrinsic logical structures. Most existing language models have difficulty understanding the long-distance dependencies between different structures. Another unique challenge is that while the Judiciary of Taiwan has released legal judgments from various levels of courts over the years, there remains a significant obstacle in the lack of labeled datasets. This deficiency makes it difficult to train models with strong generalization capabilities, as well as accurately evaluate model performance. To date, models in Taiwan have yet to be specifically trained on judgment data. Given these challenges, this research proposes a Longformer-based pre-trained language model explicitly devised for retrieving similar judgments in Taiwanese legal documents. This model is trained on a self-constructed dataset, which this research has independently labeled to measure judgment similarities, thereby addressing a void left by the lack of an existing labeled dataset for Taiwanese judgments. This research adopts strategies such as early stopping and gradient clipping to prevent overfitting and manage gradient explosion, respectively, thereby enhancing the model's performance. The model in this research is evaluated using both the dataset and the Average Entropy of Offense-charged Clustering (AEOC) metric, which utilizes the notion of similar case scenarios within the same type of legal cases. Our experimental results illustrate our model's significant advancements in handling similarity comparisons within extensive legal judgments. By enabling more efficient retrieval and analysis of legal case documents, our model holds the potential to facilitate legal research, aid legal decision-making, and contribute to the further development of LegalAI in Taiwan.

Keywords: legal artificial intelligence, computation and language, language model, Taiwanese legal cases

Procedia PDF Downloads 77
8393 Feature Analysis of Predictive Maintenance Models

Authors: Zhaoan Wang

Abstract:

Research in predictive maintenance modeling has improved in the recent years to predict failures and needed maintenance with high accuracy, saving cost and improving manufacturing efficiency. However, classic prediction models provide little valuable insight towards the most important features contributing to the failure. By analyzing and quantifying feature importance in predictive maintenance models, cost saving can be optimized based on business goals. First, multiple classifiers are evaluated with cross-validation to predict the multi-class of failures. Second, predictive performance with features provided by different feature selection algorithms are further analyzed. Third, features selected by different algorithms are ranked and combined based on their predictive power. Finally, linear explainer SHAP (SHapley Additive exPlanations) is applied to interpret classifier behavior and provide further insight towards the specific roles of features in both local predictions and global model behavior. The results of the experiments suggest that certain features play dominant roles in predictive models while others have significantly less impact on the overall performance. Moreover, for multi-class prediction of machine failures, the most important features vary with type of machine failures. The results may lead to improved productivity and cost saving by prioritizing sensor deployment, data collection, and data processing of more important features over less importance features.

Keywords: automated supply chain, intelligent manufacturing, predictive maintenance machine learning, feature engineering, model interpretation

Procedia PDF Downloads 137
8392 Long Short-Term Memory Stream Cruise Control Method for Automated Drift Detection and Adaptation

Authors: Mohammad Abu-Shaira, Weishi Shi

Abstract:

Adaptive learning, a commonly employed solution to drift, involves updating predictive models online during their operation to react to concept drifts, thereby serving as a critical component and natural extension for online learning systems that learn incrementally from each example. This paper introduces LSTM-SCCM “Long Short-Term Memory Stream Cruise Control Method”, a drift adaptation-as-a-service framework for online learning. LSTM-SCCM automates drift adaptation through prompt detection, drift magnitude quantification, dynamic hyperparameter tuning, performing shortterm optimization and model recalibration for immediate adjustments, and, when necessary, conducting long-term model recalibration to ensure deeper enhancements in model performance. LSTM-SCCM is incorporated into a suite of cutting-edge online regression models, assessing their performance across various types of concept drift using diverse datasets with varying characteristics. The findings demonstrate that LSTM-SCCM represents a notable advancement in both model performance and efficacy in handling concept drift occurrences. LSTM-SCCM stands out as the sole framework adept at effectively tackling concept drifts within regression scenarios. Its proactive approach to drift adaptation distinguishes it from conventional reactive methods, which typically rely on retraining after significant degradation to model performance caused by drifts. Additionally, LSTM-SCCM employs an in-memory approach combined with the Self-Adjusting Memory (SAM) architecture to enhance real-time processing and adaptability. The framework incorporates variable thresholding techniques and does not assume any particular data distribution, making it an ideal choice for managing high-dimensional datasets and efficiently handling large-scale data. Our experiments, which include abrupt, incremental, and gradual drifts across both low- and high-dimensional datasets with varying noise levels, and applied to four state-of-the-art online regression models, demonstrate that LSTM-SCCM is versatile and effective, rendering it a valuable solution for online regression models to address concept drift.

Keywords: automated drift detection and adaptation, concept drift, hyperparameters optimization, online and adaptive learning, regression

Procedia PDF Downloads 21
8391 Compression-Extrusion Test to Assess Texture of Thickened Liquids for Dysphagia

Authors: Jesus Salmeron, Carmen De Vega, Maria Soledad Vicente, Mireia Olabarria, Olaia Martinez

Abstract:

Dysphagia or difficulty in swallowing affects mostly elder people: 56-78% of the institutionalized and 44% of the hospitalized. Liquid food thickening is a necessary measure in this situation because it reduces the risk of penetration-aspiration. Until now, and as proposed by the American Dietetic Association in 2002, possible consistencies have been categorized in three groups attending to their viscosity: nectar (50-350 mPa•s), honey (350-1750 mPa•s) and pudding (>1750 mPa•s). The adequate viscosity level should be identified for every patient, according to her/his impairment. Nevertheless, a systematic review on dysphagia diet performed recently indicated that there is no evidence to suggest that there is any transition of clinical relevance between the three levels proposed. It was also stated that other physical properties of the bolus (slipperiness, density or cohesiveness, among others) could influence swallowing in affected patients and could contribute to the amount of remaining residue. Texture parameters need to be evaluated as possible alternative to viscosity. The aim of this study was to evaluate the instrumental extrusion-compression test as a possible tool to characterize changes along time in water thickened with various products and in the three theoretical consistencies. Six commercial thickeners were used: NM® (NM), Multi-thick® (M), Nutilis Powder® (Nut), Resource® (R), Thick&Easy® (TE) and Vegenat® (V). All of them with a modified starch base. Only one of them, Nut, also had a 6,4% of gum (guar, tara and xanthan). They were prepared as indicated in the instructions of each product and dispensing the correspondent amount for nectar, honey and pudding consistencies in 300 mL of tap water at 18ºC-20ºC. The mixture was stirred for about 30 s. Once it was homogeneously spread, it was dispensed in 30 mL plastic glasses; always to the same height. Each of these glasses was used as a measuring point. Viscosity was measured using a rotational viscometer (ST-2001, Selecta, Barcelona). Extrusion-compression test was performed using a TA.XT2i texture analyzer (Stable Micro Systems, UK) with a 25 mm diameter cylindrical probe (SMSP/25). Penetration distance was set at 10 mm and a speed of 3 mm/s. Measurements were made at 1, 5, 10, 20, 30, 40, 50 and 60 minutes from the moment samples were mixed. From the force (g)–time (s) curves obtained in the instrumental assays, maximum force peak (F) was chosen a reference parameter. Viscosity (mPa•s) and F (g) showed to be highly correlated and had similar development along time, following time-dependent quadratic models. It was possible to predict viscosity using F as an independent variable, as they were linearly correlated. In conclusion, compression-extrusion test could be an alternative and a useful tool to assess physical characteristics of thickened liquids.

Keywords: compression-extrusion test, dysphagia, texture analyzer, thickener

Procedia PDF Downloads 372
8390 Design of an Improved Distributed Framework for Intrusion Detection System Based on Artificial Immune System and Neural Network

Authors: Yulin Rao, Zhixuan Li, Burra Venkata Durga Kumar

Abstract:

Intrusion detection refers to monitoring the actions of internal and external intruders on the system and detecting the behaviours that violate security policies in real-time. In intrusion detection, there has been much discussion about the application of neural network technology and artificial immune system (AIS). However, many solutions use static methods (signature-based and stateful protocol analysis) or centralized intrusion detection systems (CIDS), which are unsuitable for real-time intrusion detection systems that need to process large amounts of data and detect unknown intrusions. This article proposes a framework for a distributed intrusion detection system (DIDS) with multi-agents based on the concept of AIS and neural network technology to detect anomalies and intrusions. In this framework, multiple agents are assigned to each host and work together, improving the system's detection efficiency and robustness. The trainer agent in the central server of the framework uses the artificial neural network (ANN) rather than the negative selection algorithm of AIS to generate mature detectors. Mature detectors can distinguish between self-files and non-self-files after learning. Our analyzer agents use genetic algorithms to generate memory cell detectors. This kind of detector will effectively reduce false positive and false negative errors and act quickly on known intrusions.

Keywords: artificial immune system, distributed artificial intelligence, multi-agent, intrusion detection system, neural network

Procedia PDF Downloads 113
8389 The Urgenda and Juliana Cases: Redefining the Notion of Environmental Democracy

Authors: Valentina Dotto

Abstract:

Climate change cases used to take the form of statutory disputes rather than constitutional or common law disputes. This changed in 2015, with the Urgenda Climate case in the Netherlands (Urgenda Foundation v. The State of the Netherlands, C/09/456689/HAZA 13-1396) and, the Juliana case in the U.S. (United States v. U.S. District Court for District of Oregon, 17-71692, 9th Cir.). The two cases represent a new type of climate litigation, the claims brought against the federal government were in fact grounded in constitutional rights. The complaints used the Doctrine of Public Trust as a cornerstone for the lawsuits asserting that government's actions against climate change failed to protect essential public trust resources; thus, violating a generation's constitutional rights to life, liberty, and property. The Public Trust Doctrine –a quintessentially American legal concept-, reserved to the States by virtue of the 9th and 10th amendment of the federal Constitution, gives them considerable jurisdiction over natural resources and has been refined by a number of Supreme Court rulings. The Juliana case exemplifies the Doctrine’s evolutionary nature because it attempts to apply it to the federal government, and establish a right to a climate system capable of sustaining human life as a fundamental right protected by a substantive due process. Furthermore, the flexibility of the Doctrine makes it permissible to be applied to a variety of different legal systems as in the Urgenda case. At the very heart of the lawsuits stands the question of who owns the Earth resources and, to what extent the general public can claim the services that the Earth provides as common property. By employing the widest possible definition of the Doctrine of Public Trust these lawsuits tried to redefine environmental resources as a collective right of all people. By doing case analysis, the paper explores how these cases can contribute to widening the public access to information and broadening the public voice in decision making as well as providing a precedent to equal access in seeking justice and redress from environmental failures.

Keywords: climate change, doctrine of public trust, environmental democracy, Juliana case, Urgenda climate case

Procedia PDF Downloads 178
8388 Global Optimization: The Alienor Method Mixed with Piyavskii-Shubert Technique

Authors: Guettal Djaouida, Ziadi Abdelkader

Abstract:

In this paper, we study a coupling of the Alienor method with the algorithm of Piyavskii-Shubert. The classical multidimensional global optimization methods involves great difficulties for their implementation to high dimensions. The Alienor method allows to transform a multivariable function into a function of a single variable for which it is possible to use efficient and rapid method for calculating the the global optimum. This simplification is based on the using of a reducing transformation called Alienor.

Keywords: global optimization, reducing transformation, α-dense curves, Alienor method, Piyavskii-Shubert algorithm

Procedia PDF Downloads 506
8387 Index t-SNE: Tracking Dynamics of High-Dimensional Datasets with Coherent Embeddings

Authors: Gaelle Candel, David Naccache

Abstract:

t-SNE is an embedding method that the data science community has widely used. It helps two main tasks: to display results by coloring items according to the item class or feature value; and for forensic, giving a first overview of the dataset distribution. Two interesting characteristics of t-SNE are the structure preservation property and the answer to the crowding problem, where all neighbors in high dimensional space cannot be represented correctly in low dimensional space. t-SNE preserves the local neighborhood, and similar items are nicely spaced by adjusting to the local density. These two characteristics produce a meaningful representation, where the cluster area is proportional to its size in number, and relationships between clusters are materialized by closeness on the embedding. This algorithm is non-parametric. The transformation from a high to low dimensional space is described but not learned. Two initializations of the algorithm would lead to two different embeddings. In a forensic approach, analysts would like to compare two or more datasets using their embedding. A naive approach would be to embed all datasets together. However, this process is costly as the complexity of t-SNE is quadratic and would be infeasible for too many datasets. Another approach would be to learn a parametric model over an embedding built with a subset of data. While this approach is highly scalable, points could be mapped at the same exact position, making them indistinguishable. This type of model would be unable to adapt to new outliers nor concept drift. This paper presents a methodology to reuse an embedding to create a new one, where cluster positions are preserved. The optimization process minimizes two costs, one relative to the embedding shape and the second relative to the support embedding’ match. The embedding with the support process can be repeated more than once, with the newly obtained embedding. The successive embedding can be used to study the impact of one variable over the dataset distribution or monitor changes over time. This method has the same complexity as t-SNE per embedding, and memory requirements are only doubled. For a dataset of n elements sorted and split into k subsets, the total embedding complexity would be reduced from O(n²) to O(n²=k), and the memory requirement from n² to 2(n=k)², which enables computation on recent laptops. The method showed promising results on a real-world dataset, allowing to observe the birth, evolution, and death of clusters. The proposed approach facilitates identifying significant trends and changes, which empowers the monitoring high dimensional datasets’ dynamics.

Keywords: concept drift, data visualization, dimension reduction, embedding, monitoring, reusability, t-SNE, unsupervised learning

Procedia PDF Downloads 145
8386 Measures of Corporate Governance Efficiency on the Quality Level of Value Relevance Using IFRS and Corporate Governance Acts: Evidence from African Stock Exchanges

Authors: Tchapo Tchaga Sophia, Cai Chun

Abstract:

This study measures the efficiency level of corporate governance to improve the quality level of value relevance in the resolution of market value efficiency increase issues, transparency problems, risk frauds, agency problems, investors' confidence, and decision-making issues using IFRS and Corporate Governance Acts (CGA). The final sample of this study contains 3660 firms from ten countries' stock markets from 2010 to 2020. Based on the efficiency market theory and the positive accounting theory, this paper uses multiple econometrical methods (DID method, multivariate and univariate regression methods) and models (Ohlson model and compliance index model) regression to see the incidence results of corporate governance mechanisms on the value relevance level under the influence of IFRS and corporate governance regulations act framework in Africa's stock exchanges for non-financial firms. The results on value relevance show that the corporate governance system, strengthened by the adoption of IFRS and enforcement of new corporate governance regulations, produces better financial statement information when its compliance level is high. And that is both value-relevant and comparable to results in more developed markets. Similar positive and significant results were obtained when predicting future book value per share and earnings per share through the determination of stock price and stock return. The findings of this study have important implications for regulators, academics, investors, and other users regarding the effects of IFRS and the Corporate Governance Act (CGA) on the relationship between corporate governance and accounting information relevance in the African stock market. The contributions of this paper are also based on the uniqueness of the data used in this study. The unique data is from Africa, and not all existing findings provide evidence for Africa and of the DID method used to examine the relationship between corporate governance and value relevance on African stock exchanges.

Keywords: corporate governance value, market efficiency value, value relevance, African stock market, stock return-stock price

Procedia PDF Downloads 62
8385 PhenoScreen: Development of a Systems Biology Tool for Decision Making in Recurrent Urinary Tract Infections

Authors: Jonathan Josephs-Spaulding, Hannah Rettig, Simon Graspeunter, Jan Rupp, Christoph Kaleta

Abstract:

Background: Recurrent urinary tract infections (rUTIs) are a global cause of emergency room visits and represent a significant burden for public health systems. Therefore, metatranscriptomic approaches to investigate metabolic exchange and crosstalk between uropathogenic Escherichia coli (UPEC), which is responsible for 90% of UTIs, and collaborating pathogens of the urogenital microbiome is necessary to better understand the pathogenetic processes underlying rUTIs. Objectives: This study aims to determine the level in which uropathogens optimize the host urinary metabolic environment to succeed during invasion. By developing patient-specific metabolic models of infection, these observations can be taken advantage of for the precision treatment of human disease. Methods: To date, we have set up an rUTI patient cohort and observed various urine-associated pathogens. From this cohort, we developed patient-specific metabolic models to predict bladder microbiome metabolism during rUTIs. This was done by creating an in silico metabolomic urine environment, which is representative of human urine. Metabolic models of uptake and cross-feeding of rUTI pathogens were created from genomes in relation to the artificial urine environment. Finally, microbial interactions were constrained by metatranscriptomics to indicate patient-specific metabolic requirements of pathogenic communities. Results: Metabolite uptake and cross-feeding are essential for strain growth; therefore, we plan to design patient-specific treatments by adjusting urinary metabolites through nutritional regimens to counteract uropathogens by depleting essential growth metabolites. These methods will provide mechanistic insights into the metabolic components of rUTI pathogenesis to provide an evidence-based tool for infection treatment.

Keywords: recurrent urinary tract infections, human microbiome, uropathogenic Escherichia coli, UPEC, microbial ecology

Procedia PDF Downloads 138
8384 Associated Map and Inter-Purchase Time Model for Multiple-Category Products

Authors: Ching-I Chen

Abstract:

The continued rise of e-commerce is the main driver of the rapid growth of global online purchase. Consumers can nearly buy everything they want at one occasion through online shopping. The purchase behavior models which focus on single product category are insufficient to describe online shopping behavior. Therefore, analysis of multi-category purchase gets more and more popular. For example, market basket analysis explores customers’ buying tendency of the association between product categories. The information derived from market basket analysis facilitates to make cross-selling strategies and product recommendation system. To detect the association between different product categories, we use the market basket analysis with the multidimensional scaling technique to build an associated map which describes how likely multiple product categories are bought at the same time. Besides, we also build an inter-purchase time model for associated products to describe how likely a product will be bought after its associated product is bought. We classify inter-purchase time behaviors of multi-category products into nine types, and use a mixture regression model to integrate those behaviors under our assumptions of purchase sequences. Our sample data is from comScore which provides a panelist-label database that captures detailed browsing and buying behavior of internet users across the United States. Finding the inter-purchase time from books to movie is shorter than the inter-purchase time from movies to books. According to the model analysis and empirical results, this research finally proposes the applications and recommendations in the management.

Keywords: multiple-category purchase behavior, inter-purchase time, market basket analysis, e-commerce

Procedia PDF Downloads 372
8383 In Case of Possible Disaster Management with Geographic Information System in Konya

Authors: Savaş Durduran, Ceren Yağci

Abstract:

The nature of the events going on in the world, when people’s lives are considered significantly affects natural disasters. Considering thousands of years of earth history, it is seen that many natural disasters, particularly earthquakes located in our country. Behaving cautious, without occurring hazards, after being disaster is much easier and cost effective than returning to the normal life. The four phases of disaster management in the whole world has been described as; pre-disaster preparedness and mitigation, post-disaster response and rehabilitation studies. Pre-disaster and post-disaster phases has half the weight of disaster management. How much would be prepared for disaster, no matter how disaster damage reducing work gives important, we will be less harm from material and spiritual sense. To do this in a systematic way we use the Geographic Information Systems (GIS). The execution of the emergency services to be on time and emergency control mechanism against the development the most appropriate decision Geographic Information System GIS) can be useful. The execution of the emergency services to be on time and emergency control mechanism towards for developing to be the most appropriate decision Geographic Information System (GIS) can be useful. The results obtained by using products with GIS analysis of seismic data to the city, manager of the city required information and data that can be more healthy and satisfies the appropriate policy decisions can be produced. In this study, using ArcGIS software and benefiting reports of the earthquake that occurred in the Konya city, spatial and non-spatial data consisting databases created, by the help of this database a potential disaster management aimed in the city of Konya regard to urban earthquake, GIS-aided analyzes were performed.

Keywords: geographic information systems (GIS), disaster management, emergency control mechanism, Konya

Procedia PDF Downloads 476
8382 Usage of Internet Technology in Financial Education and Financial Inclusion by Students of Economics Universities

Authors: B. Frączek

Abstract:

The paper analyses the usage of the Internet by university students in Visegrad Countries (4V Countries) who study economic fields in their formal and informal financial education and captures the areas of untapped potential of Internet in educational processes. Higher education and training, technological readiness, and the financial market development are in the group of pillars, that are key for efficiency driven economies. These three pillars have become an inspiration to the research on using the Internet in the financial education among economic university students as the group of the best educated people in finance. The financial education is a process that allows for improving the level of financial literacy. In turn, the financial literacy it is the set of financial knowledge, skills, awareness and patterns influencing the financial decisions. The level of financial literacy influences the level of financial well-being of individuals, determines the scale of saving of households and at the same time gives the greater chance for sustainable and more predictable development of the financial market with the positive impact on economy. The financial literacy is necessary for each group of society but its appropriate level is desirable especially in respect of economics students as future participants of financial markets as well as the experts and advisors in financial decision making. The low level of financial literacy is the great problem of many target groups in both developing and developed countries and the financial education is seen as the best way of improving this situation. Also the financial inclusion plays the special role in enhancing the level of financial literacy in the aspect of education by practice as well as due to interrelation between level of financial literacy and degree of financial inclusion. Despite many initiatives under financial education, the level of financial literacy is still very low. Scientists still search for new ways of solving this problem. One of the proposal is more effective usage of the new technology in financial education, especially the Internet, because of the growing popularity of e-learning and the increasing number of Internet users, especially among young people who are called the Generation Net. Due to special role of the university students studying the economics fields for the future financial markets, students of four universities from Visegrad Countries (Czech Republic, Hungary, Poland and Slovakia) were invited to participate in the survey. The aim of the article is to present the level and ways of using the Internet technology in financial education and indicating the so far unused or underused opportunities.

Keywords: financial education, financial inclusion, financial literacy, internet and university education

Procedia PDF Downloads 318
8381 Housing Price Dynamics: Comparative Study of 1980-1999 and the New Millenium

Authors: Janne Engblom, Elias Oikarinen

Abstract:

The understanding of housing price dynamics is of importance to a great number of agents: to portfolio investors, banks, real estate brokers and construction companies as well as to policy makers and households. A panel dataset is one that follows a given sample of individuals over time, and thus provides multiple observations on each individual in the sample. Panel data models include a variety of fixed and random effects models which form a wide range of linear models. A special case of panel data models is dynamic in nature. A complication regarding a dynamic panel data model that includes the lagged dependent variable is endogeneity bias of estimates. Several approaches have been developed to account for this problem. In this paper, the panel models were estimated using the Common Correlated Effects estimator (CCE) of dynamic panel data which also accounts for cross-sectional dependence which is caused by common structures of the economy. In presence of cross-sectional dependence standard OLS gives biased estimates. In this study, U.S housing price dynamics were examined empirically using the dynamic CCE estimator with first-difference of housing price as the dependent and first-differences of per capita income, interest rate, housing stock and lagged price together with deviation of housing prices from their long-run equilibrium level as independents. These deviations were also estimated from the data. The aim of the analysis was to provide estimates with comparisons of estimates between 1980-1999 and 2000-2012. Based on data of 50 U.S cities over 1980-2012 differences of short-run housing price dynamics estimates were mostly significant when two time periods were compared. Significance tests of differences were provided by the model containing interaction terms of independents and time dummy variable. Residual analysis showed very low cross-sectional correlation of the model residuals compared with the standard OLS approach. This means a good fit of CCE estimator model. Estimates of the dynamic panel data model were in line with the theory of housing price dynamics. Results also suggest that dynamics of a housing market is evolving over time.

Keywords: dynamic model, panel data, cross-sectional dependence, interaction model

Procedia PDF Downloads 256
8380 Criticality Assessment Model for Water Pipelines Using Fuzzy Analytical Network Process

Authors: A. Assad, T. Zayed

Abstract:

Water networks (WNs) are responsible of providing adequate amounts of safe, high quality, water to the public. As other critical infrastructure systems, WNs are subjected to deterioration which increases the number of breaks and leaks and lower water quality. In Canada, 35% of water assets require critical attention and there is a significant gap between the needed and the implemented investments. Thus, the need for efficient rehabilitation programs is becoming more urgent given the paradigm of aging infrastructure and tight budget. The first step towards developing such programs is to formulate a Performance Index that reflects the current condition of water assets along with its criticality. While numerous studies in the literature have focused on various aspects of condition assessment and reliability, limited efforts have investigated the criticality of such components. Critical water mains are those whose failure cause significant economic, environmental or social impacts on a community. Inclusion of criticality in computing the performance index will serve as a prioritizing tool for the optimum allocating of the available resources and budget. In this study, several social, economic, and environmental factors that dictate the criticality of a water pipelines have been elicited from analyzing the literature. Expert opinions were sought to provide pairwise comparisons of the importance of such factors. Subsequently, Fuzzy Logic along with Analytical Network Process (ANP) was utilized to calculate the weights of several criteria factors. Multi Attribute Utility Theories (MAUT) was then employed to integrate the aforementioned weights with the attribute values of several pipelines in Montreal WN. The result is a criticality index, 0-1, that quantifies the severity of the consequence of failure of each pipeline. A novel contribution of this approach is that it accounts for both the interdependency between criteria factors as well as the inherited uncertainties in calculating the criticality. The practical value of the current study is represented by the automated tool, Excel-MATLAB, which can be used by the utility managers and decision makers in planning for future maintenance and rehabilitation activities where high-level efficiency in use of materials and time resources is required.

Keywords: water networks, criticality assessment, asset management, fuzzy analytical network process

Procedia PDF Downloads 151
8379 Stem Cell Fate Decision Depending on TiO2 Nanotubular Geometry

Authors: Jung Park, Anca Mazare, Klaus Von Der Mark, Patrik Schmuki

Abstract:

In clinical application of TiO2 implants on tooth and hip replacement, migration, adhesion and differentiation of neighboring mesenchymal stem cells onto implant surfaces are critical steps for successful bone regeneration. In a recent decade, accumulated attention has been paid on nanoscale electrochemical surface modifications on TiO2 layer for improving bone-TiO2 surface integration. We generated, on titanium surfaces, self-assembled layers of vertically oriented TiO2 nanotubes with defined diameters between 15 and 100 nm and here we show that mesenchymal stem cells finely sense TiO2 nanotubular geometry and quickly decide their cell fate either to differentiation into osteoblasts or to programmed cell death (apoptosis) on TiO2 nanotube layers. These cell fate decisions are critically dependent on nanotube size differences (15-100nm in diameters) of TiO2 nanotubes sensing by integrin clustering. We further demonstrate that nanoscale topography-sensing is feasible not only in mesenchymal stem cells but rather seems as generalized nanoscale microenvironment-cell interaction mechanism in several cell types composing bone tissue network including osteoblasts, osteoclast, endothelial cells and hematopoietic stem cells. Additionally we discuss the synergistic effect of simultaneous stimulation by nanotube-bound growth factor and nanoscale topographic cues on enhanced bone regeneration.

Keywords: TiO2 nanotube, stem cell fate decision, nano-scale microenvironment, bone regeneration

Procedia PDF Downloads 435
8378 Measuring Corporate Brand Loyalties in Business Markets: A Case for Caution

Authors: Niklas Bondesson

Abstract:

Purpose: This paper attempts to examine how different facets of attitudinal brand loyalty are determined by different brand image elements in business markets. Design/Methodology/Approach: Statistical analysis is employed to data from a web survey, covering 226 professional packaging buyers in eight countries. Findings: The results reveal that different brand loyalty facets have different antecedents. Affective brand loyalties (or loyalty 'feelings') are mainly driven by customer associations to service relationships, whereas customers’ loyalty intentions (to purchase and recommend a brand) are triggered by associations to the general reputation of the company. The findings also indicate that willingness to pay a price premium is a distinct form of loyalty, with unique determinants. Research implications: Theoretically, the paper suggests that corporate B2B brand loyalty needs to be conceptualised with more refinement than has been done in extant B2B branding work. Methodologically, the paper highlights that single-item approaches can be fruitful when measuring B2B brand loyalty, and that multi-item scales can conceal important nuances in terms of understanding why customers are loyal. Practical implications: The idea of a loyalty 'silver metric' is an attractive idea, but this study indicates that firms who rely too much on one single type of brand loyalty risk to miss important building blocks. Originality/Value/Contribution: The major contribution is a more multi-faceted conceptualisation, and measurement, of corporate B2B brand loyalty and its brand image determinants than extant work has provided.

Keywords: brand equity, business-to-business branding, industrial marketing, buying behaviour

Procedia PDF Downloads 417
8377 Deliberative Democracy: As an Approach for Analyzing Gezi Movement Public Forums

Authors: Çisem Gündüz Arabacı

Abstract:

Deliberation has been seen one of the most important components of democratic ideals especially since liberal democratic attributions have been under fire. Deliberative democracy advocates that people should participate in collective decision-making processes by other mechanisms rather than conventional ones in order to reach legitimate decisions. Deliberative democratic theory makes emphasis on deliberative communication between people and encourages them not to merely express their political opinions (through surveys and referendum) but to form those opinions through public debates. This paper focuses on deliberative democratic visions of Gezi Park Public Forums by taking deliberative democracy as theoretical basis and examining Gezi Park Public Forums in the light of core elements of deliberative democracy. Gezi Movement started on 28 May 2013 in İstanbul as a reaction to local government's revision plans for Taksim Gezi Park, spread throughout the country and created new zones in public sphere which are called Public Park Forums. During the summer of 2013, especially in İstanbul but also in other cities, people gathered in public parks, discussed and took collective decisions concerning actions which they will take. It is worth to mention that since 3 and half years some Public Park Forums are still continuing their meetings regularly in city of İzmir. This paper analyzes four 'Public Park Forums' in İzmir which are called Bornova Public Forum; Karşıyaka Public Forum, Foça Public Forum and Güzelyalı Public Forum. These Forums are under investigation in terms of their understanding of democracy and the values that support that understanding. Participant observation and in-depth interview methods are being used as research methods. Core element of deliberative democracy are being collected under three main category: common interest versus private interest, membership, rational argument and these values are being questioning within one of each Forum in order to draw an overall picture and also make comparison between them. Discourse analysis is being used in order to examine empirical data and paper aims to reveal how participants of public forums perceive deliberative democratic values and whether they give weight to these values.

Keywords: deliberative democracy, Gezi Park movement, public forums, social movement

Procedia PDF Downloads 322
8376 A Systemic Review and Comparison of Non-Isolated Bi-Directional Converters

Authors: Rahil Bahrami, Kaveh Ashenayi

Abstract:

This paper presents a systematic classification and comparative analysis of non-isolated bi-directional DC-DC converters. The increasing demand for efficient energy conversion in diverse applications has spurred the development of various converter topologies. In this study, we categorize bi-directional converters into three distinct classes: Inverting, Non-Inverting, and Interleaved. Each category is characterized by its unique operational characteristics and benefits. Furthermore, a practical comparison is conducted by evaluating the results of simulation of each bi-directional converter. BDCs can be classified into isolated and non-isolated topologies. Non-isolated converters share a common ground between input and output, making them suitable for applications with minimal voltage change. They are easy to integrate, lightweight, and cost-effective but have limitations like limited voltage gain, switching losses, and no protection against high voltages. Isolated converters use transformers to separate input and output, offering safety benefits, high voltage gain, and noise reduction. They are larger and more costly but are essential for automotive designs where safety is crucial. The paper focuses on non-isolated systems.The paper discusses the classification of non-isolated bidirectional converters based on several criteria. Common factors used for classification include topology, voltage conversion, control strategy, power capacity, voltage range, and application. These factors serve as a foundation for categorizing converters, although the specific scheme might vary depending on contextual, application, or system-specific requirements. The paper presents a three-category classification for non-isolated bi-directional DC-DC converters: inverting, non-inverting, and interleaved. In the inverting category, converters produce an output voltage with reversed polarity compared to the input voltage, achieved through specific circuit configurations and control strategies. This is valuable in applications such as motor control and grid-tied solar systems. The non-inverting category consists of converters maintaining the same voltage polarity, useful in scenarios like battery equalization. Lastly, the interleaved category employs parallel converter stages to enhance power delivery and reduce current ripple. This classification framework enhances comprehension and analysis of non-isolated bi-directional DC-DC converters. The findings contribute to a deeper understanding of the trade-offs and merits associated with different converter types. As a result, this work aids researchers, practitioners, and engineers in selecting appropriate bi-directional converter solutions for specific energy conversion requirements. The proposed classification framework and experimental assessment collectively enhance the comprehension of non-isolated bi-directional DC-DC converters, fostering advancements in efficient power management and utilization.The simulation process involves the utilization of PSIM to model and simulate non-isolated bi-directional converter from both inverted and non-inverted category. The aim is to conduct a comprehensive comparative analysis of these converters, considering key performance indicators such as rise time, efficiency, ripple factor, and maximum error. This systematic evaluation provides valuable insights into the dynamic response, energy efficiency, output stability, and overall precision of the converters. The results of this comparison facilitate informed decision-making and potential optimizations, ensuring that the chosen converter configuration aligns effectively with the designated operational criteria and performance goals.

Keywords: bi-directional, DC-DC converter, non-isolated, energy conversion

Procedia PDF Downloads 104
8375 Multi-Dimension Threat Situation Assessment Based on Network Security Attributes

Authors: Yang Yu, Jian Wang, Jiqiang Liu, Lei Han, Xudong He, Shaohua Lv

Abstract:

As the increasing network attacks become more and more complex, network situation assessment based on log analysis cannot meet the requirements to ensure network security because of the low quality of logs and alerts. This paper addresses the lack of consideration of security attributes of hosts and attacks in the network. Identity and effectiveness of Distributed Denial of Service (DDoS) are hard to be proved in risk assessment based on alerts and flow matching. This paper proposes a multi-dimension threat situation assessment method based on network security attributes. First, the paper offers an improved Common Vulnerability Scoring System (CVSS) calculation, which includes confident risk, integrity risk, availability risk and a weighted risk. Second, the paper introduces deterioration rate of properties collected by sensors in hosts and network, which aimed at assessing the time and level of DDoS attacks. Third, the paper introduces distribution of asset value in security attributes considering features of attacks and network, which aimed at assessing and show the whole situation. Experiments demonstrate that the approach reflects effectiveness and level of DDoS attacks, and the result can show the primary threat in network and security requirement of network. Through comparison and analysis, the method reflects more in security requirement and security risk situation than traditional methods based on alert and flow analyzing.

Keywords: DDoS evaluation, improved CVSS, network security attribute, threat situation assessment

Procedia PDF Downloads 212
8374 Multilingual Practices in the UK: Kabyles’ Situational Language Choice in a Linguistically Diverse Setting.

Authors: Souhila Belabbas

Abstract:

This paper focuses on the Kabyles’ multilingual practices in the UK, within the Kabyle/Amazigh Cultural Organisation in London, on online platforms and at home. The Kabyles have roots in northern Algeria and associate their language, Kabyle, with a pre-Arabized history of northern Africa. Drawing on ethnographic research with this community, this study brings together their post-migration language preservation activisms as well as their dynamic multilingual practices and situational language choice into a dialogue. This shows the enduring significance of the heritage language for social, cultural and historical identity. It also demonstrates that the current survival of the “mother tongue” hinges on multilingual and multi-sited language activisms, which bear the hallmarks of both new creativities and diminishing fluencies in multilingual spaces. These multilingual repertoires also included a range of ideological stances, expressed as cultural, moral, and political attitudes to the “mother tongue” and to other, potentially more dominant, languages in their lives, involving both inclusive and exclusive instances. The Kabyles in the UK practice everyday forms of multilingualism in the dynamic terms whilst making strong identity claims to an endangered heritage language. Crucially, their language contact experiences were not a post-migration novelty but part of their pre-migration lifeworlds. The participants involved in this study shared a commitment to Kabyle identity activism. They expressed this differently, varyingly foregrounding cultural, social or political issues. These differences were related to their North-African cultural background, live, gender, religious and/or political affiliation, as well as to their different migratory trajectories. Among these ethno-conscious individuals, the use of Kabyle was often particularly vibrant in informal domains of casual conversations and mixed in with French, English and often Arabic. During community events and festivals, though, many made special efforts to converse in Kabyle as if to make a point about their commitment to a shared identity.

Keywords: ethnography, language ideology, language choice, heritage language, migration trajectories, multilingual repertoires

Procedia PDF Downloads 83