Search results for: AIMMS mathematical software
6026 R Software for Parameter Estimation of Spatio-Temporal Model
Authors: Budi Nurani Ruchjana, Atje Setiawan Abdullah, I. Gede Nyoman Mindra Jaya, Eddy Hermawan
Abstract:
In this paper, we propose the application package to estimate parameters of spatiotemporal model based on the multivariate time series analysis using the R open-source software. We build packages mainly to estimate the parameters of the Generalized Space Time Autoregressive (GSTAR) model. GSTAR is a combination of time series and spatial models that have parameters vary per location. We use the method of Ordinary Least Squares (OLS) and use the Mean Average Percentage Error (MAPE) to fit the model to spatiotemporal real phenomenon. For case study, we use oil production data from volcanic layer at Jatibarang Indonesia or climate data such as rainfall in Indonesia. Software R is very user-friendly and it is making calculation easier, processing the data is accurate and faster. Limitations R script for the estimation of model parameters spatiotemporal GSTAR built is still limited to a stationary time series model. Therefore, the R program under windows can be developed either for theoretical studies and application.Keywords: GSTAR Model, MAPE, OLS method, oil production, R software
Procedia PDF Downloads 2436025 Automated Java Testing: JUnit versus AspectJ
Authors: Manish Jain, Dinesh Gopalani
Abstract:
Growing dependency of mankind on software technology increases the need for thorough testing of the software applications and automated testing techniques that support testing activities. We have outlined our testing strategy for performing various types of automated testing of Java applications using AspectJ which has become the de-facto standard for Aspect Oriented Programming (AOP). Likewise JUnit, a unit testing framework is the most popular Java testing tool. In this paper, we have evaluated our proposed AOP approach for automated testing and JUnit on various parameters. First we have provided the similarity between the two approaches and then we have done a detailed comparison of the two testing techniques on factors like lines of testing code, learning curve, testing of private members etc. We established that our AOP testing approach using AspectJ has got several advantages and is thus particularly more effective than JUnit.Keywords: aspect oriented programming, AspectJ, aspects, JU-nit, software testing
Procedia PDF Downloads 3316024 Introducing Design Principles for Clinical Decision Support Systems
Authors: Luca Martignoni
Abstract:
The increasing usage of clinical decision support systems in healthcare and the demand for software that enables doctors to take informed decisions is changing everyday clinical practice. However, as technology advances not only are the benefits of technology growing, but so are the potential risks. A growing danger is the doctors’ over-reliance on the proposed decision of the clinical decision support system, leading towards deskilling and rash decisions by doctors. In that regard, identifying doctors' requirements for software and developing approaches to prevent technological over-reliance is of utmost importance. In this paper, we report the results of a design science research study, focusing on the requirements and design principles of ultrasound software. We conducted a total of 15 interviews with experts about poten-tial ultrasound software functions. Subsequently, we developed meta-requirements and design principles to design future clinical decision support systems efficiently and as free from the occur-rence of technological over-reliance as possible.Keywords: clinical decision support systems, technological over-reliance, design principles, design science research
Procedia PDF Downloads 1016023 Practical Software for Optimum Bore Hole Cleaning Using Drilling Hydraulics Techniques
Authors: Abdulaziz F. Ettir, Ghait Bashir, Tarek S. Duzan
Abstract:
A proper well planning is very vital to achieve any successful drilling program on the basis of preventing, overcome all drilling problems and minimize cost operations. Since the hydraulic system plays an active role during the drilling operations, that will lead to accelerate the drilling effort and lower the overall well cost. Likewise, an improperly designed hydraulic system can slow drill rate, fail to clean the hole of cuttings, and cause kicks. In most cases, common sense and commercially available computer programs are the only elements required to design the hydraulic system. Drilling optimization is the logical process of analyzing effects and interactions of drilling variables through applied drilling and hydraulic equations and mathematical modeling to achieve maximum drilling efficiency with minimize drilling cost. In this paper, practical software adopted in this paper to define drilling optimization models including four different optimum keys, namely Opti-flow, Opti-clean, Opti-slip and Opti-nozzle that can help to achieve high drilling efficiency with lower cost. The used data in this research from vertical and horizontal wells were recently drilled in Waha Oil Company fields. The input data are: Formation type, Geopressures, Hole Geometry, Bottom hole assembly and Mud reghology. Upon data analysis, all the results from wells show that the proposed program provides a high accuracy than that proposed from the company in terms of hole cleaning efficiency, and cost break down if we consider that the actual data as a reference base for all wells. Finally, it is recommended to use the established Optimization calculations software at drilling design to achieve correct drilling parameters that can provide high drilling efficiency, borehole cleaning and all other hydraulic parameters which assist to minimize hole problems and control drilling operation costs.Keywords: optimum keys, namely opti-flow, opti-clean, opti-slip and opti-nozzle
Procedia PDF Downloads 3206022 Slow pace towards Teaching Mathematical Science in Nepal: A Historical Perspective
Authors: Dammar Bahadur Adhikari
Abstract:
Mathematics teaching begins with human civilization. The rular used to choose mathematician as prime adviser in many tribes and country. Mathematics was powerful tool for understanding economial situation and strength of rular. In ancient Nepal teaching of mathematics starts with informal education provided by religious leaders there after in modern education system seems to follow the world’s educational system. The aim of this paper is to present a brief historical background of the Nepalese mathematicians up to nineteenth century and highlight the transformation in mathematical science in the line with modern world. Secondary data and formal papers and informal publications were studied to explore the present situation of education. The study concluded that there is remarcable change in quality of education and there are sufficient human powers in the mathematical sciences in Nepal.Keywords: human development, mathematics, Nepal, science, traditional
Procedia PDF Downloads 3906021 Finite Element Analysis of Rom Silo Subjected to 5000 Tons Monotic Loads at an Anonymous Mine in Zimbabwe
Authors: T. Mushiri, K. Tengende, C. Mbohwa, T. Garikayi
Abstract:
This paper introduces finite element analysis of Run off Mine (ROM) silo subjected to dynamic loading. The proposed procedure is based on the use of theoretical equations to come up with pressure and forces exerted by Platinum Group Metals (PGMs) ore to the silo wall. Finite Element Analysis of the silo involves the use of CAD software (AutoCAD) for3D creation and CAE software (T-FLEX) for the simulation work with an optimization routine to minimize the mass and also ensure structural stiffness and stability. In this research an efficient way to design and analysis of a silo in 3D T-FLEX (CAD) program was created the silo to stay within the constrains and so as to know the points of failure due dynamic loading.Keywords: reinforced concrete silo, finite element analysis, T-FLEX software, AutoCAD
Procedia PDF Downloads 4826020 Implementation and Demonstration of Software-Defined Traffic Grooming
Authors: Lei Guo, Xu Zhang, Weigang Hou
Abstract:
Since the traditional network is closed and it has no architecture to create applications, it has been unable to evolve with changing demands under the rapid innovation in services. Additionally, due to the lack of the whole network profile, the quality of service cannot be well guaranteed in the traditional network. The Software Defined Network (SDN) utilizes global resources to support on-demand applications/services via open, standardized and programmable interfaces. In this paper, we implement the traffic grooming application under a real SDN environment, and the corresponding analysis is made. In our SDN: 1) we use OpenFlow protocol to control the entire network by using software applications running on the network operating system; 2) several virtual switches are combined into the data forwarding plane through Open vSwitch; 3) An OpenFlow controller, NOX, is involved as a logically centralized control plane that dynamically configures the data forwarding plane; 4) The traffic grooming based on SDN is demonstrated through dynamically modifying the idle time of flow entries. The experimental results demonstrate that the SDN-based traffic grooming effectively reduces the end-to-end delay, and the improvement ratio arrives to 99%.Keywords: NOX, OpenFlow, Software Defined Network (SDN), traffic grooming
Procedia PDF Downloads 2516019 The Effect of Technology on Advanced Automotive Electronics
Authors: Abanob Nady Wasef Moawed
Abstract:
In more complicated systems, inclusive of automotive gearboxes, a rigorous remedy of the data is essential because there are several transferring elements (gears, bearings, shafts, and many others.), and in this way, there are numerous viable sources of mistakes and also noise. The fundamental goal of these elements are the detection of damage in car gearbox. The detection strategies used are the wavelet technique, the bispectrum, advanced filtering techniques (selective filtering) of vibrational alerts and mathematical morphology. Gearbox vibration assessments were achieved (gearboxes in proper circumstance and with defects) of a manufacturing line of a huge car assembler. The vibration indicators have acquired the use of five accelerometers in distinct positions of the sample. The effects acquired using the kurtosis, bispectrum, wavelet and mathematical morphology confirmed that it's far possible to identify the lifestyles of defects in automobile gearboxes.Keywords: 3D-shaped electronics, electronic components, thermoforming, component positioningautomotive gearbox, mathematical morphology, wavelet, bispectrum
Procedia PDF Downloads 336018 Simplifying the Migration of Architectures in Embedded Applications Introducing a Pattern Language to Support the Workforce
Authors: Farha Lakhani, Michael J. Pont
Abstract:
There are two main architectures used to develop software for modern embedded systems: these can be labelled as “event-triggered” (ET) and “time-triggered” (TT). The research presented in this paper is concerned with the issues involved in migration between these two architectures. Although TT architectures are widely used in safety-critical applications they are less familiar to developers of mainstream embedded systems. The research presented in this paper began from the premise that–for a broad class of systems that have been implemented using an ET architecture–migration to a TT architecture would improve reliability. It may be tempting to assume that conversion between ET and TT designs will simply involve converting all event-handling software routines into periodic activities. However, the required changes to the software architecture are, in many cases rather more profound. The main contribution of the work presented in this paper is to identify ways in which the significant effort involved in migrating between existing ET architectures and “equivalent” (and effective) TT architectures could be reduced. The research described in this paper has taken an innovative step in this regard by introducing the use of ‘Design patterns’ for this purpose for the first time.Keywords: embedded applications, software architectures, reliability, pattern
Procedia PDF Downloads 3296017 The Impact of Introspective Models on Software Engineering
Authors: Rajneekant Bachan, Dhanush Vijay
Abstract:
The visualization of operating systems has refined the Turing machine, and current trends suggest that the emulation of 32 bit architectures will soon emerge. After years of technical research into Web services, we demonstrate the synthesis of gigabit switches, which embodies the robust principles of theory. Loam, our new algorithm for forward-error correction, is the solution to all of these challenges.Keywords: software engineering, architectures, introspective models, operating systems
Procedia PDF Downloads 5396016 Predicting Loss of Containment in Surface Pipeline using Computational Fluid Dynamics and Supervised Machine Learning Model to Improve Process Safety in Oil and Gas Operations
Authors: Muhammmad Riandhy Anindika Yudhy, Harry Patria, Ramadhani Santoso
Abstract:
Loss of containment is the primary hazard that process safety management is concerned within the oil and gas industry. Escalation to more serious consequences all begins with the loss of containment, starting with oil and gas release from leakage or spillage from primary containment resulting in pool fire, jet fire and even explosion when reacted with various ignition sources in the operations. Therefore, the heart of process safety management is avoiding loss of containment and mitigating its impact through the implementation of safeguards. The most effective safeguard for the case is an early detection system to alert Operations to take action prior to a potential case of loss of containment. The detection system value increases when applied to a long surface pipeline that is naturally difficult to monitor at all times and is exposed to multiple causes of loss of containment, from natural corrosion to illegal tapping. Based on prior researches and studies, detecting loss of containment accurately in the surface pipeline is difficult. The trade-off between cost-effectiveness and high accuracy has been the main issue when selecting the traditional detection method. The current best-performing method, Real-Time Transient Model (RTTM), requires analysis of closely positioned pressure, flow and temperature (PVT) points in the pipeline to be accurate. Having multiple adjacent PVT sensors along the pipeline is expensive, hence generally not a viable alternative from an economic standpoint.A conceptual approach to combine mathematical modeling using computational fluid dynamics and a supervised machine learning model has shown promising results to predict leakage in the pipeline. Mathematical modeling is used to generate simulation data where this data is used to train the leak detection and localization models. Mathematical models and simulation software have also been shown to provide comparable results with experimental data with very high levels of accuracy. While the supervised machine learning model requires a large training dataset for the development of accurate models, mathematical modeling has been shown to be able to generate the required datasets to justify the application of data analytics for the development of model-based leak detection systems for petroleum pipelines. This paper presents a review of key leak detection strategies for oil and gas pipelines, with a specific focus on crude oil applications, and presents the opportunities for the use of data analytics tools and mathematical modeling for the development of robust real-time leak detection and localization system for surface pipelines. A case study is also presented.Keywords: pipeline, leakage, detection, AI
Procedia PDF Downloads 1936015 Optimality Conditions and Duality for Semi-Infinite Mathematical Programming Problems with Equilibrium Constraints, Using Convexificators
Authors: Shashi Kant Mishra
Abstract:
In this paper, we consider semi-infinite mathematical programming problems with equilibrium constraints (SIMPEC). We establish necessary and sufficient optimality conditions for the SIMPEC, using convexificators. We study the Wolfe type dual problem for the SIMPEC under the ∂∗convexity assumptions. A Mond-Weir type dual problem is also formulated and studied for the SIMPEC under the ∂∗-convexity, ∂∗-pseudoconvexity and ∂∗quasiconvexity assumptions. Weak duality theorems are established to relate the SIMPEC and two dual programs in the framework of convexificators. Further, strong duality theorems are obtained under generalized standard Abadie constraint qualification (GS-ACQ).Keywords: mathematical programming problems with equilibrium constraints, optimality conditions, semi-infinite programming, convexificators
Procedia PDF Downloads 3296014 The Use of the Matlab Software as the Best Way to Recognize Penumbra Region in Radiotherapy
Authors: Alireza Shayegan, Morteza Amirabadi
Abstract:
The y tool was developed to quantitatively compare dose distributions, either measured or calculated. Before computing ɣ, the dose and distance scales of the two distributions, referred to as evaluated and reference, are re-normalized by dose and distance criteria, respectively. The re-normalization allows the dose distribution comparison to be conducted simultaneously along dose and distance axes. Several two-dimensional images were acquired using a Scanning Liquid Ionization Chamber EPID and Extended Dose Range (EDR2) films for regular and irregular radiation fields. The raw images were then converted into two-dimensional dose maps. Transitional and rotational manipulations were performed for images using Matlab software. As evaluated dose distribution maps, they were then compared with the corresponding original dose maps as the reference dose maps.Keywords: energetic electron, gamma function, penumbra, Matlab software
Procedia PDF Downloads 3016013 Validation of Electrical Field Effect on Electrostatic Desalter Modeling with Experimental Laboratory Data
Authors: Fatemeh Yazdanmehr, Iulian Nistor
Abstract:
The scope of the current study is the evaluation of the electric field effect on electrostatic desalting mathematical modeling with laboratory data. This research study was focused on developing a model for an existing operation desalting unit of one of the Iranian heavy oil field with a 75 MBPD production capacity. The high temperature of inlet oil to dehydration unit reduces the oil recovery, so the mathematical modeling of desalter operation parameters is very significant. The existing production unit operating data has been used for the accuracy of the mathematical desalting plant model. The inlet oil temperature to desalter was decreased from 110 to 80°C, and the desalted electrical field was increased from 0.75 to 2.5 Kv/cm. The model result shows that the desalter parameter changes meet the water-oil specification and also the oil production and consequently annual income is increased. In addition to that, changing desalter operation conditions reduces environmental footprint because of flare gas reduction. Following to specify the accuracy of selected electrostatic desalter electrical field, laboratory data has been used. Experimental data are used to ensure the effect of electrical field change on desalter. Therefore, the lab test is done on a crude oil sample. The results include the dehydration efficiency in the presence of a demulsifier and under electrical field (0.75 Kv) conditions at various temperatures. Comparing lab experimental and electrostatic desalter mathematical model results shows 1-3 percent acceptable error which confirms the validity of desalter specification and operation conditions changes.Keywords: desalter, electrical field, demulsification, mathematical modeling, water-oil separation
Procedia PDF Downloads 1426012 Mathematical Modelling of the Effect of Glucose on Pancreatic Alpha-Cell Activity
Authors: Karen K. Perez-Ramirez, Genevieve Dupont, Virginia Gonzalez-Velez
Abstract:
Pancreatic alpha-cells participate on glucose regulation together with beta cells. They release glucagon hormone when glucose level is low to stimulate gluconeogenesis from the liver. As other excitable cells, alpha cells generate Ca2+ and metabolic oscillations when they are stimulated. It is known that the glucose level can trigger or silence this activity although it is not clear how this occurs in normal and diabetic people. In this work, we propose an electric-metabolic mathematical model implemented in Matlab to study the effect of different glucose levels on the electrical response and Ca2+ oscillations of an alpha cell. Our results show that Ca2+ oscillations appear in opposite phase with metabolic oscillations in a window of glucose values. The model also predicts a direct relationship between the level of glucose and the intracellular adenine nucleotides showing a self-regulating pathway for the alpha cell.Keywords: Ca2+ oscillations, mathematical model, metabolic oscillations, pancreatic alpha cell
Procedia PDF Downloads 1796011 Analysis of the Impact of NVivo and EndNote on Academic Research Productivity
Authors: Sujit K. Basak
Abstract:
The aim of this paper is to analyze the impact of literature review software on researchers. The aim of this study was achieved by analyzing models in terms of perceived usefulness, perceived ease of use, and acceptance level. Collected data was analyzed using WarpPLS 4.0 software. This study used two theoretical frameworks namely Technology Acceptance Model and the Training Needs Assessment Model. The study was experimental and was conducted at a public university in South Africa. The results of the study showed that acceptance level has a high impact on research workload and productivity followed by perceived usefulness and perceived ease of use.Keywords: technology acceptance model, training needs assessment model, literature review software, research productivity
Procedia PDF Downloads 5046010 Switched Uses of a Bidirectional Microphone as a Microphone and Sensors with High Gain and Wide Frequency Range
Authors: Toru Shionoya, Yosuke Kurihara, Takashi Kaburagi, Kajiro Watanabe
Abstract:
Mass-produced bidirectional microphones have attractive characteristics. They work as a microphone as well as a sensor with high gain over a wide frequency range; they are also highly reliable and economical. We present novel multiple functional uses of the microphones. A mathematical model for explaining the high-pass-filtering characteristics of bidirectional microphones was presented. Based on the model, the characteristics of the microphone were investigated, and a novel use for the microphone as a sensor with a wide frequency range was presented. In this study, applications for using the microphone as a security sensor and a human biosensor were introduced. The mathematical model was validated through experiments, and the feasibility of the abovementioned applications for security monitoring and the biosignal monitoring were examined through experiments.Keywords: bidirectional microphone, low-frequency, mathematical model, frequency response
Procedia PDF Downloads 5466009 Discover a New Technique for Cancer Recognition by Analysis and Determination of Fractal Dimension Images in Matlab Software
Authors: Saeedeh Shahbazkhany
Abstract:
Cancer is a terrible disease that, if not diagnosed early, therapy can be difficult while it is easily medicable if it is diagnosed in early stages. So it is very important for cancer diagnosis that medical procedures are performed. In this paper we introduce a new method. In this method, we only need pictures of healthy cells and cancer cells. In fact, where we suspect cancer, we take a picture of cells or tissue in that area, and then take some pictures of the surrounding tissues. Then, fractal dimension of images are calculated and compared. Cancer can be easily detected by comparing the fractal dimension of images. In this method, we use Matlab software.Keywords: Matlab software, fractal dimension, cancer, surrounding tissues, cells or tissue, new method
Procedia PDF Downloads 3546008 A Mathematical Framework for Expanding a Railway’s Theoretical Capacity
Authors: Robert L. Burdett, Bayan Bevrani
Abstract:
Analytical techniques for measuring and planning railway capacity expansion activities have been considered in this article. A preliminary mathematical framework involving track duplication and section sub divisions is proposed for this task. In railways, these features have a great effect on network performance and for this reason they have been considered. Additional motivations have also arisen from the limitations of prior models that have not included them.Keywords: capacity analysis, capacity expansion, railways, track sub division, track duplication
Procedia PDF Downloads 3606007 Evaluation of the Matching Optimization of Human-Machine Interface Matching in the Cab
Authors: Yanhua Ma, Lu Zhai, Xinchen Wang, Hongyu Liang
Abstract:
In this paper, by understanding the development status of the human-machine interface in today's automobile cab, a subjective and objective evaluation system for evaluating the optimization of human-machine interface matching in automobile cab was established. The man-machine interface of the car cab was divided into a software interface and a hard interface. Objective evaluation method of software human factor analysis is used to evaluate the hard interface matching; The analytic hierarchy process is used to establish the evaluation index system for the software interface matching optimization, and the multi-level fuzzy comprehensive evaluation method is used to evaluate hard interface machine. This article takes Dongfeng Sokon (DFSK) C37 model automobile as an example. The evaluation method given in the paper is used to carry out relevant analysis and evaluation, and corresponding optimization suggestions are given, which have certain reference value for designers.Keywords: analytic hierarchy process, fuzzy comprehension evaluation method, human-machine interface, matching optimization, software human factor analysis
Procedia PDF Downloads 1586006 Students' Errors in Translating Algebra Word Problems to Mathematical Structure
Authors: Ledeza Jordan Babiano
Abstract:
Translating statements into mathematical notations is one of the processes in word problem-solving. However, based on the literature, students still have difficulties with this skill. The purpose of this study was to investigate the translation errors of the students when they translate algebraic word problems into mathematical structures and locate the errors via the lens of the Translation-Verification Model. Moreover, this qualitative research study employed content analysis. During the data-gathering process, the students were asked to answer a six-item algebra word problem questionnaire, and their answers were analyzed by experts through blind coding using the Translation-Verification Model to determine their translation errors. After this, a focus group discussion was conducted, and the data gathered was analyzed through thematic analysis to determine the causes of the students’ translation errors. It was found out that students’ prevalent error in translation was the interpretation error, which was situated in the Attribute construct. The emerging themes during the FGD were: (1) The procedure of translation is strategically incorrect; (2) Lack of comprehension; (3) Algebra concepts related to difficulty; (4) Lack of spatial skills; (5) Unprepared for independent learning; and (6) The content of the problem is developmentally inappropriate. These themes boiled down to the major concept of independent learning preparedness in solving mathematical problems. This concept has subcomponents, which include contextual and conceptual factors in translation. Consequently, the results provided implications for instructors and professors in Mathematics to innovate their teaching pedagogies and strategies to address translation gaps among students.Keywords: mathematical structure, algebra word problems, translation, errors
Procedia PDF Downloads 506005 Empirical Study From Final Exams of Graduate Courses in Computer Science to Demystify the Notion of an Average Software Engineer and Offer a Direction to Address Diversity of Professional Backgrounds of a Student Body
Authors: Alex Elentukh
Abstract:
The paper is based on data collected from final exams administered during five years of teaching the graduate course in software engineering. The visualization instrument with four distinct personas has been used to improve the effectiveness of each class. The study offers a plethora of clues toward students' behavioral preferences. Diversity among students (professional background, physical proximity) is too significant to assume a single face of a learner. This is particularly true for a body of online graduate students in computer science. Conclusions of the study (each learner is unique, and each class is unique) are extrapolated to demystify the notion of an 'average software engineer.' An immediate direction for an educator is to ensure a course applies to a wide audience of very different individuals. On the other hand, a student should be clear about his/her abilities and preferences - to follow the most effective learning path.Keywords: K.3.2 computer and information science education, learner profiling, adaptive learning, software engineering
Procedia PDF Downloads 1046004 Idea, Creativity, Design, and Ultimately, Playing with Mathematics
Authors: Yasaman Azarmjoo
Abstract:
Since ancient times, it has been said that mathematics is the mother of all sciences and the foundation of basic concepts in every field and profession. It would be great if, after learning this subject, we could enable students to create games and activities based on the same mathematical concepts. This article explores the design of various mathematical activities in the form of games, utilizing different mathematical topics such as algebra, equations, binary systems, and one-to-one correspondence. The theoretical significance of this article lies in uncovering alternative approaches to teaching and learning mathematics. By employing creative and interactive methods such as game design, it challenges the traditional perception of mathematics as a difficult and laborious subject. The theoretical significance of this article lies in demonstrating that mathematics can be made more accessible and enjoyable, which can result in heightened interest and engagement in the subject. In general, this article reveals another aspect of mathematics.Keywords: playing with mathematics, algebra and equations, binary systems, one-to-one correspondence
Procedia PDF Downloads 946003 The Effect of Land Cover on Movement of Vehicles in the Terrain
Authors: Krisstalova Dana, Mazal Jan
Abstract:
This article deals with geographical conditions in terrain and their effect on the movement of vehicles, their effect on speed and safety of movement of people and vehicles. Finding of the optimal routes outside the communication is studied in the army environment, but it occur in civilian as well, primarily in crisis situation, or by the provision of assistance when natural disasters such as floods, fires, storms etc., have happened. These movements require the optimization of routes when effects of geographical factors should be included. The most important factor is the surface of a terrain. It is based on several geographical factors as are slopes, soil conditions, micro-relief, a type of surface and meteorological conditions. Their mutual impact has been given by coefficient of deceleration. This coefficient can be used for the commander`s decision. New approaches and methods of terrain testing, mathematical computing, mathematical statistics or cartometric investigation are necessary parts of this evaluation.Keywords: movement in a terrain, geographical factors, surface of a field, mathematical evaluation, optimization and searching paths
Procedia PDF Downloads 4256002 Mathematical Modeling of Skin Condensers for Domestic Refrigerator
Authors: Nitin Ghule, S. G. Taji
Abstract:
A mathematical model of hot-wall condensers used in refrigerators is presented. The model predicts the heat transfer characteristics of condenser and the effects of various design and operating parameters on condenser tube length and capacity. A finite element approach was used to model the condenser. The condenser tube is divided into elemental units, with each element consisting of adhesive tape, refrigerant tube and outer metal sheet. The heat transfer characteristics of each section are then analyzed by considering the heat transfer through the tube wall, tape and the outer sheet. Variations in inner heat transfer coefficient and pressure drop are considered depending on temperature, fluid phase, type of flow and orientation of tube. Variation in outer heat transfer coefficient is also taken into account. Various materials were analysed for the tube, tape and outer sheet.Keywords: condenser, domestic refrigerator, heat transfer, mathematical model
Procedia PDF Downloads 4526001 A Schema of Building an Efficient Quality Gate throughout the Software Development with Tools
Authors: Le Chen
Abstract:
This paper presents an efficient tool platform scheme to ensure quality protection throughout the software development process. The main principle is to manage the information of requirements, design, development, testing, operation and maintenance process with proper tools, and to set up the quality standards of each process. Through the tools’ display and summary of quality standards, the quality standards can be visualizad and ready for policy decision, which is called Quality Gate in this paper. In addition, the tools are also integrated to achieve the exchange and relation of information which highly improving operational efficiency. In this paper, the feasibility of the scheme is verified by practical application of development projects, and the overall information display and data mining are proposed to be further improved.Keywords: efficiency, quality gate, software process, tools
Procedia PDF Downloads 3596000 Toward Automatic Chest CT Image Segmentation
Authors: Angely Sim Jia Wun, Sasa Arsovski
Abstract:
Numerous studies have been conducted on the segmentation of medical images. Segmenting the lungs is one of the common research topics in those studies. Our research stemmed from the lack of solutions for automatic bone, airway, and vessel segmentation, despite the existence of multiple lung segmentation techniques. Consequently, currently, available software tools used for medical image segmentation do not provide automatic lung, bone, airway, and vessel segmentation. This paper presents segmentation techniques along with an interactive software tool architecture for segmenting bone, lung, airway, and vessel tissues. Additionally, we propose a method for creating binary masks from automatically generated segments. The key contribution of our approach is the technique for automatic image thresholding using adjustable Hounsfield values and binary mask extraction. Generated binary masks can be successfully used as a training dataset for deep-learning solutions in medical image segmentation. In this paper, we also examine the current software tools used for medical image segmentation, discuss our approach, and identify its advantages.Keywords: lung segmentation, binary masks, U-Net, medical software tools
Procedia PDF Downloads 985999 A Novel Software Model for Enhancement of System Performance and Security through an Optimal Placement of PMU and FACTS
Authors: R. Kiran, B. R. Lakshmikantha, R. V. Parimala
Abstract:
Secure operation of power systems requires monitoring of the system operating conditions. Phasor measurement units (PMU) are the device, which uses synchronized signals from the GPS satellites, and provide the phasors information of voltage and currents at a given substation. The optimal locations for the PMUs must be determined, in order to avoid redundant use of PMUs. The objective of this paper is to make system observable by using minimum number of PMUs & the implementation of stability software at 22OkV grid for on-line estimation of the power system transfer capability based on voltage and thermal limitations and for security monitoring. This software utilizes State Estimator (SE) and synchrophasor PMU data sets for determining the power system operational margin under normal and contingency conditions. This software improves security of transmission system by continuously monitoring operational margin expressed in MW or in bus voltage angles, and alarms the operator if the margin violates a pre-defined threshold.Keywords: state estimator (SE), flexible ac transmission systems (FACTS), optimal location, phasor measurement units (PMU)
Procedia PDF Downloads 4115998 Mathematical Model for Progressive Phase Distribution of Ku-band Reflectarray Antennas
Authors: M. Y. Ismail, M. Inam, A. F. M. Zain, N. Misran
Abstract:
Progressive phase distribution is an important consideration in reflect array antenna design which is required to form a planar wave in front of the reflect array aperture. This paper presents a detailed mathematical model in order to determine the required reflection phase values from individual element of a reflect array designed in Ku-band frequency range. The proposed technique of obtaining reflection phase can be applied for any geometrical design of elements and is independent of number of array elements. Moreover the model also deals with the solution of reflect array antenna design with both centre and off-set feed configurations. The theoretical modeling has also been implemented for reflect arrays constructed on 0.508 mm thickness of different dielectric substrates. The results show an increase in the slope of the phase curve from 4.61°/mm to 22.35°/mm by varying the material properties.Keywords: mathematical modeling, progressive phase distribution, reflect array antenna, reflection phase
Procedia PDF Downloads 3835997 Simulating Drilling Using a CAD System
Authors: Panagiotis Kyratsis, Konstantinos Kakoulis
Abstract:
Nowadays, the rapid development of CAD systems’ programming environments results in the creation of multiple downstream applications, which are developed and becoming increasingly available. CAD based manufacturing simulations is gradually following the same trend. Drilling is the most popular hole-making process used in a variety of industries. A specially built piece of software that deals with the drilling kinematics is presented. The cutting forces are calculated based on the tool geometry, the cutting conditions and the tool/work piece materials. The results are verified by experimental work. Finally, the response surface methodology (RSM) is applied and mathematical models of the total thrust force and the thrust force developed because of the main cutting edges are proposed.Keywords: CAD, application programming interface, response surface methodology, drilling, RSM
Procedia PDF Downloads 470