Search results for: simulation modelling
3054 Modeling Methodologies for Optimization and Decision Support on Coastal Transport Information System (Co.Tr.I.S.)
Authors: Vassilios Moussas, Dimos N. Pantazis, Panagioths Stratakis
Abstract:
The aim of this paper is to present the optimization methodology developed in the frame of a Coastal Transport Information System. The system will be used for the effective design of coastal transportation lines and incorporates subsystems that implement models, tools and techniques that may support the design of improved networks. The role of the optimization and decision subsystem is to provide the user with better and optimal scenarios that will best fulfill any constrains, goals or requirements posed. The complexity of the problem and the large number of parameters and objectives involved led to the adoption of an evolutionary method (Genetic Algorithms). The problem model and the subsystem structure are presented in detail, and, its support for simulation is also discussed.Keywords: coastal transport, modeling, optimization
Procedia PDF Downloads 4983053 Computational and Experimental Determination of Acoustic Impedance of Internal Combustion Engine Exhaust
Authors: A. O. Glazkov, A. S. Krylova, G. G. Nadareishvili, A. S. Terenchenko, S. I. Yudin
Abstract:
The topic of the presented materials concerns the design of the exhaust system for a certain internal combustion engine. The exhaust system can be divided into two parts. The first is the engine exhaust manifold, turbocharger, and catalytic converters, which are called “hot part.” The second part is the gas exhaust system, which contains elements exclusively for reducing exhaust noise (mufflers, resonators), the accepted designation of which is the "cold part." The design of the exhaust system from the point of view of acoustics, that is, reducing the exhaust noise to a predetermined level, consists of working on the second part. Modern computer technology and software make it possible to design "cold part" with high accuracy in a given frequency range but with the condition of accurately specifying the input parameters, namely, the amplitude spectrum of the input noise and the acoustic impedance of the noise source in the form of an engine with a "hot part". Getting this data is a difficult problem: high temperatures, high exhaust gas velocities (turbulent flows), and high sound pressure levels (non-linearity mode) do not allow the calculated results to be applied with sufficient accuracy. The aim of this work is to obtain the most reliable acoustic output parameters of an engine with a "hot part" based on a complex of computational and experimental studies. The presented methodology includes several parts. The first part is a finite element simulation of the "cold part" of the exhaust system (taking into account the acoustic impedance of radiation of outlet pipe into open space) with the result in the form of the input impedance of "cold part". The second part is a finite element simulation of the "hot part" of the exhaust system (taking into account acoustic characteristics of catalytic units and geometry of turbocharger) with the result in the form of the input impedance of the "hot part". The next third part of the technique consists of the mathematical processing of the results according to the proposed formula for the convergence of the mathematical series of summation of multiple reflections of the acoustic signal "cold part" - "hot part". This is followed by conducting a set of tests on an engine stand with two high-temperature pressure sensors measuring pulsations in the nozzle between "hot part" and "cold part" of the exhaust system and subsequent processing of test results according to a well-known technique in order to separate the "incident" and "reflected" waves. The final stage consists of the mathematical processing of all calculated and experimental data to obtain a result in the form of a spectrum of the amplitude of the engine noise and its acoustic impedance.Keywords: acoustic impedance, engine exhaust system, FEM model, test stand
Procedia PDF Downloads 573052 Sensor Validation Using Bottleneck Neural Network and Variable Reconstruction
Authors: Somia Bouzid, Messaoud Ramdani
Abstract:
The success of any diagnosis strategy critically depends on the sensors measuring process variables. This paper presents a detection and diagnosis sensor faults method based on a Bottleneck Neural Network (BNN). The BNN approach is used as a statistical process control tool for drinking water distribution (DWD) systems to detect and isolate the sensor faults. Variable reconstruction approach is very useful for sensor fault isolation, this method is validated in simulation on a nonlinear system: actual drinking water distribution system. Several results are presented.Keywords: fault detection, localization, PCA, NLPCA, auto-associative neural network
Procedia PDF Downloads 3873051 Simulink Library for Reference Current Generation in Active DC Traction Substations
Authors: Mihaela Popescu, Alexandru Bitoleanu
Abstract:
This paper is focused on the reference current calculation in the compensation mode of the active DC traction substations. The so-called p-q theory of the instantaneous reactive power is used as theoretical foundation. The compensation goal of total compensation is taken into consideration for the operation under both sinusoidal and nonsinusoidal voltage conditions, through the two objectives of unity power factor and perfect harmonic cancelation. Four blocks of reference current generation implement the conceived algorithms and they are included in a specific Simulink library, which is useful in a DSP dSPACE-based platform working under Matlab/Simulink. The simulation results validate the correctness of the implementation and fulfillment of the compensation tasks.Keywords: active power filter, DC traction, p-q theory, Simulink library
Procedia PDF Downloads 6703050 Implementation and Validation of a Damage-Friction Constitutive Model for Concrete
Authors: L. Madouni, M. Ould Ouali, N. E. Hannachi
Abstract:
Two constitutive models for concrete are available in ABAQUS/Explicit, the Brittle Cracking Model and the Concrete Damaged Plasticity Model, and their suitability and limitations are well known. The aim of the present paper is to implement a damage-friction concrete constitutive model and to evaluate the performance of this model by comparing the predicted response with experimental data. The constitutive formulation of this material model is reviewed. In order to have consistent results, the parameter identification and calibration for the model have been performed. Several numerical simulations are presented in this paper, whose results allow for validating the capability of the proposed model for reproducing the typical nonlinear performances of concrete structures under different monotonic and cyclic load conditions. The results of the evaluation will be used for recommendations concerning the application and further improvements of the investigated model.Keywords: Abaqus, concrete, constitutive model, numerical simulation
Procedia PDF Downloads 3623049 Monte Carlo Methods and Statistical Inference of Multitype Branching Processes
Authors: Ana Staneva, Vessela Stoimenova
Abstract:
A parametric estimation of the MBP with Power Series offspring distribution family is considered in this paper. The MLE for the parameters is obtained in the case when the observable data are incomplete and consist only with the generation sizes of the family tree of MBP. The parameter estimation is calculated by using the Monte Carlo EM algorithm. The estimation for the posterior distribution and for the offspring distribution parameters are calculated by using the Bayesian approach and the Gibbs sampler. The article proposes various examples with bivariate branching processes together with computational results, simulation and an implementation using R.Keywords: Bayesian, branching processes, EM algorithm, Gibbs sampler, Monte Carlo methods, statistical estimation
Procedia PDF Downloads 4163048 Bayesian Analysis of Change Point Problems Using Conditionally Specified Priors
Authors: Golnaz Shahtahmassebi, Jose Maria Sarabia
Abstract:
In this talk, we introduce a new class of conjugate prior distributions obtained from conditional specification methodology. We illustrate the application of such distribution in Bayesian change point detection in Poisson processes. We obtain the posterior distribution of model parameters using a general bivariate distribution with gamma conditionals. Simulation from the posterior is readily implemented using a Gibbs sampling algorithm. The Gibbs sampling is implemented even when using conditional densities that are incompatible or only compatible with an improper joint density. The application of such methods will be demonstrated using examples of simulated and real data.Keywords: change point, bayesian inference, Gibbs sampler, conditional specification, gamma conditional distributions
Procedia PDF Downloads 1883047 Adaptive Motion Planning for 6-DOF Robots Based on Trigonometric Functions
Authors: Jincan Li, Mingyu Gao, Zhiwei He, Yuxiang Yang, Zhongfei Yu, Yuanyuan Liu
Abstract:
Building an appropriate motion model is crucial for trajectory planning of robots and determines the operational quality directly. An adaptive acceleration and deceleration motion planning based on trigonometric functions for the end-effector of 6-DOF robots in Cartesian coordinate system is proposed in this paper. This method not only achieves the smooth translation motion and rotation motion by constructing a continuous jerk model, but also automatically adjusts the parameters of trigonometric functions according to the variable inputs and the kinematic constraints. The results of computer simulation show that this method is correct and effective to achieve the adaptive motion planning for linear trajectories.Keywords: kinematic constraints, motion planning, trigonometric function, 6-DOF robots
Procedia PDF Downloads 2703046 Research on Modern Semiconductor Converters and the Usage of SiC Devices in the Technology Centre of Ostrava
Authors: P. Vaculík, P. Kaňovský
Abstract:
The following article presents Technology Centre of Ostrava (TCO) in the Czech Republic. Describes the structure and main research areas realized by the project ENET-Energy Units for Utilization of non-traditional Energy Sources. More details are presented from the research program dealing with transformation, accumulation, and distribution of electric energy. Technology Centre has its own energy mix consisting of alternative sources of fuel sources that use of process gases from the storage part and also the energy from distribution network. The article will focus on the properties and application possibilities SiC semiconductor devices for power semiconductor converter for photo-voltaic systems.Keywords: SiC, Si, technology centre of Ostrava, photovoltaic systems, DC/DC Converter, simulation
Procedia PDF Downloads 6083045 Method of Estimating Absolute Entropy of Municipal Solid Waste
Authors: Francis Chinweuba Eboh, Peter Ahlström, Tobias Richards
Abstract:
Entropy, as an outcome of the second law of thermodynamics, measures the level of irreversibility associated with any process. The identification and reduction of irreversibility in the energy conversion process helps to improve the efficiency of the system. The entropy of pure substances known as absolute entropy is determined at an absolute reference point and is useful in the thermodynamic analysis of chemical reactions; however, municipal solid waste (MSW) is a structurally complicated material with unknown absolute entropy. In this work, an empirical model to calculate the absolute entropy of MSW based on the content of carbon, hydrogen, oxygen, nitrogen, sulphur, and chlorine on a dry ash free basis (daf) is presented. The proposed model was derived from 117 relevant organic substances which represent the main constituents in MSW with known standard entropies using statistical analysis. The substances were divided into different waste fractions; namely, food, wood/paper, textiles/rubber and plastics waste and the standard entropies of each waste fraction and for the complete mixture were calculated. The correlation of the standard entropy of the complete waste mixture derived was found to be somsw= 0.0101C + 0.0630H + 0.0106O + 0.0108N + 0.0155S + 0.0084Cl (kJ.K-1.kg) and the present correlation can be used for estimating the absolute entropy of MSW by using the elemental compositions of the fuel within the range of 10.3% ≤ C ≤ 95.1%, 0.0% ≤ H ≤ 14.3%, 0.0% ≤ O ≤ 71.1%, 0.0 ≤ N ≤ 66.7%, 0.0% ≤ S ≤ 42.1%, 0.0% ≤ Cl ≤ 89.7%. The model is also applicable for the efficient modelling of a combustion system in a waste-to-energy plant.Keywords: absolute entropy, irreversibility, municipal solid waste, waste-to-energy
Procedia PDF Downloads 3073044 Sampling Effects on Secondary Voltage Control of Microgrids Based on Network of Multiagent
Authors: M. J. Park, S. H. Lee, C. H. Lee, O. M. Kwon
Abstract:
This paper studies a secondary voltage control framework of the microgrids based on the consensus for a communication network of multiagent. The proposed control is designed by the communication network with one-way links. The communication network is modeled by a directed graph. At this time, the concept of sampling is considered as the communication constraint among each distributed generator in the microgrids. To analyze the sampling effects on the secondary voltage control of the microgrids, by using Lyapunov theory and some mathematical techniques, the sufficient condition for such problem will be established regarding linear matrix inequality (LMI). Finally, some simulation results are given to illustrate the necessity of the consideration of the sampling effects on the secondary voltage control of the microgrids.Keywords: microgrids, secondary control, multiagent, sampling, LMI
Procedia PDF Downloads 3313043 Early Phase Design Study of a Sliding Door with Multibody Simulations
Authors: Erkan Talay, Mustafa Yigit Yagci
Abstract:
For the systems like sliding door, designers should predict not only strength but also dynamic behavior of the system and this prediction usually becomes more critical if design has radical changes refer to previous designs. Also, sometimes physical tests could cost more than expected, especially for rail geometry changes, since this geometry affects design of the body. The aim of the study is to observe and understand the dynamics of the sliding door in virtual environment. For this, multibody dynamic model of the sliding door was built and then affects of various parameters like rail geometry, roller diameters, or center of mass detected. Also, a design of experiment study was performed to observe interactions of these parameters.Keywords: design of experiment, minimum closing effort, multibody simulation, sliding door
Procedia PDF Downloads 1363042 Targeting and Developing the Remaining Pay in an Ageing Field: The Ovhor Field Experience
Authors: Christian Ihwiwhu, Nnamdi Obioha, Udeme John, Edward Bobade, Oghenerunor Bekibele, Adedeji Awujoola, Ibi-Ada Itotoi
Abstract:
Understanding the complexity in the distribution of hydrocarbon in a simple structure with flow baffles and connectivity issues is critical in targeting and developing the remaining pay in a mature asset. Subtle facies changes (heterogeneity) can have a drastic impact on reservoir fluids movement, and this can be crucial to identifying sweet spots in mature fields. This study aims to evaluate selected reservoirs in Ovhor Field, Niger Delta, Nigeria, with the objective of optimising production from the field by targeting undeveloped oil reserves, bypassed pay, and gaining an improved understanding of the selected reservoirs to increase the company’s reservoir limits. The task at the Ovhor field is complicated by poor stratigraphic seismic resolution over the field. 3-D geological (sedimentology and stratigraphy) interpretation, use of results from quantitative interpretation, and proper understanding of production data have been used in recognizing flow baffles and undeveloped compartments in the field. The full field 3-D model has been constructed in such a way as to capture heterogeneities and the various compartments in the field to aid the proper simulation of fluid flow in the field for future production prediction, proper history matching and design of good trajectories to adequately target undeveloped oil in the field. Reservoir property models (porosity, permeability, and net-to-gross) have been constructed by biasing log interpreted properties to a defined environment of deposition model whose interpretation captures the heterogeneities expected in the studied reservoirs. At least, two scenarios have been modelled for most of the studied reservoirs to capture the range of uncertainties we are dealing with. The total original oil in-place volume for the four reservoirs studied is 157 MMstb. The cumulative oil and gas production from the selected reservoirs are 67.64 MMstb and 9.76 Bscf respectively, with current production rate of about 7035 bopd and 4.38 MMscf/d (as at 31/08/2019). Dynamic simulation and production forecast on the 4 reservoirs gave an undeveloped reserve of about 3.82 MMstb from two (2) identified oil restoration activities. These activities include side-tracking and re-perforation of existing wells. This integrated approach led to the identification of bypassed oil in some areas of the selected reservoirs and an improved understanding of the studied reservoirs. New wells have/are being drilled now to test the results of our studies, and the results are very confirmatory and satisfying.Keywords: facies, flow baffle, bypassed pay, heterogeneities, history matching, reservoir limit
Procedia PDF Downloads 1273041 A Comparative Analysis of a Custom Optimization Experiment with Confidence Intervals in Anylogic and Optquest
Authors: Felipe Haro, Soheila Antar
Abstract:
This paper introduces a custom optimization experiment developed in AnyLogic, based on genetic algorithms, designed to ensure reliable optimization results by incorporating Montecarlo simulations and achieving a specified confidence level. To validate the custom experiment, we compared its performance with AnyLogic's built-in OptQuest optimization method across three distinct problems. Statistical analyses, including Welch's t-test, were conducted to assess the differences in performance. The results demonstrate that while the custom experiment shows advantages in certain scenarios, both methods perform comparably in others, confirming the custom approach as a reliable and effective tool for optimization under uncertainty.Keywords: optimization, confidence intervals, Montecarlo simulation, optQuest, AnyLogic
Procedia PDF Downloads 163040 A Hyperexponential Approximation to Finite-Time and Infinite-Time Ruin Probabilities of Compound Poisson Processes
Authors: Amir T. Payandeh Najafabadi
Abstract:
This article considers the problem of evaluating infinite-time (or finite-time) ruin probability under a given compound Poisson surplus process by approximating the claim size distribution by a finite mixture exponential, say Hyperexponential, distribution. It restates the infinite-time (or finite-time) ruin probability as a solvable ordinary differential equation (or a partial differential equation). Application of our findings has been given through a simulation study.Keywords: ruin probability, compound poisson processes, mixture exponential (hyperexponential) distribution, heavy-tailed distributions
Procedia PDF Downloads 3403039 CDM-Based Controller Design for High-Frequency Induction Heating System with LLC Tank
Authors: M. Helaimi, R. Taleb, D. Benyoucef, B. Belmadani
Abstract:
This paper presents the design of a polynomial controller with coefficient diagram method (CDM). This controller is used to control the output power of high frequency resonant inverter with LLC tank. One of the most important problems associated with the proposed inverter is achieving ZVS operating during the induction heating process. To overcome this problem, asymmetrical voltage cancellation (AVC) control technique is proposed. The phased look loop (PLL) is used to track the natural frequency of the system. The small signal model of the system with the proposed control is obtained using extending describing function method (EDM). The validity of the proposed control is verified by simulation results.Keywords: induction heating, AVC control, CDM, PLL, resonant inverter
Procedia PDF Downloads 6623038 Nitrogen Effects on Ignition Delay Time in Supersonic Premixed and Diffusion Flames
Authors: A. M. Tahsini
Abstract:
Computational study of two dimensional supersonic reacting hydrogen-air flows is performed to investigate the nitrogen effects on ignition delay time for premixed and diffusion flames. Chemical reaction is treated using detail kinetics and the advection upstream splitting method is used to calculate the numerical inviscid fluxes. The results show that only in the stoichiometric condition for both premixed and diffusion flames, there is monotone dependency of the ignition delay time to the nitrogen addition. In other situations, the optimal condition from ignition viewpoint should be found using numerical investigations.Keywords: diffusion flame, ignition delay time, mixing layer, numerical simulation, premixed flame, supersonic flow
Procedia PDF Downloads 4613037 Geodesign Application for Bio-Swale Design: A Data-Driven Design Approach for a Case Site in Ottawa Street North in Hamilton, Ontario, Canada
Authors: Adele Pierre, Nadia Amoroso
Abstract:
Changing climate patterns are resulting in increased in storm severity, challenging traditional methods of managing stormwater runoff. This research compares a system of bioswales to existing curb and gutter infrastructure in a post-industrial streetscape of Hamilton, Ontario. Using the geodesign process, including rule-based set parameters and an integrated approach combining geospatial information with stakeholder input, a section of Ottawa St. North was modelled to show how green infrastructure can ease the burden on aging, combined sewer systems. Qualitative data was gathered from residents of the neighbourhood through field notes, and quantitative geospatial data through GIS and site analysis. Parametric modelling was used to generate multiple design scenarios, each visualizing resulting impacts on stormwater runoff along with their calculations. The selected design scenarios offered both an aesthetically pleasing urban bioswale street-scape system while minimizing and controlling stormwater runoff. Interactive maps, videos and the 3D model were presented for stakeholder comment via ESRI’s (Environmental System Research Institute) web-scene. The results of the study demonstrate powerful tools that can assist landscape architects in designing, collaborating and communicating stormwater strategies.Keywords: bioswale, geodesign, data-driven and rule-based design, geodesign, GIS, stormwater management
Procedia PDF Downloads 1803036 Reliability Based Topology Optimization: An Efficient Method for Material Uncertainty
Authors: Mehdi Jalalpour, Mazdak Tootkaboni
Abstract:
We present a computationally efficient method for reliability-based topology optimization under material properties uncertainty, which is assumed to be lognormally distributed and correlated within the domain. Computational efficiency is achieved through estimating the response statistics with stochastic perturbation of second order, using these statistics to fit an appropriate distribution that follows the empirical distribution of the response, and employing an efficient gradient-based optimizer. The proposed algorithm is utilized for design of new structures and the changes in the optimized topology is discussed for various levels of target reliability and correlation strength. Predictions were verified thorough comparison with results obtained using Monte Carlo simulation.Keywords: material uncertainty, stochastic perturbation, structural reliability, topology optimization
Procedia PDF Downloads 6043035 Unconfined Laminar Nanofluid Flow and Heat Transfer around a Square Cylinder with an Angle of Incidence
Authors: Rafik Bouakkaz
Abstract:
A finite-volume method simulation is used to investigate two dimensional unsteady flow of nanofluids and heat transfer characteristics past a square cylinder inclined with respect to the main flow in the laminar regime. The computations are carried out of nanoparticle volume fractions varying from 0 ≤ ∅ ≤ 5% for an inclination angle in the range 0° ≤ δ ≤ 45° at a Reynolds number of 100. The variation of stream line and isotherm patterns are presented for the above range of conditions. Also, it is noticed that the addition of nanoparticles enhances the heat transfer. Hence, the local Nusselt number is found to increase with increasing value of the concentration of nanoparticles for the fixed value of the inclination angle.Keywords: copper nanoparticles, heat transfer, square cylinder, inclination angle
Procedia PDF Downloads 1903034 Effect on the Integrity of the DN300 Pipe and Valves in the Cooling Water System Imposed by the Pipes and Ventilation Pipes above in an Earthquake Situation
Authors: Liang Zhang, Gang Xu, Yue Wang, Chen Li, Shao Chong Zhou
Abstract:
Presently, more and more nuclear power plants are facing the issue of life extension. When a nuclear power plant applies for an extension of life, its condition needs to meet the current design standards, which is not fine for all old reactors, typically for seismic design. Seismic-grade equipment in nuclear power plants are now generally placed separately from the non-seismic-grade equipment, but it was not strictly required before. Therefore, it is very important to study whether non-seismic-grade equipment will affect the seismic-grade equipment when dropped down in an earthquake situation, which is related to the safety of nuclear power plants and future life extension applications. This research was based on the cooling water system with the seismic and non-seismic grade equipment installed together, as an example to study whether the non-seismic-grade equipment such as DN50 fire pipes and ventilation pipes arranged above will damage the DN300 pipes and valves arranged below when earthquakes occur. In the study, the simulation was carried out by ANSYS / LY-DYNA, and Johnson-Cook was used as the material model and failure model. For the experiments, the relative positions of objects in the room were restored by 1: 1. In the experiment, the pipes and valves were filled with water with a pressure of 0.785 MPa. The pressure-holding performance of the pipe was used as a criterion for damage. In addition to the pressure-holding performance, the opening torque was considered as well for the valves. The research results show that when the 10-meter-long DN50 pipe was dropped from the position of 8 meters height and the 8-meter-long air pipe dropped from a position of 3.6 meters height, they do not affect the integrity of DN300 pipe below. There is no failure phenomenon in the simulation as well. After the experiment, the pressure drop in two hours for the pipe is less than 0.1%. The main body of the valve does not fail either. The opening torque change after the experiment is less than 0.5%, but the handwheel of the valve may break, which affects the opening actions. In summary, impacts of the upper pipes and ventilation pipes dropdown on the integrity of the DN300 pipes and valves below in a cooling water system of a typical second-generation nuclear power plant under an earthquake was studied. As a result, the functionality of the DN300 pipeline and the valves themselves are not significantly affected, but the handwheel of the valve or similar articles can probably be broken and need to take care.Keywords: cooling water system, earthquake, integrity, pipe and valve
Procedia PDF Downloads 1113033 Application of Large Eddy Simulation-Immersed Boundary Volume Penalization Method for Heat and Mass Transfer in Granular Layers
Authors: Artur Tyliszczak, Ewa Szymanek, Maciej Marek
Abstract:
Flow through granular materials is important to a vast array of industries, for instance in construction industry where granular layers are used for bulkheads and isolators, in chemical engineering and catalytic reactors where large surfaces of packed granular beds intensify chemical reactions, or in energy production systems, where granulates are promising materials for heat storage and heat transfer media. Despite the common usage of granulates and extensive research performed in this field, phenomena occurring between granular solid elements or between solids and fluid are still not fully understood. In the present work we analyze the heat exchange process between the flowing medium (gas, liquid) and solid material inside the granular layers. We consider them as a composite of isolated solid elements and inter-granular spaces in which a gas or liquid can flow. The structure of the layer is controlled by shapes of particular granular elements (e.g., spheres, cylinders, cubes, Raschig rings), its spatial distribution or effective characteristic dimension (total volume or surface area). We will analyze to what extent alteration of these parameters influences on flow characteristics (turbulent intensity, mixing efficiency, heat transfer) inside the layer and behind it. Analysis of flow inside granular layers is very complicated because the use of classical experimental techniques (LDA, PIV, fibber probes) inside the layers is practically impossible, whereas the use of probes (e.g. thermocouples, Pitot tubes) requires drilling of holes inside the solid material. Hence, measurements of the flow inside granular layers are usually performed using for instance advanced X-ray tomography. In this respect, theoretical or numerical analyses of flow inside granulates seem crucial. Application of discrete element methods in combination with the classical finite volume/finite difference approaches is problematic as a mesh generation process for complex granular material can be very arduous. A good alternative for simulation of flow in complex domains is an immersed boundary-volume penalization (IB-VP) in which the computational meshes have simple Cartesian structure and impact of solid objects on the fluid is mimicked by source terms added to the Navier-Stokes and energy equations. The present paper focuses on application of the IB-VP method combined with large eddy simulation (LES). The flow solver used in this work is a high-order code (SAILOR), which was used previously in various studies, including laminar/turbulent transition in free flows and also for flows in wavy channels, wavy pipes and over various shape obstacles. In these cases a formal order of approximation turned out to be in between 1 and 2, depending on the test case. The current research concentrates on analyses of the flows in dense granular layers with elements distributed in a deterministic regular manner and validation of the results obtained using LES-IB method and body-fitted approach. The comparisons are very promising and show very good agreement. It is found that the size, number of elements and their distribution have huge impact on the obtained results. Ordering of the granular elements (or lack of it) affects both the pressure drop and efficiency of the heat transfer as it significantly changes mixing process.Keywords: granular layers, heat transfer, immersed boundary method, numerical simulations
Procedia PDF Downloads 1353032 Backstepping Sliding Mode Control
Authors: Othmane Boughazi, Abdelmadjid Boumedienne, Hachemi Glaoui
Abstract:
This work treats the modeling and simulation of non-linear system behavior of an induction motor using backstepping sliding mode control. First, the direct field oriented control IM is derived. Then, a sliding for direct field oriented control is proposed to compensate the uncertainties, which occur in the control.Finally, the study of Backstepping sliding controls strategy of the induction motor drive. Our non linear system is simulated in MATLAB SIMULINK environment, the results obtained illustrate the efficiency of the proposed control with no overshoot, and the rising time is improved with good disturbances rejections comparing with the classical control law.Keywords: induction motor, proportional-integral, sliding mode control, backstepping sliding mode control
Procedia PDF Downloads 4843031 Numerical Analysis of Liquid Metal Magnetohydrodynamic Flows in a Manifold with Three Sub-Channels
Authors: Meimei Wen, Chang Nyung Kim
Abstract:
In the current study, three-dimensional liquid metal (LM) magneto-hydrodynamic (MHD) flows in a manifold with three sub-channels under a uniform magnetic field are numerically investigated. In the manifold, the electrical current can cross channel walls, thus having influence on the flow distribution in each sub-channel. A case with various arrangements of electric conductivity for different parts of channel walls is considered, yielding different current distributions as well as flow distributions in each sub-channel. Here, the imbalance of mass flow rates in the three sub-channels is addressed. Meanwhile, predicted are detailed behaviors of the flow velocity, pressure, current and electric potential of LM MHD flows with three sub-channels. Commercial software CFX is used for the numerical simulation of LM MHD flows.Keywords: CFX, liquid metal, manifold, MHD flow
Procedia PDF Downloads 3423030 Enhancing Cybersecurity Protective Behaviour: Role of Information Security Competencies and Procedural Information Security Countermeasure Awareness
Authors: Norshima Humaidi, Saif Hussein Abdallah Alghazo
Abstract:
Cybersecurity threat have become a serious issue recently, and one of the cause is because human error, which is usually constituted by carelessness, ignorance, and failure to practice cybersecurity behaviour adequately. Using a data from a quantitative survey, Partial Least Squares-Structural Equation Modelling (PLS-SEM) analysis was used to determine the factors that affect cybersecurity protective behaviour (CPB). This study adapts cybersecurity protective behaviour model by focusing on two constructs that can enhance CPB: manager’s information security competencies (MISI) and procedural information security countermeasure (PCM) awareness. Theory of leadership competencies were adapted to measure user’s perception towards competencies among security managers/leader in the organization. Confirmatory factor analysis (CFA) testing shows that all the measurement items of each constructs were adequate in their validity individually based on their factor loading value. Moreover, each constructs are valid based on their parameter estimates and statistical significance. The quantitative research findings show that PCM awareness strongly influences CPB compared to MISI. Meanwhile, MISI was significantlyPCM awarenss. This study believes that the research findings can contribute to human behaviour in IS studies and are particularly beneficial to policy makers in improving organizations’ strategic plans in information security, especially in this new era. Most organizations spend time and resources to provide and establish strategic plans of information security; however, if employees are not willing to comply and practice information security behaviour appropriately, then these efforts are in vain.Keywords: cybersecurity, protection behaviour, information security, information security competencies, countermeasure awareness
Procedia PDF Downloads 953029 A Transient Coupled Numerical Analysis of the Flow of Magnetorheological Fluids in Closed Domains
Authors: Wael Elsaady, S. Olutunde Oyadiji, Adel Nasser
Abstract:
The non-linear flow characteristics of magnetorheological (MR) fluids in MR dampers are studied via a coupled numerical approach that incorporates a two-phase flow model. The approach couples the Finite Element (FE) modelling of the damper magnetic circuit, with the Computational Fluid Dynamics (CFD) analysis of the flow field in the damper. The two-phase flow CFD model accounts for the effect of fluid compressibility due to the presence of liquid and gas in the closed domain of the damper. The dynamic mesh model included in ANSYS/Fluent CFD solver is used to simulate the movement of the MR damper piston in order to perform the fluid excitation. The two-phase flow analysis is studied by both Volume-Of-Fluid (VOF) model and mixture model that are included in ANSYS/Fluent. The CFD models show that the hysteretic behaviour of MR dampers is due to the effect of fluid compressibility. The flow field shows the distributions of pressure, velocity, and viscosity contours. In particular, it shows the high non-Newtonian viscosity in the affected fluid regions by the magnetic field and the low Newtonian viscosity elsewhere. Moreover, the dependence of gas volume fraction on the liquid pressure inside the damper is predicted by the mixture model. The presented approach targets a better understanding of the complicated flow characteristics of viscoplastic fluids that could be applied in different applications.Keywords: viscoplastic fluid, magnetic FE analysis, computational fluid dynamics, two-phase flow, dynamic mesh, user-defined functions
Procedia PDF Downloads 1733028 Molecular Dynamics Simulation on Nanoelectromechanical Graphene Nanoflake Shuttle Device
Authors: Eunae Lee, Oh-Kuen Kwon, Ki-Sub Kim, Jeong Won Kang
Abstract:
We investigated the dynamic properties of graphene-nanoribbon (GNR) memory encapsulating graphene-nanoflake (GNF) shuttle in the potential to be applicable as a non-volatile random access memory via molecular dynamics simulations. This work explicitly demonstrates that the GNR encapsulating the GNF shuttle can be applied to nonvolatile memory. The potential well was originated by the increase of the attractive vdW energy between the GNRs when the GNF approached the edges of the GNRs. So the bistable positions were located near the edges of the GNRs. Such a nanoelectromechanical non-volatile memory based on graphene is also applicable to the development of switches, sensors, and quantum computing.Keywords: graphene nanoribbon, graphene nanoflake, shuttle memory, molecular dynamics
Procedia PDF Downloads 4583027 Impact of Neuron with Two Dendrites in Heart Behavior
Authors: Kaouther Selmi, Alaeddine Sridi, Mohamed Bouallegue, Kais Bouallegue
Abstract:
Neurons are the fundamental units of the brain and the nervous system. The variable structure model of neurons consists of a system of differential equations with various parameters. By optimizing these parameters, we can create a unique model that describes the dynamic behavior of a single neuron. We introduce a neural network based on neurons with multiple dendrites employing an activation function with a variable structure. In this paper, we present a model for heart behavior. Finally, we showcase our successful simulation of the heart's ECG diagram using our Variable Structure Neuron Model (VSMN). This result could provide valuable insights into cardiology.Keywords: neural networks, neuron, dendrites, heart behavior, ECG
Procedia PDF Downloads 843026 Robust Single/Multi bit Memristor Based Memory
Authors: Ahmed Emara, Maged Ghoneima, Mohamed Dessouky
Abstract:
Demand for low power fast memories is increasing with the increase in IC’s complexity, in this paper we introduce a proposal for a compact SRAM based on memristor devices. The compact size of the proposed cell (1T2M compared to 6T of traditional SRAMs) allows denser memories on the same area. In this paper, we will discuss the proposed memristor memory cell for single/multi bit data storing configurations along with the writing and reading operations. Stored data stability across successive read operation will be illustrated, operational simulation results and a comparison of our proposed design with previously conventional SRAM and previously proposed memristor cells will be provided.Keywords: memristor, multi-bit, single-bit, circuits, systems
Procedia PDF Downloads 3733025 Air Quality Assessment for a Hot-Spot Station by Neural Network Modelling of the near-Traffic Emission-Immission Interaction
Authors: Tim Steinhaus, Christian Beidl
Abstract:
Urban air quality and climate protection are two major challenges for future mobility systems. Despite the steady reduction of pollutant emissions from vehicles over past decades, local immission load within cities partially still reaches heights, which are considered hazardous to human health. Although traffic-related emissions account for a major part of the overall urban pollution, modeling the exact interaction remains challenging. In this paper, a novel approach for the determination of the emission-immission interaction on the basis of neural network modeling for traffic induced NO2-immission load within a near-traffic hot-spot scenario is presented. In a detailed sensitivity analysis, the significance of relevant influencing variables on the prevailing NO2 concentration is initially analyzed. Based on this, the generation process of the model is described, in which not only environmental influences but also the vehicle fleet composition including its associated segment- and certification-specific real driving emission factors are derived and used as input quantities. The validity of this approach, which has been presented in the past, is re-examined in this paper using updated data on vehicle emissions and recent immission measurement data. Within the framework of a final scenario analysis, the future development of the immission load is forecast for different developments in the vehicle fleet composition. It is shown that immission levels of less than half of today’s yearly average limit values are technically feasible in hot-spot situations.Keywords: air quality, emission, emission-immission-interaction, immission, NO2, zero impact
Procedia PDF Downloads 125