Search results for: Laplace equation
1720 Investigating the Form of the Generalised Equations of Motion of the N-Bob Pendulum and Computing Their Solution Using MATLAB
Authors: Divij Gupta
Abstract:
Pendular systems have a range of both mathematical and engineering applications, ranging from modelling the behaviour of a continuous mass-density rope to utilisation as Tuned Mass Dampers (TMD). Thus, it is of interest to study the differential equations governing the motion of such systems. Here we attempt to generalise these equations of motion for the plane compound pendulum with a finite number of N point masses. A Lagrangian approach is taken, and we attempt to find the generalised form for the Euler-Lagrange equations of motion for the i-th bob of the N -bob pendulum. The co-ordinates are parameterized as angular quantities to reduce the number of degrees of freedom from 2N to N to simplify the form of the equations. We analyse the form of these equations up to N = 4 to determine the general form of the equation. We also develop a MATLAB program to compute a solution to the system for a given input value of N and a given set of initial conditions.Keywords: classical mechanics, differential equation, lagrangian analysis, pendulum
Procedia PDF Downloads 2151719 Investigation of Building Pounding during Earthquake and Calculation of Impact Force between Two Adjacent Structures
Authors: H. Naderpour, R. C. Barros, S. M. Khatami
Abstract:
Seismic excitation is naturally caused large horizontal relative displacements, which is able to provide collisions between two adjacent buildings due to insufficient separation distance and severe damages are occurred due to impact especially in tall buildings. In this paper, an impact is numerically simulated and two needed parameters are calculated, including impact force and energy absorption. In order to calculate mentioned parameters, mathematical study needs to model an unreal link element, which is logically assumed to be spring and dashpot to determine lateral displacement and damping ratio of impact. For the determination of dynamic response of impact, a new equation of motion is theoretically suggested to evaluate impact force and energy dissipation. In order to confirm the rendered equation, a series of parametric study are performed and the accuracy of formula is confirmed.Keywords: pounding, impact, dissipated energy, coefficient of restitution
Procedia PDF Downloads 3591718 Scrutiny and Solving Analytically Nonlinear Differential at Engineering Field of Fluids, Heat, Mass and Wave by New Method AGM
Authors: Mohammadreza Akbari, Sara Akbari, Davood Domiri Ganji, Pooya Solimani, Reza Khalili
Abstract:
As all experts know most of engineering system behavior in practical are nonlinear process (especially heat, fluid and mass, etc.) and analytical solving (no numeric) these problems are difficult, complex and sometimes impossible like (fluids and gas wave, these problems can't solve with numeric method, because of no have boundary condition) accordingly in this symposium we are going to exposure a innovative approach which we have named it Akbari-Ganji's Method or AGM in engineering, that can solve sets of coupled nonlinear differential equations (ODE, PDE) with high accuracy and simple solution and so this issue will be emerged after comparing the achieved solutions by Numerical method (Runge-Kutte 4th) and so compare to other methods such as HPM, ADM,… and exact solutions. Eventually, AGM method will be proved that could be created huge evolution for researchers, professors and students (engineering and basic science) in whole over the world, because of AGM coding system, so by using this software we can analytically solve all complicated linear and nonlinear differential equations, with help of that there is no difficulty for solving nonlinear differential equations(ODE and PDE). In this paper, we investigate and solve 4 types of the nonlinear differential equation with AGM method : 1-Heat and fluid, 2-Unsteady state of nonlinear partial differential, 3-Coupled nonlinear partial differential in wave equation, and 4-Nonlinear integro-differential equation.Keywords: new method AGM, sets of coupled nonlinear equations at engineering field, waves equations, integro-differential, fluid and thermal
Procedia PDF Downloads 5511717 An Efficient Backward Semi-Lagrangian Scheme for Nonlinear Advection-Diffusion Equation
Authors: Soyoon Bak, Sunyoung Bu, Philsu Kim
Abstract:
In this paper, a backward semi-Lagrangian scheme combined with the second-order backward difference formula is designed to calculate the numerical solutions of nonlinear advection-diffusion equations. The primary aims of this paper are to remove any iteration process and to get an efficient algorithm with the convergence order of accuracy 2 in time. In order to achieve these objects, we use the second-order central finite difference and the B-spline approximations of degree 2 and 3 in order to approximate the diffusion term and the spatial discretization, respectively. For the temporal discretization, the second order backward difference formula is applied. To calculate the numerical solution of the starting point of the characteristic curves, we use the error correction methodology developed by the authors recently. The proposed algorithm turns out to be completely iteration-free, which resolves the main weakness of the conventional backward semi-Lagrangian method. Also, the adaptability of the proposed method is indicated by numerical simulations for Burgers’ equations. Throughout these numerical simulations, it is shown that the numerical results are in good agreement with the analytic solution and the present scheme offer better accuracy in comparison with other existing numerical schemes. Semi-Lagrangian method, iteration-free method, nonlinear advection-diffusion equation, second-order backward difference formulaKeywords: Semi-Lagrangian method, iteration free method, nonlinear advection-diffusion equation, second-order backward difference formula
Procedia PDF Downloads 3231716 A Nonstandard Finite Difference Method for Weather Derivatives Pricing Model
Authors: Clarinda Vitorino Nhangumbe, Fredericks Ebrahim, Betuel Canhanga
Abstract:
The price of an option weather derivatives can be approximated as a solution of the two-dimensional convection-diffusion dominant partial differential equation derived from the Ornstein-Uhlenbeck process, where one variable represents the weather dynamics and the other variable represent the underlying weather index. With appropriate financial boundary conditions, the solution of the pricing equation is approximated using a nonstandard finite difference method. It is shown that the proposed numerical scheme preserves positivity as well as stability and consistency. In order to illustrate the accuracy of the method, the numerical results are compared with other methods. The model is tested for real weather data.Keywords: nonstandard finite differences, Ornstein-Uhlenbeck process, partial differential equations approach, weather derivatives
Procedia PDF Downloads 1191715 Surface Roughness Effects in Pure Sliding EHL Line Contacts with Carreau-Type Shear-Thinning Lubricants
Authors: Punit Kumar, Niraj Kumar
Abstract:
The influence of transverse surface roughness on EHL characteristics has been investigated numerically using an extensive set of full EHL line contact simulations for shear-thinning lubricants under pure sliding condition. The shear-thinning behavior of lubricant is modeled using Carreau viscosity equation along with Doolittle-Tait equation for lubricant compressibility. The surface roughness is assumed to be sinusoidal and it is present on the stationary surface. It is found that surface roughness causes sharp pressure peaks along with reduction in central and minimum film thickness. With increasing amplitude of surface roughness, the minimum film thickness decreases much more rapidly as compared to the central film thickness.Keywords: EHL, Carreau, shear-thinning, surface roughness, amplitude, wavelength
Procedia PDF Downloads 7341714 A Study on Low Stress Mechanical Properties of Denim Fabric for Hand Evaluation
Authors: S. P. Raut, S. K. Soni, A. W. Kolhatkar
Abstract:
Denim is widely used by every age of people all over the world. As the use of denim is increasing progressively, till now the handle properties of denim fabric not reported at significant level. In the present study, five commercial denim fabric samples were used. Denim samples, weighing from 8.5oz/sq yds to 14.5 oz/sq yds, were processed as per standard commercial procedure for denim finishing. These finished denim samples were tested on Kawabata Evaluation System(KES) for low stress mechanical properties. The results of KES values are used for calculation of Total Hand value(THV) using equation for summer suit. The obtained result for THV using equation for summer suit for denim samples is in the range from 1.62 to 3.30. These values of low stress mechanical properties values given by KES, can be used to engineer the denim fabric for bottom wear.Keywords: denim, handle value, Kawabata evaluation system, objective evaluation
Procedia PDF Downloads 2851713 Antecedents and Loyalty of Foreign Tourists towards Attractions in Bangkok Metropolitan Area, Thailand
Authors: Arunroong Wongkungwan
Abstract:
This study aimed to investigate the influence of selected antecedents, which were tourists’ satisfaction towards attractions in Bangkok, perceived value of the attractions, feelings of engagement with the attractions, acquaintance with the attractions, push factors, pull factors and motivation to seek novelty, on foreign tourist’s loyalty towards tourist attractions in Bangkok. By using multi stage sampling technique, 400 international tourists were sampled. After that, Semi Structural Equation Model was utilized in the analysis stage by LISREL. The Semi Structural Equation Model of the selected antecedents of tourist’s loyalty attractions had a correlation with the empirical data through the following statistical descriptions: Chi- square = 3.43, df = 4, P- value = 0.48893; RMSEA = 0.000; CFI = 1.00; CN = 1539.75; RMR = 0.0022; GFI = 1.00 and AGFI = 0.98. The findings indicated that all antecedents were able together to predict the loyalty of the foreign tourists who visited Bangkok at 73 percent.Keywords: antecedent, Bangkok, foreign tourists, loyalty, tourist attractions
Procedia PDF Downloads 3061712 Nonlinear Internal Waves in Rotating Ocean
Authors: L. A. Ostrovsky, Yu. A. Stepanyants
Abstract:
Effect of Earth rotation on nonlinear waves is a practically important and theoretically challenging problem of fluid mechanics and geophysics. Whereas the large-scale, geostrophic processes such as Rossby waves are a classical object of oceanic and atmospheric physics, rotation effects on mesoscale waves are not well studied. In particular, the Coriolis force can radically modify the behavior of nonlinear internal gravity waves in the ocean having spatial scales of 1-10 kilometers and time durations of few hours. In the last decade, such a non-trivial behavior was observed more than once. Similar effects are possible for magnetic sound in the ionosphere. Here we outline the main physical peculiarities in the behavior of nonlinear internal waves due to the rotation effect and present some results of our recent studies. The consideration is based on the fourth-order equation derived by one of the authors as a rotation-modified Korteweg–de Vries (rKdV) equation which includes two types of dispersion: one is responsible for the finiteness of depth as in the classical KdV equation; another is due to the Coriolis effect. This equation is, in general, non-integrable; moreover, under the conditions typical of oceanic waves (positive dispersion parameter), it does not allow solitary solutions at all. In the opposite case (negative dispersion) which is possible for, e.g., magnetic sound, solitary solutions do exist and can form complex bound states (multisoliton). Another non-trivial properties of nonlinear internal waves with rotation include, to name a few, the ‘terminal’ damping of the initial KdV soliton disappearing in a finite time due to radiation losses caused by Earth’s rotation, and eventual transformation of a KdV soliton into a wave packet (an envelope soliton). The new results to be discussed refer to the interaction of a soliton with a long background wave. It is shown, in particular, that in this case internal solitons can exist since the radiation losses are compensated by energy pumping from the background wave. Finally, the relevant oceanic observations of rotation effect on internal waves are briefly described.Keywords: Earth rotation, internal waves, nonlinear waves, solitons
Procedia PDF Downloads 6811711 Laser Keratoplasty in Human Eye Considering the Fluid Aqueous Humor and Vitreous Humor Fluid Flow
Authors: Dara Singh, Keikhosrow Firouzbakhsh, Mohammad Taghi Ahmadian
Abstract:
In this paper, conventional laser Keratoplasty surgeries in the human eye are studied. For this purpose, a validated 3D finite volume model of the human eye is introduced. In this model the fluid flow has also been considered. The discretized domain of the human eye incorporates a bio-heat transfer equation coupled with a Boussinesq equation. Both continuous and pulsed lasers have been modeled and the results are compared. Moreover, two different conventional surgical positions that are upright and recumbent are compared for these laser therapies. The simulation results show that in these conventional surgeries, the temperature rises above the critical values at the laser insertion areas. However, due to the short duration and the localized nature, the potential damages are restricted to very small regions and can be ignored. The conclusion is that the present day lasers are acceptably safe to the human eye.Keywords: eye, heat-transfer, keratoplasty laser, surgery
Procedia PDF Downloads 2771710 Quintic Spline Method for Variable Coefficient Fourth-Order Parabolic Partial Differential Equations
Authors: Reza Mohammadi, Mahdieh Sahebi
Abstract:
We develop a method based on polynomial quintic spline for numerical solution of fourth-order non-homogeneous parabolic partial differential equation with variable coefficient. By using polynomial quintic spline in off-step points in space and finite difference in time directions, we obtained two three level implicit methods. Stability analysis of the presented method has been carried out. We solve four test problems numerically to validate the proposed derived method. Numerical comparison with other existence methods shows the superiority of our presented scheme.Keywords: fourth-order parabolic equation, variable coefficient, polynomial quintic spline, off-step points, stability analysis
Procedia PDF Downloads 3681709 Factors that Predict Pre-Service Teachers' Decision to Integrate E-Learning: A Structural Equation Modeling (SEM) Approach
Authors: Mohd Khairezan Rahmat
Abstract:
Since the impetus of becoming a develop country by the year 2020, the Malaysian government have been proactive in strengthening the integration of ICT into the national educational system. Teacher-education programs have the responsibility to prepare the nation future teachers by instilling in them the desire, confidence, and ability to fully utilized the potential of ICT into their instruction process. In an effort to fulfill this responsibility, teacher-education program are beginning to create alternatives means for preparing cutting-edge teachers. One of the alternatives is the student’s learning portal. In line with this mission, this study investigates the Faculty of Education, University Teknologi MARA (UiTM) pre-service teachers’ perception of usefulness, attitude, and ability toward the usage of the university learning portal, known as iLearn. The study also aimed to predict factors that might hinder the pre-service teachers’ decision to used iLearn as their platform in learning. The Structural Equation Modeling (SEM), was employed in analyzed the survey data. The suggested findings informed that pre-service teacher’s successful integration of the iLearn was highly influenced by their perception of usefulness of the system. The findings also suggested that the more familiar the pre-service teacher with the iLearn, the more possibility they will use the system. In light of similar study, the present findings hope to highlight the important to understand the user’s perception toward any proposed technology.Keywords: e-learning, prediction factors, pre-service teacher, structural equation modeling (SEM)
Procedia PDF Downloads 3431708 Impact of Marangoni Stress and Mobile Surface Charge on Electrokinetics of Ionic Liquids Over Hydrophobic Surfaces
Authors: Somnath Bhattacharyya
Abstract:
The mobile adsorbed surface charge on hydrophobic surfaces can modify the velocity slip condition as well as create a Marangoni stress at the interface. The functionalized hydrophobic walls of micro/nanopores, e.g., graphene nanochannels, may possess physio-sorbed ions. The lateral mobility of the physisorbed absorbed ions creates a friction force as well as an electric force, leading to a modification in the velocity slip condition at the hydrophobic surface. In addition, the non-uniform distribution of these surface ions creates a surface tension gradient, leading to a Marangoni stress. The impact of the mobile surface charge on streaming potential and electrochemical energy conversion efficiency in a pressure-driven flow of ionized liquid through the nanopore is addressed. Also, enhanced electro-osmotic flow through the hydrophobic nanochannel is also analyzed. The mean-filed electrokinetic model is modified to take into account the short-range non-electrostatic steric interactions and the long-range Coulomb correlations. The steric interaction is modeled by considering the ions as charged hard spheres of finite radius suspended in the electrolyte medium. The electrochemical potential is modified by including the volume exclusion effect, which is modeled based on the BMCSL equation of state. The electrostatic correlation is accounted for in the ionic self-energy. The extremal of the self-energy leads to a fourth-order Poisson equation for the electric field. The ion transport is governed by the modified Nernst-Planck equation, which includes the ion steric interactions; born force arises due to the spatial variation of the dielectric permittivity and the dielectrophoretic force on the hydrated ions. This ion transport equation is coupled with the Navier-Stokes equation describing the flow of the ionized fluid and the 3fourth-order Poisson equation for the electric field. We numerically solve the coupled set of nonlinear governing equations along with the prescribed boundary conditions by adopting a control volume approach over a staggered grid arrangement. In the staggered grid arrangements, velocity components are stored on the midpoint of the cell faces to which they are normal, whereas the remaining scalar variables are stored at the center of each cell. The convection and electromigration terms are discretized at each interface of the control volumes using the total variation diminishing (TVD) approach to capture the strong convection resulting from the highly enhanced fluid flow due to the modified model. In order to link pressure to the continuity equation, we adopt a pressure correction-based iterative SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm, in which the discretized continuity equation is converted to a Poisson equation involving pressure correction terms. Our results show that the physisorbed ions on a hydrophobic surface create an enhanced slip velocity when streaming potential, which enhances the convection current. However, the electroosmotic flow attenuates due to the mobile surface ions.Keywords: microfluidics, electroosmosis, streaming potential, electrostatic correlation, finite sized ions
Procedia PDF Downloads 761707 An Efficient Book Keeping Strategy for the Formation of the Design Matrix in Geodetic Network Adjustment
Authors: O. G. Omogunloye, J. B. Olaleye, O. E. Abiodun, J. O. Odumosu, O. G. Ajayi
Abstract:
The focus of the study is to proffer easy formulation and computation of least square observation equation’s design matrix by using an efficient book keeping strategy. Usually, for a large network of many triangles and stations, a rigorous task is involved in the computation and placement of the values of the differentials of each observation with respect to its station coordinates (latitude and longitude), in their respective rows and columns. The efficient book keeping strategy seeks to eliminate or reduce this rigorous task involved, especially in large network, by simple skillful arrangement and development of a short program written in the Matlab environment, the formulation and computation of least square observation equation’s design matrix can be easily achieved.Keywords: design, differential, geodetic, matrix, network, station
Procedia PDF Downloads 3591706 Fast Short-Term Electrical Load Forecasting under High Meteorological Variability with a Multiple Equation Time Series Approach
Authors: Charline David, Alexandre Blondin Massé, Arnaud Zinflou
Abstract:
In 2016, Clements, Hurn, and Li proposed a multiple equation time series approach for the short-term load forecasting, reporting an average mean absolute percentage error (MAPE) of 1.36% on an 11-years dataset for the Queensland region in Australia. We present an adaptation of their model to the electrical power load consumption for the whole Quebec province in Canada. More precisely, we take into account two additional meteorological variables — cloudiness and wind speed — on top of temperature, as well as the use of multiple meteorological measurements taken at different locations on the territory. We also consider other minor improvements. Our final model shows an average MAPE score of 1:79% over an 8-years dataset.Keywords: short-term load forecasting, special days, time series, multiple equations, parallelization, clustering
Procedia PDF Downloads 1071705 Investigation a New Approach "AGM" to Solve of Complicate Nonlinear Partial Differential Equations at All Engineering Field and Basic Science
Authors: Mohammadreza Akbari, Pooya Soleimani Besheli, Reza Khalili, Davood Domiri Danji
Abstract:
In this conference, our aims are accuracy, capabilities and power at solving of the complicated non-linear partial differential. Our purpose is to enhance the ability to solve the mentioned nonlinear differential equations at basic science and engineering field and similar issues with a simple and innovative approach. As we know most of engineering system behavior in practical are nonlinear process (especially basic science and engineering field, etc.) and analytical solving (no numeric) these problems are difficult, complex, and sometimes impossible like (Fluids and Gas wave, these problems can't solve with numeric method, because of no have boundary condition) accordingly in this symposium we are going to exposure an innovative approach which we have named it Akbari-Ganji's Method or AGM in engineering, that can solve sets of coupled nonlinear differential equations (ODE, PDE) with high accuracy and simple solution and so this issue will emerge after comparing the achieved solutions by Numerical method (Runge-Kutta 4th). Eventually, AGM method will be proved that could be created huge evolution for researchers, professors and students in whole over the world, because of AGM coding system, so by using this software we can analytically solve all complicated linear and nonlinear partial differential equations, with help of that there is no difficulty for solving all nonlinear differential equations. Advantages and ability of this method (AGM) as follow: (a) Non-linear Differential equations (ODE, PDE) are directly solvable by this method. (b) In this method (AGM), most of the time, without any dimensionless procedure, we can solve equation(s) by any boundary or initial condition number. (c) AGM method always is convergent in boundary or initial condition. (d) Parameters of exponential, Trigonometric and Logarithmic of the existent in the non-linear differential equation with AGM method no needs Taylor expand which are caused high solve precision. (e) AGM method is very flexible in the coding system, and can solve easily varieties of the non-linear differential equation at high acceptable accuracy. (f) One of the important advantages of this method is analytical solving with high accuracy such as partial differential equation in vibration in solids, waves in water and gas, with minimum initial and boundary condition capable to solve problem. (g) It is very important to present a general and simple approach for solving most problems of the differential equations with high non-linearity in engineering sciences especially at civil engineering, and compare output with numerical method (Runge-Kutta 4th) and Exact solutions.Keywords: new approach, AGM, sets of coupled nonlinear differential equation, exact solutions, numerical
Procedia PDF Downloads 4671704 Parameter Estimation of False Dynamic EIV Model with Additive Uncertainty
Authors: Dalvinder Kaur Mangal
Abstract:
For the past decade, noise corrupted output measurements have been a fundamental research problem to be investigated. On the other hand, the estimation of the parameters for linear dynamic systems when also the input is affected by noise is recognized as more difficult problem which only recently has received increasing attention. Representations where errors or measurement noises/disturbances are present on both the inputs and outputs are usually called errors-in-variables (EIV) models. These disturbances may also have additive effects which are also considered in this paper. Parameter estimation of false EIV problem using equation error, output error and iterative prefiltering identification schemes with and without additive uncertainty, when only the output observation is corrupted by noise has been dealt in this paper. The comparative study of these three schemes has also been carried out.Keywords: errors-in-variable (EIV), false EIV, equation error, output error, iterative prefiltering, Gaussian noise
Procedia PDF Downloads 5001703 Global Developmental Delay and Its Association with Risk Factors: Validation by Structural Equation Modelling
Authors: Bavneet Kaur Sidhu, Manoj Tiwari
Abstract:
Global Developmental Delay (GDD) is a common pediatric condition. Etiologies of GDD might, however, differ in developing countries. In the last decade, sporadic families are being reported in various countries. As to the author’s best knowledge, many risk factors and their correlation with the prevalence of GDD have been studied but its statistical correlation has not been done. Thus we propose the present study by targeting the risk factor, prevalence and their statistical correlation with GDD. FMR1 gene was studied to confirm the disease and its penetrance. A complete questionnaire-based performance was designed for the statistical studies having a personal, past and present medical history along with their socio-economic status as well. Methods: We distributed the children’s age in 4 different age groups having 5-year intervals and applied structural equation modeling (SEM) techniques, Spearman’s rank correlation coefficient, Karl Pearson correlation coefficient, and chi-square test.Result: A total of 1100 families were enrolled for this study; among them, 330 were clinically and biologically confirmed (radiological studies) for the disease, 204 were males (61.8%), 126 were females (38.18%). We found that 27.87% were genetic and 72.12 were sporadic, out of 72.12 %, 43.277% cases from urban and 56.72% from the rural locality, the mothers' literacy rate was 32.12% and working women numbers were 41.21%. Conclusions: There is a significant association between mothers' age and GDD prevalence, which is also followed by mothers' literacy rate and mothers' occupation, whereas there was no association between fathers' age and GDD.Keywords: global developmental delay, FMR1 gene, spearman’ rank correlation coefficient, structural equation modeling
Procedia PDF Downloads 1381702 Stochastic Variation of the Hubble's Parameter Using Ornstein-Uhlenbeck Process
Authors: Mary Chriselda A
Abstract:
This paper deals with the fact that the Hubble's parameter is not constant and tends to vary stochastically with time. This premise has been proven by converting it to a stochastic differential equation using the Ornstein-Uhlenbeck process. The formulated stochastic differential equation is further solved analytically using the Euler and the Kolmogorov Forward equations, thereby obtaining the probability density function using the Fourier transformation, thereby proving that the Hubble's parameter varies stochastically. This is further corroborated by simulating the observations using Python and R-software for validation of the premise postulated. We can further draw conclusion that the randomness in forces affecting the white noise can eventually affect the Hubble’s Parameter leading to scale invariance and thereby causing stochastic fluctuations in the density and the rate of expansion of the Universe.Keywords: Chapman Kolmogorov forward differential equations, fourier transformation, hubble's parameter, ornstein-uhlenbeck process , stochastic differential equations
Procedia PDF Downloads 2051701 Study of TiO2 Nanoparticles as Lubricant Additive in Two-Axial Groove Journal Bearing
Authors: K. Yathish, K. G. Binu, B. S. Shenoy, D. S. Rao, R. Pai
Abstract:
Load carrying capacity of an oil lubricated two-axial groove journal bearing is simulated by taking into account the viscosity variations in lubricant due to the addition of TiO2 nanoparticles as lubricant additive. Shear viscosities of TiO2 nanoparticle dispersions in oil are measured for various nanoparticle additive concentrations. The viscosity model derived from the experimental viscosities is employed in a modified Reynolds equation to obtain the pressure profiles and load carrying capacity of two-axial groove journal bearing. Results reveal an increase in load carrying capacity of bearings operating on nanoparticle dispersions as compared to plain oilKeywords: journal bearing, TiO2 nanoparticles, viscosity model, Reynold's equation, load carrying capacity
Procedia PDF Downloads 5281700 Modeling the Compound Interest Dynamics Using Fractional Differential Equations
Authors: Muath Awadalla, Maen Awadallah
Abstract:
Banking sector covers different activities including lending money to customers. However, it is commonly known that customers pay money they have borrowed including an added amount called interest. Compound interest rate is an approach used in determining the interest to be paid. The instant compounded amount to be paid by a debtor is obtained through a differential equation whose main parameters are the rate and the time. The rate used by banks in a country is often defined by the government of the said country. In Switzerland, for instance, a negative rate was once applied. In this work, a new approach of modeling the compound interest is proposed using Hadamard fractional derivative. As a result, it appears that depending on the fraction value used in derivative the amount to be paid by a debtor might either be higher or lesser than the amount determined using the classical approach.Keywords: compound interest, fractional differential equation, hadamard fractional derivative, optimization
Procedia PDF Downloads 1311699 Analytical Solutions of Time Space Fractional, Advection-Dispersion and Whitham-Broer-Kaup Equations
Authors: Muhammad Danish Khan, Imran Naeem, Mudassar Imran
Abstract:
In this article, we study time-space Fractional Advection-Dispersion (FADE) equation and time-space Fractional Whitham-Broer-Kaup (FWBK) equation that have a significant role in hydrology. We introduce suitable transformations to convert fractional order derivatives to integer order derivatives and as a result these equations transform into Partial Differential Equations (PDEs). Then the Lie symmetries and corresponding optimal systems of the resulting PDEs are derived. The symmetry reductions and exact independent solutions based on optimal system are investigated which constitute the exact solutions of original fractional differential equations.Keywords: modified Riemann-Liouville fractional derivative, lie-symmetries, optimal system, invariant solutions
Procedia PDF Downloads 4391698 Nonlinear Flow Behavior and Validity of the Cubic Law in a Rough Fracture
Authors: Kunwar Mrityunjai Sharma, Trilok Nath Singh
Abstract:
The Navier-Stokes equation is used to study nonlinear fluid flow in rough 2D fractures. The major goal is to investigate the influence of inertial flow owing to fracture wall roughness on nonlinear flow behavior. Roughness profiles are developed using Barton's Joint Roughness Coefficient (JRC) and used as fracture walls to assess wall roughness. Four JRC profiles (5, 11, 15, and 19) are employed in the study, where a higher number indicates higher roughness. A parametric study has been performed using varying pressure gradients, and the corresponding Forchheimer number is calculated to observe the nonlinear behavior. The results indicate that the fracture roughness has a significant effect on the onset of nonlinearity. Additionally, the validity of the cubic law is evaluated and observed that it overestimates the flow in rough fractures and should be used with utmost care.Keywords: fracture flow, nonlinear flow, cubic law, Navier-stokes equation
Procedia PDF Downloads 1121697 Dynamic Analysis of Offshore 2-HUS/U Parallel Platform
Authors: Xie Kefeng, Zhang He
Abstract:
For the stability and control demand of offshore small floating platform, a 2-HUS/U parallel mechanism was presented as offshore platform. Inverse kinematics was obtained by institutional constraint equation, and the dynamic model of offshore 2-HUS/U parallel platform was derived based on rigid body’s Lagrangian method. The equivalent moment of inertia, damping and driving force/torque variation of offshore 2-HUS/U parallel platform were analyzed. A numerical example shows that, for parallel platform of given motion, system’s equivalent inertia changes 1.25 times maximally. During the movement of platform, they change dramatically with the system configuration and have coupling characteristics. The maximum equivalent drive torque is 800 N. At the same time, the curve of platform’s driving force/torque is smooth and has good sine features. The control system needs to be adjusted according to kinetic equation during stability and control and it provides a basis for the optimization of control system.Keywords: 2-HUS/U platform, dynamics, Lagrange, parallel platform
Procedia PDF Downloads 3501696 Influence of the Non-Uniform Distribution of Filler Porosity on the Thermal Performance of Sensible Heat Thermocline Storage Tanks
Authors: Yuchao Hua, Lingai Luo
Abstract:
Thermal energy storage is of critical importance for the highly-efficient utilization of renewable energy sources. Over the past decades, single-tank thermocline technology has attracted much attention owing to its high cost-effectiveness. In the present work, we investigate the influence of the filler porosity’s non-uniform distribution on the thermal performance of the packed-bed sensible heat thermocline storage tanks on the basis of the analytical model obtained by the Laplace transform. It is found that when the total amount of filler materials (i.e., the integration of porosity) is fixed, the different porosity distributions can result in the significantly-different behaviors of outlet temperature and thus the varied charging and discharging efficiencies. Our results indicate that a non-uniform distribution of the fillers with the proper design can improve the heat storage performance without changing the total amount of the filling materials.Keywords: energy storage, heat thermocline storage tank, packed bed, transient thermal analysis
Procedia PDF Downloads 971695 A Robust Digital Image Watermarking Against Geometrical Attack Based on Hybrid Scheme
Authors: M. Samadzadeh Mahabadi, J. Shanbehzadeh
Abstract:
This paper presents a hybrid digital image-watermarking scheme, which is robust against varieties of attacks and geometric distortions. The image content is represented by important feature points obtained by an image-texture-based adaptive Harris corner detector. These feature points are extracted from LL2 of 2-D discrete wavelet transform which are obtained by using the Harris-Laplacian detector. We calculate the Fourier transform of circular regions around these points. The amplitude of this transform is rotation invariant. The experimental results demonstrate the robustness of the proposed method against the geometric distortions and various common image processing operations such as JPEG compression, colour reduction, Gaussian filtering, median filtering, and rotation.Keywords: digital watermarking, geometric distortions, geometrical attack, Harris Laplace, important feature points, rotation, scale invariant feature
Procedia PDF Downloads 5051694 Method to Find a ε-Optimal Control of Stochastic Differential Equation Driven by a Brownian Motion
Authors: Francys Souza, Alberto Ohashi, Dorival Leao
Abstract:
We present a general solution for finding the ε-optimal controls for non-Markovian stochastic systems as stochastic differential equations driven by Brownian motion, which is a problem recognized as a difficult solution. The contribution appears in the development of mathematical tools to deal with modeling and control of non-Markovian systems, whose applicability in different areas is well known. The methodology used consists to discretize the problem through a random discretization. In this way, we transform an infinite dimensional problem in a finite dimensional, thereafter we use measurable selection arguments, to find a control on an explicit form for the discretized problem. Then, we prove the control found for the discretized problem is a ε-optimal control for the original problem. Our theory provides a concrete description of a rather general class, among the principals, we can highlight financial problems such as portfolio control, hedging, super-hedging, pairs-trading and others. Therefore, our main contribution is the development of a tool to explicitly the ε-optimal control for non-Markovian stochastic systems. The pathwise analysis was made through a random discretization jointly with measurable selection arguments, has provided us with a structure to transform an infinite dimensional problem into a finite dimensional. The theory is applied to stochastic control problems based on path-dependent stochastic differential equations, where both drift and diffusion components are controlled. We are able to explicitly show optimal control with our method.Keywords: dynamic programming equation, optimal control, stochastic control, stochastic differential equation
Procedia PDF Downloads 1931693 Prediction of Pounding between Two SDOF Systems by Using Link Element Based On Mathematic Relations and Suggestion of New Equation for Impact Damping Ratio
Authors: Seyed M. Khatami, H. Naderpour, R. Vahdani, R. C. Barros
Abstract:
Many previous studies have been carried out to calculate the impact force and the dissipated energy between two neighboring buildings during seismic excitation, when they collide with each other. Numerical studies are an important part of impact, which several researchers have tried to simulate the impact by using different formulas. Estimation of the impact force and the dissipated energy depends significantly on some parameters of impact. Mass of bodies, stiffness of spring, coefficient of restitution, damping ratio of dashpot and impact velocity are some known and unknown parameters to simulate the impact and measure dissipated energy during collision. Collision is usually shown by force-displacement hysteresis curve. The enclosed area of the hysteresis loop explains the dissipated energy during impact. In this paper, the effect of using different types of impact models is investigated in order to calculate the impact force. To increase the accuracy of impact model and to optimize the results of simulations, a new damping equation is assumed and is validated to get the best results of impact force and dissipated energy, which can show the accuracy of suggested equation of motion in comparison with other formulas. This relation is called "n-m". Based on mathematical relation, an initial value is selected for the mentioned coefficients and kinetic energy loss is calculated. After each simulation, kinetic energy loss and energy dissipation are compared with each other. If they are equal, selected parameters are true and, if not, the constant of parameters are modified and a new analysis is performed. Finally, two unknown parameters are suggested to estimate the impact force and calculate the dissipated energy.Keywords: impact force, dissipated energy, kinetic energy loss, damping relation
Procedia PDF Downloads 5551692 A Parallel Poromechanics Finite Element Method (FEM) Model for Reservoir Analyses
Authors: Henrique C. C. Andrade, Ana Beatriz C. G. Silva, Fernando Luiz B. Ribeiro, Samir Maghous, Jose Claudio F. Telles, Eduardo M. R. Fairbairn
Abstract:
The present paper aims at developing a parallel computational model for numerical simulation of poromechanics analyses of heterogeneous reservoirs. In the context of macroscopic poroelastoplasticity, the hydromechanical coupling between the skeleton deformation and the fluid pressure is addressed by means of two constitutive equations. The first state equation relates the stress to skeleton strain and pore pressure, while the second state equation relates the Lagrangian porosity change to skeleton volume strain and pore pressure. A specific algorithm for local plastic integration using a tangent operator is devised. A modified Cam-clay type yield surface with associated plastic flow rule is adopted to account for both contractive and dilative behavior.Keywords: finite element method, poromechanics, poroplasticity, reservoir analysis
Procedia PDF Downloads 3941691 A Three Elements Vector Valued Structure’s Ultimate Strength-Strong Motion-Intensity Measure
Authors: A. Nicknam, N. Eftekhari, A. Mazarei, M. Ganjvar
Abstract:
This article presents an alternative collapse capacity intensity measure in the three elements form which is influenced by the spectral ordinates at periods longer than that of the first mode period at near and far source sites. A parameter, denoted by β, is defined by which the spectral ordinate effects, up to the effective period (2T_1), on the intensity measure are taken into account. The methodology permits to meet the hazard-levelled target extreme event in the probabilistic and deterministic forms. A MATLAB code is developed involving OpenSees to calculate the collapse capacities of the 8 archetype RC structures having 2 to 20 stories for regression process. The incremental dynamic analysis (IDA) method is used to calculate the structure’s collapse values accounting for the element stiffness and strength deterioration. The general near field set presented by FEMA is used in a series of performing nonlinear analyses. 8 linear relationships are developed for the 8structutres leading to the correlation coefficient up to 0.93. A collapse capacity near field prediction equation is developed taking into account the results of regression processes obtained from the 8 structures. The proposed prediction equation is validated against a set of actual near field records leading to a good agreement. Implementation of the proposed equation to the four archetype RC structures demonstrated different collapse capacities at near field site compared to those of FEMA. The reasons of differences are believed to be due to accounting for the spectral shape effects.Keywords: collapse capacity, fragility analysis, spectral shape effects, IDA method
Procedia PDF Downloads 241