Search results for: blood urea nitrogen
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3547

Search results for: blood urea nitrogen

367 Augmented Reality to Support the Design of Innovative Agroforestry Systems

Authors: Laetitia Lemiere, Marie Gosme, Gerard Subsol, Marc Jaeger

Abstract:

Agroforestry is recognized as a way of developing sustainable and resilient agriculture that can fight against climate change. However, the number of species combinations, spatial configurations, and management options for trees and crops is vast. These choices must be adapted to the pedoclimatic and socio-economic contexts and to the objectives of the farmer, who therefore needs support in designing his system. Participative design workshops are a good way to integrate the knowledge of several experts in order to design such complex systems. The design of agroforestry systems should take into account both spatial aspects (e.g., spacing of trees within the lines and between lines, tree line orientation, tree-crop distance, species spatial patterns) and temporal aspects (e.g., crop rotations, tree thinning and pruning, tree planting in the case of successional agroforestry). Furthermore, the interactions between trees and crops evolve as the trees grow. However, agroforestry design workshops generally emphasize the spatial aspect only through the use of static tokens to represent the different species when designing the spatial configuration of the system. Augmented reality (AR) may overcome this limitation, allowing to visualize dynamic representations of trees and crops, and also their interactions, while at the same time retaining the possibility to physically interact with the system being designed (i.e., move trees, add or remove species, etc.). We propose an ergonomic digital solution capable of assisting a group of agroforestry experts to design an agroforestry system and to represent it. We investigated the use of web-based marker-based AR that does not require specific hardware and does not require specific installation so that all users could use their own smartphones right out of the pocket. We developed a prototype mobilizing the AR.js, ArToolKit.js, and Three.js open source libraries. In our implementation, we gradually build a virtual agroforestry system pattern scene from the users' interactions. A specific set of markers initialize the scene properties, and the various plant species are added and located during the workshop design session. The full virtual scene, including the trees positions with their neighborhood, are saved for further uses, such as virtual, augmented instantiation in the farmer fields. The number of tree species available in the application is gradually increasing; we mobilize 3D digital models for walnut, poplar, wild cherry, and other popular species used in agroforestry systems. The prototype allows shadow computations and the representation of trees at various growth stages, as well as different tree generations, and is thus able to visualize the dynamics of the system over time. Future work will focus on i) the design of complex patterns mobilizing several tree/shrub organizations, not restricted to lines; ii) the design of interfaces related to cultural practices, such as clearing or pruning; iii) the representation of tree-crop interactions. Beside tree shade (light competition), our objective is to represent also below-ground competitions (water, nitrogen) or other variables of interest for the design of agroforestry systems (e.g., predicted crop yield).

Keywords: agroforestry system design, augmented reality, marker-based AR, participative design, web-based AR

Procedia PDF Downloads 143
366 Changes in Physicochemical Characteristics of a Serpentine Soil and in Root Architecture of a Hyperaccumulating Plant Cropped with a Legume

Authors: Ramez F. Saad, Ahmad Kobaissi, Bernard Amiaud, Julien Ruelle, Emile Benizri

Abstract:

Agromining is a new technology that establishes agricultural systems on ultramafic soils in order to produce valuable metal compounds such as nickel (Ni), with the final aim of restoring a soil's agricultural functions. But ultramafic soils are characterized by low fertility levels and this can limit yields of hyperaccumulators and metal phytoextraction. The objectives of the present work were to test if the association of a hyperaccumulating plant (Alyssum murale) and a Fabaceae (Vicia sativa var. Prontivesa) could induce changes in physicochemical characteristics of a serpentine soil and in root architecture of a hyperaccumulating plant then lead to efficient agromining practices through soil quality improvement. Based on standard agricultural systems, consisting in the association of legumes and another crop such as wheat or rape, a three-month rhizobox experiment was carried out to study the effect of the co-cropping (Co) or rotation (Ro) of a hyperaccumulating plant (Alyssum murale) with a legume (Vicia sativa) and incorporating legume biomass to soil, in comparison with mineral fertilization (FMo), on the structure and physicochemical properties of an ultramafic soil and on root architecture. All parameters measured (biomass, C and N contents, and taken-up Ni) on Alyssum murale conducted in co-cropping system showed the highest values followed by the mineral fertilization and rotation (Co > FMo > Ro), except for root nickel yield for which rotation was better than the mineral fertilization (Ro > FMo). The rhizosphere soil of Alyssum murale in co-cropping had larger soil particles size and better aggregates stability than other treatments. Using geostatistics, co-cropped Alyssum murale showed a greater root surface area spatial distribution. Moreover, co-cropping and rotation-induced lower soil DTPA-extractable nickel concentrations than other treatments, but higher pH values. Alyssum murale co-cropped with a legume showed a higher biomass production, improved soil physical characteristics and enhanced nickel phytoextraction. This study showed that the introduction of a legume into Ni agromining systems could improve yields of dry biomass of the hyperaccumulating plant used and consequently, the yields of Ni. Our strategy can decrease the need to apply fertilizers and thus minimizes the risk of nitrogen leaching and underground water pollution. Co-cropping of Alyssum murale with the legume showed a clear tendency to increase nickel phytoextraction and plant biomass in comparison to rotation treatment and fertilized mono-culture. In addition, co-cropping improved soil physical characteristics and soil structure through larger and more stabilized aggregates. It is, therefore, reasonable to conclude that the use of legumes in Ni-agromining systems could be a good strategy to reduce chemical inputs and to restore soil agricultural functions. Improving the agromining system by the replacement of inorganic fertilizers could simultaneously be a safe way of rehabilitating degraded soils and a method to restore soil quality and functions leading to the recovery of ecosystem services.

Keywords: plant association, legumes, hyperaccumulating plants, ultramafic soil physicochemical properties

Procedia PDF Downloads 145
365 Evaluation of Washing Performance of Household Wastewater Purified by Advanced Oxidation Process

Authors: Nazlı Çetindağ, Pelin Yılmaz Çetiner, Metin Mert İlgün, Emine Birci, Gizemnur Yıldız Uysal, Özcan Hatipoğlu, Ehsan Tuzcuoğlu, Gökhan Sır

Abstract:

Stressing the importance of water conservation, emphasizing the need for efficient management of household water, and underlining the significance of alternative solutions are important. In this context, advanced solutions based on technologies such as the advanced oxidation process have emerged as promising methods for treating household wastewater. Evaluating household water usage holds critical importance for the sustainability of water resources. Researchers and experts are examining various technological approaches to effectively treat and reclaim water for reuse. In this framework, the advanced oxidation process has proven to be an effective method for the removal of various organic and inorganic pollutants in the treatment of household wastewater. In this study, performance will be evaluated by comparing it with the reference case. This international criterion simulates the washing of home textile products, determining various performance parameters. The specially designed stain strips, including sebum, carbon black, blood, cocoa, and red wine, used in experiments, represent various household stains. These stain types were carefully selected to represent challenging stain scenarios, ensuring a realistic assessment of washing performance. Experiments conducted under different temperatures and program conditions successfully demonstrate the practical applicability of the advanced oxidation process for treating household wastewater. It is important to note that both adherence to standards and the use of real-life stain types contribute to the broad applicability of the findings. In conclusion, this study strongly supports the effectiveness of treating household wastewater with the advanced oxidation process in terms of washing performance under both standard and practical application conditions. The study underlines the importance of alternative solutions for sustainable water resource management and highlights the potential of the advanced oxidation process in the treatment of household water, contributing significantly to optimizing water usage and developing sustainable water management solutions.

Keywords: advanced oxidation process, household water usage, household appliance waste water, modelling, water reuse

Procedia PDF Downloads 40
364 Sulforaphane Alleviates Muscular Dystrophy in Mdx Mice by Activation of Nrf2

Authors: Chengcao Sun, Cuili Yang, Shujun Li, Ruilin Xue, Liang Wang, Yongyong Xi, Dejia Li

Abstract:

Backgrounds: Sulforaphane, one of the most important isothiocyanates in the human diet, is known to have chemopreventive and antioxidant activities in different tissues via activation of NF-E2-related factor 2 (Nrf2)-mediated induction of antioxidant/phase II enzymes, such as heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO1). However, its effects on muscular dystrophy remain unknown. This work was undertaken to evaluate the effects of Sulforaphane on Duchenne muscular dystrophy (DMD). Methods: 4-week-old mdx mice were treated with SFN by gavage (2 mg/kg body weight per day) for 8 weeks. Blood was collected from eye socket every week, and tibial anterior, extensor digitorum longus, gastrocnemius, soleus, triceps brachii muscles and heart samples were collected after 8-week gavage. Force measurements and mice exercise capacity assays were detected. GSH/GSSG ratio, TBARS, CK and LDH levels were analyzed by spectrophotometric methods. H&E staining was used to analyze histological and morphometric of skeletal muscles of mdx mice, and Evas blue dye staining was made to detect sarcolemmal integrity of mdx mice. Further, the role of Sulforaphane on Nrf2/ARE signaling pathway was analyzed by ELISA, western blot and qRT-PCR. Results: Our results demonstrated that SFN treatment increased the expression and activity of muscle phase II enzymes NQO1 and HO-1 with Nrf2 dependent manner. SFN significantly increased skeletal muscle mass, muscle force (~30%), running distance (~20%) and GSH/GSSG ratio (~3.2 folds) of mdx mice, and decreased the activities of plasma creatine phosphokinase (CK) (~45%) and lactate dehydrogenase (LDH) (~40%), gastrocnemius hypertrophy (~25%), myocardial hypertrophy (~20%) and MDA levels (~60%). Further, SFN treatment also reduced the central nucleation (~40%), fiber size variability, inflammation and improved the sarcolemmal integrity of mdx mice. Conclusions: Collectively, these results show that SFN can improve muscle function, pathology and protect dystrophic muscle from oxidative damage in mdx mice through Nrf2 signaling pathway, which indicate Nrf2 may have clinical implications for the treatment of patients with muscular dystrophy.

Keywords: sulforaphane, duchenne muscular dystrophy, Nrf2, oxidative stress

Procedia PDF Downloads 299
363 Development of a Miniature and Low-Cost IoT-Based Remote Health Monitoring Device

Authors: Sreejith Jayachandran, Mojtaba Ghods, Morteza Mohammadzaheri

Abstract:

The modern busy world is running behind new embedded technologies based on computers and software; meanwhile, some people forget to do their health condition and regular medical check-ups. Some of them postpone medical check-ups due to a lack of time and convenience, while others skip these regular evaluations and medical examinations due to huge medical bills and hospital expenses. Engineers and medical experts have come together to give birth to a new device in the telemonitoring system capable of monitoring, checking, and evaluating the health status of the human body remotely through the internet for the needs of all kinds of people. The remote health monitoring device is a microcontroller-based embedded unit. Various types of sensors in this device are connected to the human body, and with the help of an Arduino UNO board, the required analogue data is collected from the sensors. The microcontroller on the Arduino board processes the analogue data collected in this way into digital data and transfers that information to the cloud, and stores it there, and the processed digital data is instantly displayed through the LCD attached to the machine. By accessing the cloud storage with a username and password, the concerned person’s health care teams/doctors and other health staff can collect this data for the assessment and follow-up of that patient. Besides that, the family members/guardians can use and evaluate this data for awareness of the patient's current health status. Moreover, the system is connected to a Global Positioning System (GPS) module. In emergencies, the concerned team can position the patient or the person with this device. The setup continuously evaluates and transfers the data to the cloud, and also the user can prefix a normal value range for the evaluation. For example, the blood pressure normal value is universally prefixed between 80/120 mmHg. Similarly, the RHMS is also allowed to fix the range of values referred to as normal coefficients. This IoT-based miniature system (11×10×10) cm³ with a low weight of 500 gr only consumes 10 mW. This smart monitoring system is manufactured with 100 GBP, which can be used not only for health systems, it can be used for numerous other uses including aerospace and transportation sections.

Keywords: embedded technology, telemonitoring system, microcontroller, Arduino UNO, cloud storage, global positioning system, remote health monitoring system, alert system

Procedia PDF Downloads 63
362 Effects of Abiotic Stress on the Phytochemical Content and Bioactivity of Pistacia lentiscus L.

Authors: S. Mamoucha, N. Tsafantakis, Α. Ioannidis, S. Chatzipanagiotou, C. Nikolaou, L. Skaltsounis, N. Fokialakis, N. Christodoulakis

Abstract:

Introduction: Plant secondary metabolites (SM) can be grouped into three chemically distinct groups: terpenes, phenolics, and nitrogen-containing compounds. For many years the adaptive significance of SM was unknown. They were thought to be functionless end-products. Currently it is accepted that many secondary metabolites (also known as natural products) have important ecological roles in plants. For instance, they serve as attractants (odor, color, taste) for pollinators and seed-dispersing animals. Moreover, they protect plants from herbivores, microbial pathogens and from environmental stress (high and low temperatures, drought, alkalinity, salinity, radiation etc). It is well known that both biotic and abiotic stress often increase the accumulation of SM. The local climatic conditions, seasonal changes, external factors such as light, temperature, humidity affect the biosynthesis and composition of secondary metabolites. A well known dioecious evergreen plant, Pistacia lentiscus L. (mastic tree), was selected in order to study the metabolic variations occur in response to the different climate conditions, due to the seasonal variation and its effect on the biosynthesis of bioactive compounds. Materials-methods: Young and mature leaves were collected in January and July 2014, dried and extracted by accelerated solvent extraction (Dionex ASE™ 350) using solvents of increased polarity (DCM, MeOH, and H2O). GC-MS and UHPLC-HRMS analysis were carried out in order to define the nature and the relative abundance of SM. The antibacterial activity was evaluated by using the Agar Disc Diffusion Assay against ATCC and clinical isolates strains: Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans, Streptococcus mutans and Klebsiella pneumoniae. All tests were carried out in duplicate and the average radii of the inhibition zones were calculated for each extract. Results: According to the phytochemical profile obtained from each extract, the biosynthesis of SM varied both qualitatively and quantitatively under the two different types of seasonal stress. With exception of the biologically inactive nonpolar DCM extract of July, all extracts inhibited the growth of most of the investigated microorganisms. A clear positive correlation has been observed between the relative abundance of SM and the bioactivity of the DCM extracts of January and July. Observed changes during phytochemical analysis were mainly focused on the triterpenoid content. On the other hand, the bioactivity of the polar extracts (MeOH and H2O) of January and July resulted practically invariable against most of the microorganisms, besides the significant variation of the SM content due to the seasonal variation. Conclusion: Our results clearly confirmed the hypothesis of abiotic stress as an important regulating factor that significantly affects the biosynthesis of secondary metabolites and thus the presence of bioactive compounds. Acknowledgment: This work was supported by IKY - State Scholarship Foundation, Athens, Greece.

Keywords: antibacterial screening, phytochemical profile, Pistacia lentiscus, abiotic stress

Procedia PDF Downloads 222
361 Altered Proteostasis Contributes to Skeletal Muscle Atrophy during Chronic Hypobaric Hypoxia: An Insight into Signaling Mechanisms

Authors: Akanksha Agrawal, Richa Rathor, Geetha Suryakumar

Abstract:

Muscle represents about ¾ of the body mass, and a healthy muscular system is required for human performance. A healthy muscular system is dynamically balanced via the catabolic and anabolic process. High altitude associated hypoxia altered this redox balance via producing reactive oxygen and nitrogen species that ultimately modulates protein structure and function, hence, disrupts proteostasis or protein homeostasis. The mechanism by which proteostasis is clinched includes regulated protein translation, protein folding, and protein degradation machinery. Perturbation in any of these mechanisms could increase proteome imbalance in the cellular processes. Altered proteostasis in skeletal muscle is likely to be responsible for contributing muscular atrophy in response to hypoxia. Therefore, we planned to elucidate the mechanism involving altered proteostasis leading to skeletal muscle atrophy under chronic hypobaric hypoxia. Material and Methods-Male Sprague Dawley rats weighing about 200-220 were divided into five groups - Control (Normoxic animals), 1d, 3d, 7d and 14d hypobaric hypoxia exposed animals. The animals were exposed to simulated hypoxia equivalent to 282 torr pressure (equivalent to an altitude of 7620m, 8% oxygen) at 25°C. On completion of chronic hypobaric hypoxia (CHH) exposure, rats were sacrificed, muscle was excised and biochemical, histopathological and protein synthesis signaling were studied. Results-A number of changes were observed with the CHH exposure time period. ROS was increased significantly on 07 and 14 days which were attributed to protein oxidation via damaging muscle protein structure by oxidation of amino acids moiety. The oxidative damage to the protein further enhanced the various protein degradation pathways. Calcium activated cysteine proteases and other intracellular proteases participate in protein turnover in muscles. Therefore, we analysed calpain and 20S proteosome activity which were noticeably increased at CHH exposure as compared to control group representing enhanced muscle protein catabolism. Since inflammatory markers (myokines) affect protein synthesis and triggers degradation machinery. So, we determined inflammatory pathway regulated under hypoxic environment. Other striking finding of the study was upregulation of Akt/PKB translational machinery that was increased on CHH exposure. Akt, p-Akt, p70 S6kinase, and GSK- 3β expression were upregulated till 7d of CHH exposure. Apoptosis related markers, caspase-3, caspase-9 and annexin V was also increased on CHH exposure. Conclusion: The present study provides evidence of disrupted proteostasis under chronic hypobaric hypoxia. A profound loss of muscle mass is accompanied by the muscle damage leading to apoptosis and cell death under CHH. These cellular stress response pathways may play a pivotal role in hypobaric hypoxia induced skeletal muscle atrophy. Further research in these signaling pathways will lead to development of therapeutic interventions for amelioration of hypoxia induced muscle atrophy.

Keywords: Akt/PKB translational machinery, chronic hypobaric hypoxia, muscle atrophy, protein degradation

Procedia PDF Downloads 238
360 Assessing the Severity of Traffic Related Air Pollution in South-East London to School Pupils

Authors: Ho Yin Wickson Cheung, Liora Malki-Epshtein

Abstract:

Outdoor air pollution presents a significant challenge for public health globally, especially in urban areas, with road traffic acting as the primary contributor to air pollution. Several studies have documented the antagonistic relation between traffic-related air pollution (TRAP) and the impact on health, especially to the vulnerable group of population, particularly young pupils. Generally, TRAP could cause damage to their brain, restricting the ability of children to learn and, more importantly, causing detrimental respiratory issues in later life. Butlittle is known about the specific exposure of children at school during the school day and the impact this may have on their overall exposure to pollution at a crucial time in their development. This project has set out to examine the air quality across primary schools in South-East London and assesses the variability of data found based on their geographic location and surroundings. Nitrogen dioxide, PM contaminants, and carbon dioxide were collected with diffusion tubes and portable monitoring equipment for eight schools across three local areas, that are Greenwich, Lewisham, and Tower Hamlets. This study first examines the geographical features of the schools surrounding (E.g., coverage of urban road structure and green infrastructure), then utilize three different methods to capture pollutants data. Moreover, comparing the obtained results with existing data from monitoring stations to understand the differences in air quality before and during the pandemic. Furthermore, most studies in this field have unfortunately neglected human exposure to pollutants and calculated based on values from fixed monitoring stations. Therefore, this paper introduces an alternative approach by calculating human exposure to air pollution from real-time data obtained when commuting within related areas (Driving routes and field walking). It is found that schools located highly close to motorways are generally not suffering from the most air pollution contaminants. Instead, one with the worst traffic congested routes nearby might also result in poor air quality. Monitored results also indicate that the annual air pollution values have slightly decreased during the pandemic. However, the majority of the data is currently still exceeding the WHO guidelines. Finally, the total human exposures for NO2 during commuting in the two selected routes were calculated. Results illustrated the total exposure for route 1 were 21,730 μm/m3 and 28,378.32 μm/m3, and for route 2 were 30,672 μm/m3 and 16,473 μm/m3. The variance that occurred might be due to the difference in traffic volume that requires further research. Exposure for NO2 during commuting was plotted with detailed timesteps that have shown their peak usually occurred while commuting. These have consolidated the initial assumption to the extremeness of TRAP. To conclude, this paper has yielded significant benefits to understanding air quality across schools in London with the new approach of capturing human exposure (Driving routes). Confirming the severity of air pollution and promoting the necessity of considering environmental sustainability for policymakers during decision making to protect society's future pillars.

Keywords: air pollution, schools, pupils, congestion

Procedia PDF Downloads 91
359 Welfare and Sustainability in Beef Cattle Production on Tropical Pasture

Authors: Andre Pastori D'Aurea, Lauriston Bertelli Feranades, Luis Eduardo Ferreira, Leandro Dias Pinto, Fabiana Ayumi Shiozaki

Abstract:

The aim of this study was to improve the production of beef cattle on tropical pasture without harming this environment. On tropical pastures, cattle's live weight gain is lower than feedlot, and forage production is seasonable, changing from season to season. Thus, concerned with sustainable livestock production, the Premix Company has developed strategies to improve the production of beef cattle on tropical pasture to ensure sustainability of welfare and production. There are two important principles in this productivity system: 1) increase individual gains with use of better supplementation and 2) increase the productivity units with better forage quality like corn silage or other forms of forage conservations, actually used only in winter, and adding natural additives in the diet. This production system was applied from June 2017 to May 2018 in the Research Center of Premix Company, Patrocínio Paulista, São Paulo State, Brazil. The area used had 9 hectares of pasture of Brachiaria brizantha. 36 steers Nellore were evaluated for one year. The initial weight was 253 kg. The parameters used were daily average gain and gain per area. This indicated the corrections to be made and helped design future fertilization. In this case, we fertilized the pasture with 30 kg of nitrogen per animal divided into two parts. The diet was pasture and protein-energy supplements (0.4% of live weight). The supplement used was added with natural additive Fator P® – Premix Company). Fator P® is an additive composed by amino acids (lysine, methionine and tyrosine, 16400, 2980 and 3000 mg.kg-1 respectively), minerals, probiotics (Saccharomyces cerevisiae, 7 x 10E8 CFU.kg-1) and essential fatty acids (linoleic and oleic acids, 108.9 and 99g.kg-1 respectively). Due to seasonal changes, in the winter we supplemented the diet by increasing the offer of forage, supplementing with maize silage. It was offered 1% of live weight in silage corn and 0.4% of the live weight in protein-energetic supplements with additive Fator P ®. At the end of the period, the productivity was calculated by summing the individual gains for the area used. The average daily gain of the animals were 693 grams per day and was produced 1.005 kg /hectare/year. This production is about 8 times higher than the average of Brazilian meat national production. To succeed in this project, it is necessary to increase the gains per area, so it is necessary to increase the capacity per area. Pasture management is very important to the project's success because the dietary decisions were taken from the quantity and quality of the forage. We, therefore, recommend the use of animals in the growth phase because the response to supplementation is greater in that phase and we can allocate more animals per area. This system's carbon footprint reduces emissions by 61.2 percent compared to the Brazilian average. This beef cattle production system can be efficient and environmentally friendly to the natural. Another point is that bovines will benefit from their natural environment without competing or having an impact on human food production.

Keywords: cattle production, environment, pasture, sustainability

Procedia PDF Downloads 116
358 Effects of Glucogenic and Lipogenic Diets on Ruminal Microbiota and Metabolites in Vitro

Authors: Beihai Xiong, Dengke Hua, Wouter Hendriks, Wilbert Pellikaan

Abstract:

To improve the energy status of dairy cows in the early lactation, lots of jobs have been done on adjusting the starch to fiber ratio in the diet. As a complex ecosystem, the rumen contains a large population of microorganisms which plays a crucial role in feed degradation. Further study on the microbiota alterations and metabolic changes under different dietary energy sources is essential and valuable to better understand the function of the ruminal microorganisms and thereby to optimize the rumen function and enlarge feed efficiency. The present study will focus on the effects of two glucogenic diets (G: ground corn and corn silage; S: steam-flaked corn and corn silage) and a lipogenic diet (L: sugar beet pulp and alfalfa silage) on rumen fermentation, gas production, the ruminal microbiota and metabolome, and also their correlations in vitro. The gas production was recorded consistently, and the gas volume and producing rate at times 6, 12, 24, 48 h were calculated separately. The fermentation end-products were measured after fermenting for 48 h. The ruminal bacteria and archaea communities were determined by 16S RNA sequencing technique, the metabolome profile was tested through LC-MS methods. Compared to the diet G and S, the L diet had a lower dry matter digestibility, propionate production, and ammonia-nitrogen concentration. The two glucogenic diets performed worse in controlling methane and lactic acid production compared to the L diet. The S diet produced the greatest cumulative gas volume at any time points during incubation compared to the G and L diet. The metabolic analysis revealed that the lipid digestion was up-regulated by the diet L than other diets. On the subclass level, most metabolites belonging to the fatty acids and conjugates were higher, but most metabolites belonging to the amino acid, peptides, and analogs were lower in diet L than others. Differences in rumen fermentation characteristics were associated with (or resulting from) changes in the relative abundance of bacterial and archaeal genera. Most highly abundant bacteria were stable or slightly influenced by diets, while several amylolytic and cellulolytic bacteria were sensitive to the dietary changes. The L diet had a significantly higher number of cellulolytic bacteria, including the genera of Ruminococcus, Butyrivibrio, Eubacterium, Lachnospira, unclassified Lachnospiraceae, and unclassified Ruminococcaceae. The relative abundances of amylolytic bacteria genera including Selenomonas_1, Ruminobacter, and Succinivibrionaceae_UCG-002 were higher in diet G and S. These affected bacteria was also proved to have high associations with certain metabolites. The Selenomonas_1 and Succinivibrionaceae_UCG-002 may contribute to the higher propionate production in the diet G and S through enhancing the succinate pathway. The results indicated that the two glucogenic diets had a greater extent of gas production, a higher dry matter digestibility, and produced more propionate than diet L. The steam-flaked corn did not show a better performance on fermentation end-products than ground corn. This study has offered a deeper understanding of ruminal microbial functions which could assistant the improvement in rumen functions and thereby in the ruminant production.

Keywords: gas production, metabolome, microbiota, rumen fermentation

Procedia PDF Downloads 126
357 Comparison of Microbiological Assessment of Non-adhesive Use and the Use of Adhesive on Complete Dentures

Authors: Hyvee Gean Cabuso, Arvin Taruc, Danielle Villanueva, Channela Anais Hipolito, Jia Bianca Alfonso

Abstract:

Introduction: Denture adhesive aids to provide additional retention, support and comfort for patients with loose dentures, as well as for patients who seek to achieve optimal denture adhesion. But due to its growing popularity, arising oral health issues should be considered, including its possible impact that may alter the microbiological condition of the denture. Changes as such may further resolve to denture-related oral diseases that can affect the day-to-day lives of patients. Purpose: The study aims to assess and compare the microbiological status of dentures without adhesives versus dentures when adhesives were applied. The study also intends to identify the presence of specific microorganisms, their colony concentration and their possible effects on the oral microflora. This study also aims to educate subjects by introducing an alternative denture cleaning method as well as denture and oral health care. Methodology: Edentulous subjects age 50-80 years old, both physically and medically fit, were selected to participate. Before obtaining samples for the study, the alternative cleaning method was introduced by demonstrating a step-by-step cleaning process. Samples were obtained by swabbing the intaglio surface of their upper and lower prosthesis. These swabs were placed in a thioglycollate broth, which served as a transport and enrichment medium. The swabs were then processed through bacterial culture. The colony-forming units (CFUs) were calculated on MacConkey Agar Plate (MAP) and Blood Agar Plate (BAP) in order to identify and assess the microbiological status, including species identification and microbial counting. Result: Upon evaluation and analysis of collected data, the microbiological assessment of the upper dentures with adhesives showed little to no difference compared to dentures without adhesives, but for the lower dentures, (P=0.005), which is less than α = 0.05; therefore, the researchers reject (Ho) and that there is a significant difference between the mean ranks of the lower denture without adhesive to those with, implying that there is a significant decrease in the bacterial count. Conclusion: These results findings may implicate the possibility that the addition of denture adhesives may contribute to the significant decrease of microbial colonization on the dentures.

Keywords: denture, denture adhesive, denture-related, microbiological assessment

Procedia PDF Downloads 108
356 Observation on Microbiological Profile of Type2 Diabetic Foot Ulcer and Its Antimicrobial Sensitivity Pattern in a Tertiary Care Hospital in Eastern India

Authors: Pampita Chakraborty, Sukumar Mukherjee

Abstract:

Diabetes Mellitus (DM) is commonly encountered metabolic disorder in clinical practice. An estimated 25 percent of DM patients develop foot problems. Foot ulceration and infection are one of the major causes of morbidity, hospitalization or even amputation. Objective: To isolate and identify bacterial pathogens in Diabetic Foot Ulcer (DFU) and to observe its antimicrobial sensitivity pattern. Methodology: A prospective study was conducted for a period of 9 months at the Department of Microbiology, GD Hospital & Diabetes Institute, Kolkata. 75 DFU patients were recruited in the study. Specimens for microbiological studies obtained from ulcer base were examined as gram stained smear and was cultured aerobically on Nutrient agar, Blood agar and MacConkey agar plates. Antimicrobial sensitivity test was performed by disc diffusion techniques according to CLSI guidelines. Result: In this study out of 75cases, 73% (55/75) were male and 27% (20/75) were females with mean (SD) age of 51.11(±10) years. Out of 75 pus cultures, 63(84%) showed growth of microorganism making total of 81 bacterial isolates with 71.42% of monomicrobial infection and 28.57% of polymicrobial infection. Out of 81 isolates 53(65.43%) were gram negative and 21(25.92%) were gram positive. E.coli was relatively common isolate 21(26%) followed by Staphylococcus aureus 15(18.5%), Klebsiella pneumonia 14(17.28%), Pseudomonas aeruginosa 12 (14.81%), Proteus spp. 3 (3.70%), and Enterococcus faecalis 6 (7.40%). 75% of Gram-negative microorganism were extended Beta-lactamase enzyme (ESBL) producer and around 20 % of Klebsiella and Proteus spp. were carbapenemase enzyme producer. Among Gram positive, around 50% of S.aureus was MRSA, sensitive only to Vancomycin, Teicoplanin & Linezolid. Conclusion: More prevalence of monomicrobial gram-negative bacteria than gram-positive bacteria in DFU was observed. This study emphasizes that Beta-Lactam group of antibiotics should not be the empirical treatment of choice for Gram-negative isolates; instead alternatives like Carbapenems, Amikacin could be a better option. On the other hand, Vancomycin and Linezolid are preferred for most of the infection with gram-positive aerobes. Continuous surveillance of resistant bacteria is required for empiric therapy.

Keywords: antibiotic resistant, antimicrobial susceptibility, diabetic foot ulcer, surveillance

Procedia PDF Downloads 340
355 Cationic Solid Lipid Nanoparticles Conjugated with Anti-Melantransferrin and Apolipoprotein E for Delivering Doxorubicin to U87MG Cells

Authors: Yung-Chih Kuo, Yung-I Lou

Abstract:

Cationic solid lipid nanoparticles (CSLNs) with anti-melanotransferrin (AMT) and apolipoprotein E (ApoE) were used to carry antimitotic doxorubicin (Dox) across the blood–brain barrier (BBB) for glioblastoma multiforme (GBM) treatment. Dox-loaded CSLNs were prepared in microemulsion, grafted covalently with AMT and ApoE, and applied to human brain microvascular endothelial cells (HBMECs), human astrocytes, and U87MG cells. Experimental results revealed that an increase in the weight percentage of stearyl amine (SA) from 0% to 20% increased the size of AMT-ApoE-Dox-CSLNs. In addition, an increase in the stirring rate from 150 rpm to 450 rpm decreased the size of AMT-ApoE-Dox-CSLNs. An increase in the weight percentage of SA from 0% to 20% enhanced the zeta potential of AMT-ApoE-Dox-CSLNs. Moreover, an increase in the stirring rate from 150 rpm to 450 rpm reduced the zeta potential of AMT-ApoE-Dox-CSLNs. AMT-ApoE-Dox-CSLNs exhibited a spheroid-like geometry, a minor irregular boundary deviating from spheroid, and a somewhat distorted surface with a few zigzags and sharp angles. The encapsulation efficiency of Dox in CSLNs decreased with increasing weight percentage of Dox and the order in the encapsulation efficiency of Dox was 10% SA > 20% SA > 0% SA. However, the reverse order was true for the release rate of Dox, suggesting that AMT-ApoE-Dox-CSLNs containing 10% SA had better-sustained release characteristics. An increase in the concentration of AMT from 2.5 to 7.5 μg/mL slightly decreased the grafting efficiency of AMT and an increase in that from 7.5 to 10 μg/mL significantly decreased the grafting efficiency. Furthermore, an increase in the concentration of ApoE from 2.5 to 5 μg/mL slightly reduced the grafting efficiency of ApoE and an increase in that from 5 to 10 μg/mL significantly reduced the grafting efficiency. Also, AMT-ApoE-Dox-CSLNs at 10 μg/mL of ApoE could slightly reduce the transendothelial electrical resistance (TEER) and increase the permeability of propidium iodide (PI). An incorporation of 10 μg/mL of ApoE could reduce the TEER and increase the permeability of PI. AMT-ApoE-Dox-CSLNs at 10 μg/mL of AMT and 5-10 μg/mL of ApoE could significantly enhance the permeability of Dox across the BBB. AMT-ApoE-Dox-CSLNs did not induce serious cytotoxicity to HBMECs. The viability of HBMECs was in the following order: AMT-ApoE-Dox-CSLNs = AMT-Dox-CSLNs = Dox-CSLNs > Dox. The order in the efficacy of inhibiting U87MG cells was AMT-ApoE-Dox-CSLNs > AMT-Dox-CSLNs > Dox-CSLNs > Dox. A surface modification of AMT and ApoE could promote the delivery of AMT-ApoE-Dox-CSLNs to cross the BBB via melanotransferrin and low density lipoprotein receptor. Thus, AMT-ApoE-Dox-CSLNs have appropriate physicochemical properties and can be a potential colloidal delivery system for brain tumor chemotherapy.

Keywords: anti-melanotransferrin, apolipoprotein E, cationic catanionic solid lipid nanoparticle, doxorubicin, U87MG cells

Procedia PDF Downloads 254
354 Investigation of the Bioactivity and Efficacy of Personal Care Products Formulated Using Extracts of Azadirachta indica A. Juss

Authors: Ade O. Oyewole, Sunday O. Okoh, Ruth O. Ishola, Adenike D. Odusote, Chima C. Igwe, Gloria N. Elemo, Anthony I. Okoh

Abstract:

Azadirachta indica (Neem tree) also referred to as an all-purpose tree is used in a wide range of medical preparations in tropical and subtropical countries for prevention and management of various livestock, crops products and human diseases. In Nigeria however, the potentials of this plant have not been fully exploited thus it causes an environmental nuisance during the fruiting season. With a rise in the demand for herbal personal care products globally extracts from different parts of the neem plant were used as the bio-active ingredients in the formulation of personal care products. In this study, formulated neem soap, body cream, lotion, toothpaste and shampoo are analyzed to determine their antibacterial, antifungal, and toxicity properties. The efficacies of these products for management of infectious diseases, both oral and dermal, were also investigated in vitro. Oil from the neem seeds obtained using a mechanical press and acetone extracts of both the neem bark and leaves obtained by the maceration method were used in the formulation and production of the neem personal care products. The antimicrobial and toxicity properties of these products were investigated by agar diffusion, and haemolytic methods respectively. The five neem products (NPs) exhibited strong antibacterial activities against four multi–drug resistant pathogenic and three none pathogenic bacterial strains (Escherichia coli (180), Listeria ivanovii, Staphylococcus aureus, Enterobacter cloacae, Vibro spp., Streptococcus uberis, Mycobacterium smegmatis), except the neem lotion with insignificant activity against E. coli and S. aureus. The minimum inhibitory concentration (MIC) range was between 0.20-0.40 mg/ mL. The 5 NPs demonstrated moderate activity against three clinical dermatophytes isolates (Tinea corporis, Tinea capitis, and Tinea cruiz) as well as one fungal strain (Candida albican) with the MIC ranging between 0.30 - 0.50 mg/ mL and 0.550 mg/mL respectively. The soap and shampoo were the most active against test bacteria and fungi. The haemolytic analysis results on the 5 NPs indicated none toxicity at 0.50 mg/ mL in sheep red blood cells (SRBC).

Keywords: antimicrobial, Azadirachta indica, multi–drug resistant pathogenic bacteria, personal care products

Procedia PDF Downloads 236
353 Case Study on Innovative Aquatic-Based Bioeconomy for Chlorella sorokiniana

Authors: Iryna Atamaniuk, Hannah Boysen, Nils Wieczorek, Natalia Politaeva, Iuliia Bazarnova, Kerstin Kuchta

Abstract:

Over the last decade due to climate change and a strategy of natural resources preservation, the interest for the aquatic biomass has dramatically increased. Along with mitigation of the environmental pressure and connection of waste streams (including CO2 and heat emissions), microalgae bioeconomy can supply food, feed, as well as the pharmaceutical and power industry with number of value-added products. Furthermore, in comparison to conventional biomass, microalgae can be cultivated in wide range of conditions without compromising food and feed production, thus addressing issues associated with negative social and the environmental impacts. This paper presents the state-of-the art technology for microalgae bioeconomy from cultivation process to production of valuable components and by-streams. Microalgae Chlorella sorokiniana were cultivated in the pilot-scale innovation concept in Hamburg (Germany) using different systems such as race way pond (5000 L) and flat panel reactors (8 x 180 L). In order to achieve the optimum growth conditions along with suitable cellular composition for the further extraction of the value-added components, process parameters such as light intensity, temperature and pH are continuously being monitored. On the other hand, metabolic needs in nutrients were provided by addition of micro- and macro-nutrients into a medium to ensure autotrophic growth conditions of microalgae. The cultivation was further followed by downstream process and extraction of lipids, proteins and saccharides. Lipids extraction is conducted in repeated-batch semi-automatic mode using hot extraction method according to Randall. As solvents hexane and ethanol are used at different ratio of 9:1 and 1:9, respectively. Depending on cell disruption method along with solvents ratio, the total lipids content showed significant variations between 8.1% and 13.9 %. The highest percentage of extracted biomass was reached with a sample pretreated with microwave digestion using 90% of hexane and 10% of ethanol as solvents. Proteins content in microalgae was determined by two different methods, namely: Total Kejadahl Nitrogen (TKN), which further was converted to protein content, as well as Bradford method using Brilliant Blue G-250 dye. Obtained results, showed a good correlation between both methods with protein content being in the range of 39.8–47.1%. Characterization of neutral and acid saccharides from microalgae was conducted by phenol-sulfuric acid method at two wavelengths of 480 nm and 490 nm. The average concentration of neutral and acid saccharides under the optimal cultivation conditions was 19.5% and 26.1%, respectively. Subsequently, biomass residues are used as substrate for anaerobic digestion on the laboratory-scale. The methane concentration, which was measured on the daily bases, showed some variations for different samples after extraction steps but was in the range between 48% and 55%. CO2 which is formed during the fermentation process and after the combustion in the Combined Heat and Power unit can potentially be used within the cultivation process as a carbon source for the photoautotrophic synthesis of biomass.

Keywords: bioeconomy, lipids, microalgae, proteins, saccharides

Procedia PDF Downloads 225
352 The Pharmacogenetics of Type 1 Cannabinoid Receptor (CB1) Gene Associated with Adverse Drug Reactions in Thai Patients

Authors: Kittitara Chunlakittiphan, Patompong Satapornpong

Abstract:

Introduction: The variation of genetics affects how our body responds to pharmaceuticals elucidates the correlation between long-term use of medical cannabis and adverse drug reactions (ADRs). Medical cannabis is regarded as the treatment for chronic pain, cancer pain, acute pain, psychological disorders, multiple sclerosis and migraine management. However, previous studies have shown that delta-9-Tetrahydrocannabinol (THC), an ingredient found in cannabis, was the cause of ADRs in CB1 receptors found in humans. Previous research suggests that distributions of the cannabinoid type 1 (CB1) receptor gene and pharmacogenetic markers, which vary amongst different populations, might affect incidences of ADRs. Although there is an evident need to investigate the level of the CB1 receptor gene (rs806365), studies on the distribution of CB1-pharmacogenetics markers in Thai patients are limited. Objective: Therefore, the aim of this study is to investigate the distribution of the rs806365 polymorphism in Thai patients who have been treated with medical cannabis. Materials and Methods: We enrolled 31 Thai patients with THC-induced ADRs and 34 THC-tolerant controls to take part in this study. All patients with THC-induced ADRs were accessed through a review of medical records by physicians. EDTA blood of 3ml was collected to obtain the CNR1 gene (rs806365) and genotyping of this gene was conducted using the real-time PCR ViiA7 (ABI, Foster City, CA, USA) following the manufacturer’s instruction. Results: The sample consisted of 65 patients (40/61.54%) were females and (25/38.46%) were males, with an age range of 19-87 years, who have been treated with medical cannabis. In this study, the most common THC-induced ADRs were dry mouth and/or dry throat, tachycardia, nausea, and arrhythmia. Across the whole sample, we found that 52.31% of Thai patients carried a heterozygous variant (rs806365, CT allele). Moreover, the number of rs806365 (CC, homozygous variant) carriers totaled seventeen people (26.15%) amongst the subjects of Thai patients treated with medical cannabis. Furthermore, 17 out of 22 patients (77.27%) who experienced severe ADRs: Tachycardia and/or arrhythmia, carried an abnormal rs806365 gene (CT and CC alleles). Conclusions: The results propose that the rs806365 gene is widely distributed amongst the Thai population and there is a link between this gene and vulnerability to developing THC-induced ADRs after being treated with medical cannabis. Therefore, it is necessary to screen for the rs806365 gene before using medical cannabis to treat a patient.

Keywords: rs806365, THC-induced adverse drug reactions, CB1 receptor, Thai population

Procedia PDF Downloads 73
351 Effect of Total Body Irradiation for Metastatic Lymph Node and Lung Metastasis in Early Stage

Authors: Shouta Sora, Shizuki Kuriu, Radhika Mishra, Ariunbuyan Sukhbaatar, Maya Sakamoto, Shiro Mori, Tetsuya Kodama

Abstract:

Lymph node (LN) metastasis accounts for 20 - 30 % of all deaths in patients with head and neck cancer. Therefore, the control of metastatic lymph nodes (MLNs) is necessary to improve the life prognosis of patients with cancer. In a classical metastatic theory, tumor cells are thought to metastasize hematogenously through a bead-like network of lymph nodes. Recently, a lymph node-mediated hematogenous metastasis theory has been proposed, in which sentinel LNs are regarded as a source of distant metastasis. Therefore, the treatment of MLNs at the early stage is essential to prevent distant metastasis. Radiation therapy is one of the primary therapeutic modalities in cancer treatment. In addition, total body irradiation (TBI) has been reported to act as activation of natural killer cells and increase of infiltration of CD4+ T-cells to tumor tissues. However, the treatment effect of TBI for MLNs remains unclear. This study evaluated the possibilities of low-dose total body irradiation (L-TBI) and middle-dose total body irradiation (M-TBI) for the treatment of MLNs. Mouse breast cancer FM3A-Luc cells were injected into subiliac lymph node (SiLN) of MXH10/Mo/LPR mice to induce the metastasis to the proper axillary lymph node (PALN) and lung. Mice were irradiated for the whole body on 4 days after tumor injection. The L-TBI and M-TBI were defined as irradiations to the whole body at 0.2 Gy and 1.0 Gy, respectively. Tumor growth was evaluated by in vivo bioluminescence imaging system. In the non-irradiated group, tumor activities on SiLN and PALN significantly increased over time, and the metastasis to the lung from LNs was confirmed 28 days after tumor injection. The L-TBI led to a tumor growth delay in PALN but did not control tumor growth in SiLN and metastasis to the lung. In contrast, it was found that the M-TBI significantly delayed the tumor growth of both SiLN and PALN and controlled the distant metastasis to the lung compared with non-irradiated and L-TBI groups. These results suggest that the M-TBI is an effective treatment method for MLNs in the early stage and distant metastasis from lymph nodes via blood vessels connected with LNs.

Keywords: metastatic lymph node, lung metastasis, radiation therapy, total body irradiation, lymphatic system

Procedia PDF Downloads 160
350 The Morphological Changes of POV in Diabetic Patients and Its Correlation with Changes in Corneal Epithelium, Corneal Nerve, and the Fundus in Using Vivo Confocal Microscopy

Authors: Ji Jiazheng, Wang Jingrao, Jin Xin, Zhang Hong

Abstract:

Diabetes mellitus is a metabolic disease characterized by high blood sugar. A long-standing hyperglycemic state can lead to various tissue damage. Diabetic retinopathy is the most common and widely studied ocular complication and has become the leading cause of blindness in my country. At the same time, diabetes has profound clinically relevant effects on the cornea, leading to keratopathy and vision-threatening. The cornea is an avascular tissue and is sensitive to hyperglycemia, Keratopathy caused by diabetes is usually chronic, they are called diabetic keratopathy or diabetic neurotrophic keratopathy, leading to several diabetic corneal complications including delayed epithelial wound healing, recurrent erosions, neuropathy, loss of sensitivity. Corneal stem cell dysfunction in diabetic patients as an important influencing factor of diabetic keratopathy. The consequences of this condition are often underestimated. The limbus is located between the cornea and the sclera tissue. The limbal stroma consists of a series of radial elevations with fibrovascular centers known as palisades of Vogt (POV). Previous studies have shown that palisades of Vogt (POV), as the main site of limbal stem cells, plays an important role in the homeostasis of the corneal epithelium. Therefore, POV plays a vital role in the healing of corneal epithelial surgery and postoperative evaluation. IVCM can observe the condition of the corneal epithelium at the cellular level. It has profound significance and guidance for the evaluation of limbal and limbal stem cells. We have previously observed structural changes in POV in HSK and HZO patients on IVCM. At present, there have been reports involving limbal stem cell dysfunction in diabetic patients, but the specific pathogenesis is still unclear. However, there are no studies on POV morphological changes in patients with DM. Therefore, we performed statistics and compared the correlation between POV morphological changes and corneal epithelial basal cell density, corneal nerves, and length of disease in DM patients and normal humans using IVCM studies. At the same time, fundoscopy was used to observe the correlation between the thickness of RNFL and the thickness of GCC and POV in diabetic patients. And to observe the correlation between SVD, DVD and POV for research.

Keywords: confocal microscopy, fundus, limbal stem cells, diabetes

Procedia PDF Downloads 47
349 Review of Consecutive Patients Treated with a Combination of Vancomycin and Rifaximin for Diarrhea Predominant Irritable Bowel Syndrome (IBS-D)

Authors: Portia Murphy, Danica Vasic, Anoja W. Gunaratne, Encarnita Sitchon, Teresita Tugonon, Marou Ison, Antoinette Le Busque, Christelle Pagonis, Thomas J. Borody

Abstract:

Irritable bowel syndrome (IBS) is a chronic gastrointestinal disorder that affects an estimated 11% of the population globally with the most predominant symptoms being abdominal pain, bloating and altered bowel movements. All age groups suffer from IBS although the prevalence of IBS decreases for age groups over 50 years. Women are more likely to suffer from IBS than men. IBS can be categorized into 3 groups based on the type of altered bowel movement: diarrhea-predominant IBS (IBS-D), constipation-predominant IBS (IBS-C) and IBS with mixed bowel habit (IBS-M). The contribution of the gut microbiome to the etiology of IBS is becoming increasingly recognized with rising use of anti-microbial agents. Previous studies on vancomycin and rifaximin used as monotherapy or in combination have been conducted mainly on IBS-C and showed marked improvements in the symptoms. According to our knowledge, no studies reported using these two combinations of antibiotics for IBS-D. Here, we report a consecutive cohort of 18 patients treated with both vancomycin and rifaximin for IBS-D. These patients’ records were reviewed retrospectively. In this cohort, patients ages were between 24-74 years (mean 44 years) and 9 were female. Baseline all patients had diarrhea, 4 with mucus and one with blood. Patients reported other symptoms were abdominal pain (n=11) bloating (n=9), flatulence (n=7), fatigue (n=4) and nausea (n=3). Patients treatments were personalized according to their symptom severity and tolerability and were treated with combination of rifaximin (500 - 3000mg/d) and vancomycin (500mg - 1500mg/d) for an ongoing period. Follow-ups were conducted between 2-32 weeks’ time. Of all patients, 89% patients reported improvement of the symptoms, 1 reported no change and 1 patient’s symptoms got worse. The mechanism of action for both vancomycin and rifaximin involves the inhibition of bacterial cell wall and protein synthesis respectively. The role of these medications in improving the symptoms of this cohort suggests that IBS-D may be microbiome infection driven. In this cohort, similar patient presentations to Clostridium difficile, as well as symptom improvement with the use of rifaximin and particularly vancomycin, suggest that the infectious agent may be an unidentified Clostridium. These preliminary results offer an alternative etiology for IBS-D not previously considered and open the avenue for new research.

Keywords: clostridium deficile, diarrhea predominant Irritable Bowel Syndrome, microbiome, vancomycin/rifaximin combination

Procedia PDF Downloads 106
348 Utility of Thromboelastography Derived Maximum Amplitude and R-Time (MA-R) Ratio as a Predictor of Mortality in Trauma Patients

Authors: Arulselvi Subramanian, Albert Venencia, Sanjeev Bhoi

Abstract:

Coagulopathy of trauma is an early endogenous coagulation abnormality that occurs shortly resulting in high mortality. In emergency trauma situations, viscoelastic tests may be better in identifying the various phenotypes of coagulopathy and demonstrate the contribution of platelet function to coagulation. We aimed to determine thrombin generation and clot strength, by estimating a ratio of Maximum amplitude and R-time (MA-R ratio) for identifying trauma coagulopathy and predicting subsequent mortality. Methods: We conducted a prospective cohort analysis of acutely injured trauma patients of the adult age groups (18- 50 years), admitted within 24hrs of injury, for one year at a Level I trauma center and followed up on 3rd day and 5th day of injury. Patients with h/o coagulation abnormalities, liver disease, renal impairment, with h/o intake of drugs were excluded. Thromboelastography was done and a ratio was calculated by dividing the MA by the R-time (MA-R). Patients were further stratified into sub groups based on the calculated MA-R quartiles. First sampling was done within 24 hours of injury; follow up on 3rd and 5thday of injury. Mortality was the primary outcome. Results: 100 acutely injured patients [average, 36.6±14.3 years; 94% male; injury severity score 12.2(9-32)] were included in the study. Median (min-max) on admission MA-R ratio was 15.01(0.4-88.4) which declined 11.7(2.2-61.8) on day three and slightly rose on day 5 13.1(0.06-68). There were no significant differences between sub groups in regard to age, or gender. In the lowest MA-R ratios subgroup; MA-R1 (<8.90; n = 27), injury severity score was significantly elevated. MA-R2 (8.91-15.0; n = 23), MA-R3 (15.01-19.30; n = 24) and MA-R4 (>19.3; n = 26) had no difference between their admission laboratory investigations, however slight decline was observed in hemoglobin, red blood cell count and platelet counts compared to the other subgroups. Also significantly prolonged R time, shortened alpha angle and MA were seen in MA-R1. Elevated incidence of mortality also significantly correlated with on admission low MA-R ratios (p 0.003). Temporal changes in the MA-R ratio did not correlated with mortality. Conclusion: The MA-R ratio provides a snapshot of early clot function, focusing specifically on thrombin burst and clot strength. In our observation, patients with the lowest MA-R time ratio (MA-R1) had significantly increased mortality compared with all other groups (45.5% MA-R1 compared with <25% in MA-R2 to MA-R3, and 9.1% in MA-R4; p < 0.003). Maximum amplitude and R-time may prove highly useful to predict at-risk patients early, when other physiologic indicators are absent.

Keywords: coagulopathy, trauma, thromboelastography, mortality

Procedia PDF Downloads 140
347 The Effects of Ellagic Acid on Rat Lungs Induced Tobacco Smoke

Authors: Nalan Kaya, Gonca Ozan, Elif Erdem, Neriman Colakoglu, Enver Ozan

Abstract:

The toxic effects of tobacco smoke exposure have been detected in numerous studies. Ellagic acid (EA), (2,3,7,8-tetrahydroxy [1]-benzopyranol [5,4,3-cde] benzopyran 5,10-dione), a natural phenolic lactone compound, is found in various plant species including pomegranate, grape, strawberries, blackberries and raspberries. Similar to the other effective antioxidants, EA can safely interact with the free radicals and reduces oxidative stress through the phenolic ring and hydroxyl components in its structure. The aim of the present study was to examine the protective effects of ellagic acid against oxidative damage on lung tissues of rats induced by tobacco smoke. Twenty-four male adult (8 weeks old) Spraque-Dawley rats were divided randomly into 4 equal groups: group I (Control), group II (Tobacco smoke), group III (Tobacco smoke + corn oil) and group IV (Tobacco smoke + ellagic acid). The rats in group II, III and IV, were exposed to tobacco smoke 1 hour twice a day for 12 weeks. In addition to tobacco smoke exposure, 12 mg/kg ellagic acid (dissolved in corn oil), was applied to the rats in group IV by oral gavage. Equal amount of corn oil used in solving ellagic acid was applied to the rats by oral gavage in group III. At the end of the experimental period, rats were decapitated. Lung tissues and blood samples were taken. The lung slides were stained by H&E and Masson’s Trichrome methods. Also, galactin-3 stain was applied. Biochemical analyzes were performed. Vascular congestion and inflammatory cell infiltration in pulmonary interstitium, thickness in interalveolar septum, cytoplasmic vacuolation in some macrophages and galactin-3 positive cells were observed in histological examination of tobacco smoke group. In addition to these findings, hemorrhage in pulmonary interstitium and bronchial lumen was detected in tobacco smoke + corn oil group. Reduced vascular congestion and hemorrhage in pulmoner interstitium and rarely thickness in interalveolar septum were shown in tobacco smoke + EA group. Compared to group-I, group-II GSH level was decreased and MDA level was increased significantly. Nevertheless group-IV GSH level was higher and MDA level was lower than group-II. The results indicate that ellagic acid could protect the lung tissue from the tobacco smoke harmful effects.

Keywords: ellagic acid, lung, rat, tobacco smoke

Procedia PDF Downloads 189
346 ESDN Expression in the Tumor Microenvironment Coordinates Melanoma Progression

Authors: Roberto Coppo, Francesca Orso, Daniela Dettori, Elena Quaglino, Lei Nie, Mehran M. Sadeghi, Daniela Taverna

Abstract:

Malignant melanoma is currently the fifth most common cancer in the white population and it is fatal in its metastatic stage. Several research studies in recent years have provided evidence that cancer initiation and progression are driven by genetic alterations of the tumor and paracrine interactions between tumor and microenvironment. Scattered data show that the Endothelial and Smooth muscle cell-Derived Neuropilin-like molecule (ESDN) controls cell proliferation and movement of stroma and tumor cells. To investigate the role of ESDN in the tumor microenvironment during melanoma progression, murine melanoma cells (B16 or B16-F10) were injected in ESDN knockout mice in order to evaluate how the absence of ESDN in stromal cells could influence melanoma progression. While no effect was found on primary tumor growth, increased cell extravasation and lung metastasis formation was observed in ESDN knockout mice compared to wild type controls. In order to understand how cancer cells cross the endothelial barrier during metastatic dissemination in an ESDN-null microenvironment, structure, and permeability of lung blood vessels were analyzed. Interestingly, ESDN knockout mice showed structurally altered and more permeable vessels compared to wild type animals. Since cell surface molecules mediate the process of tumor cell extravasation, the expression of a panel of extravasation-related ligands and receptors was analyzed. Importantly, modulations of N-cadherin, E-selectin, ICAM-1 and VAP-1 were observed in ESDN knockout endothelial cells, suggesting the presence of a favorable tumor microenvironment which facilitates melanoma cell extravasation and metastasis formation in the absence of ESDN. Furthermore, a potential contribution of immune cells in tumor dissemination was investigated. An increased recruitment of macrophages in the lungs of ESDN knockout mice carrying subcutaneous B16-F10 tumors was found. In conclusion, our data suggest a functional role of ESDN in the tumor microenvironment during melanoma progression and the identification of the mechanisms that regulate tumor cell extravasation could lead to the development of new therapies to reduce metastasis formation.

Keywords: melanoma, tumor microenvironment, extravasation, cell surface molecules

Procedia PDF Downloads 312
345 The Second Generation of Tyrosine Kinase Inhibitor Afatinib Controls Inflammation by Regulating NLRP3 Inflammasome Activation

Authors: Shujun Xie, Shirong Zhang, Shenglin Ma

Abstract:

Background: Chronic inflammation might lead to many malignancies, and inadequate resolution could play a crucial role in tumor invasion, progression, and metastases. A randomised, double-blind, placebo-controlled trial shows that IL-1β inhibition with canakinumab could reduce incident lung cancer and lung cancer mortality in patients with atherosclerosis. The process and secretion of proinflammatory cytokine IL-1β are controlled by the inflammasome. Here we showed the correlation of the innate immune system and afatinib, a tyrosine kinase inhibitor targeting epidermal growth factor receptor (EGFR) in non-small cell lung cancer. Methods: Murine Bone marrow derived macrophages (BMDMs), peritoneal macrophages (PMs) and THP-1 were used to check the effect of afatinib on the activation of NLRP3 inflammasome. The assembly of NLRP3 inflammasome was check by co-immunoprecipitation of NLRP3 and apoptosis-associated speck-like protein containing CARD (ASC), disuccinimidyl suberate (DSS)-cross link of ASC. Lipopolysaccharide (LPS)-induced sepsis and Alum-induced peritonitis were conducted to confirm that afatinib could inhibit the activation of NLRP3 in vivo. Peripheral blood mononuclear cells (PBMCs) from non-small cell lung cancer (NSCLC) patients before or after taking afatinib were used to check that afatinib inhibits inflammation in NSCLC therapy. Results: Our data showed that afatinib could inhibit the secretion of IL-1β in a dose-dependent manner in macrophage. Moreover, afatinib could inhibit the maturation of IL-1β and caspase-1 without affecting the precursors of IL-1β and caspase-1. Next, we found that afatinib could block the assembly of NLRP3 inflammasome and the ASC speck by blocking the interaction of the sensor protein NLRP3 and the adaptor protein ASC. We also found that afatinib was able to alleviate the LPS-induced sepsis in vivo. Conclusion: Our study found that afatinib could inhibit the activation of NLRP3 inflammasome in macrophage, providing new evidence that afatinib could target the innate immune system to control chronic inflammation. These investigations will provide significant experimental evidence in afatinib as therapeutic drug for non-small cell lung cancer or other tumors and NLRP3-related diseases and will explore new targets for afatinib.

Keywords: inflammasome, afatinib, inflammation, tyrosine kinase inhibitor

Procedia PDF Downloads 96
344 Improving a Stagnant River Reach Water Quality by Combining Jet Water Flow and Ultrasonic Irradiation

Authors: A. K. Tekile, I. L. Kim, J. Y. Lee

Abstract:

Human activities put freshwater quality under risk, mainly due to expansion of agriculture and industries, damming, diversion and discharge of inadequately treated wastewaters. The rapid human population growth and climate change escalated the problem. External controlling actions on point and non-point pollution sources are long-term solution to manage water quality. To have a holistic approach, these mechanisms should be coupled with the in-water control strategies. The available in-lake or river methods are either costly or they have some adverse effect on the ecological system that the search for an alternative and effective solution with a reasonable balance is still going on. This study aimed at the physical and chemical water quality improvement in a stagnant Yeo-cheon River reach (Korea), which has recently shown sign of water quality problems such as scum formation and fish death. The river water quality was monitored, for the duration of three months by operating only water flow generator in the first two weeks and then ultrasonic irradiation device was coupled to the flow unit for the remaining duration of the experiment. In addition to assessing the water quality improvement, the correlation among the parameters was analyzed to explain the contribution of the ultra-sonication. Generally, the combined strategy showed localized improvement of water quality in terms of dissolved oxygen, Chlorophyll-a and dissolved reactive phosphate. At locations under limited influence of the system operation, chlorophyll-a was highly increased, but within 25 m of operation the low initial value was maintained. The inverse correlation coefficient between dissolved oxygen and chlorophyll-a decreased from 0.51 to 0.37 when ultrasonic irradiation unit was used with the flow, showing that ultrasonic treatment reduced chlorophyll-a concentration and it inhibited photosynthesis. The relationship between dissolved oxygen and reactive phosphate also indicated that influence of ultra-sonication was higher than flow on the reactive phosphate concentration. Even though flow increased turbidity by suspending sediments, ultrasonic waves canceled out the effect due to the agglomeration of suspended particles and the follow-up settling out. There has also been variation of interaction in the water column as the decrease of pH and dissolved oxygen from surface to the bottom played a role in phosphorus release into the water column. The variation of nitrogen and dissolved organic carbon concentrations showed mixed trend probably due to the complex chemical reactions subsequent to the operation. Besides, the intensive rainfall and strong wind around the end of the field trial had apparent impact on the result. The combined effect of water flow and ultrasonic irradiation was a cumulative water quality improvement and it maintained the dissolved oxygen and chlorophyll-a requirement of the river for healthy ecological interaction. However, the overall improvement of water quality is not guaranteed as effectiveness of ultrasonic technology requires long-term monitoring of water quality before, during and after treatment. Even though, the short duration of the study conducted here has limited nutrient pattern realization, the use of ultrasound at field scale to improve water quality is promising.

Keywords: stagnant, ultrasonic irradiation, water flow, water quality

Procedia PDF Downloads 174
343 Tick Infestation and its Implications on Health and Welfare of Cattle under Pastoral System in Nigeria

Authors: Alabi Olufemi, Adeyanju Taiwo, Oloruntoba Oluwasegun, Adeleye Bobola, Alabi Oyekemi

Abstract:

The pastoral system is a predominant form of cattle production in Nigeria, characterized by extensive grazing on communal lands. However, this system is challenged by various factors, including tick infestation, which significantly affects cattle health and welfare hence this investigation which aims to provide an in-depth understanding of tick infestation in the context of Nigerian pastoral systems, emphasizing its impact on cattle health and welfare. The country harbors a diverse array of tick species that affect cattle. These ticks belong to different genera, including Rhipicephalus, Amblyomma, and Hyalomma, among others. Each species has unique characteristics, life cycles, and host preferences, contributing to the complexity of tick infestation dynamics in pastoral settings. Tick infestation has numerous detrimental effects on cattle health. The direct effects include blood loss, anemia, skin damage due to feeding, and the transmission of pathogens that cause diseases such as anaplasmosis, babesiosis, and theileriosis. Indirectly, tick infestation can lead to reduced productivity, weight loss, and increased susceptibility to other diseases.The welfare of cattle in Nigerian pastoral systems is significantly impacted by tick infestation. Infested cattle often exhibit signs of distress, including restlessness, reduced grazing activity, and altered behavior. Furthermore, the discomfort caused by tick bites can lead to chronic stress, compromising the overall welfare of the animals. Effective tick control is crucial for mitigating the impact of infestation on cattle health and welfare. Strategies such as acaricide application, pasture management, genetic selection for tick resistance cattle, and vaccination against tick-borne diseases are commonly used. Tick infestation presents a significant challenge to cattle production under the pastoral system in Nigeria. It not only impacts cattle health but also compromises their welfare. Addressing the issue of tick infestation requires a multifaceted approach that integrates effective control strategies with sustainable management practices. Further research is needed to develop tailored interventions that account for the unique characteristics of Nigerian pastoral systems, ultimately ensuring the well-being and productivity of cattle in these settings.

Keywords: tick infestation, pastoral system, welfare, cattle

Procedia PDF Downloads 21
342 Ordered Mesoporous Carbons of Different Morphology for Loading and Controlled Release of Active Pharmaceutical Ingredients

Authors: Aleksander Ejsmont, Aleksandra Galarda, Joanna Goscianska

Abstract:

Smart porous carriers with defined structure and physicochemical properties are required for releasing the therapeutic drug with precise control of delivery time and location in the body. Due to their non-toxicity, ordered structure, chemical, and thermal stability, mesoporous carbons can be considered as modern carriers for active pharmaceutical ingredients (APIs) whose effectiveness needs frequent dosing algorithms. Such an API-carrier system, if programmed precisely, may stabilize the pharmaceutical and increase its dissolution leading to enhanced bioavailability. The substance conjugated with the material, through its prior adsorption, can later be successfully applied internally to the organism, as well as externally if the API release is feasible under these conditions. In the present study, ordered mesoporous carbons of different morphologies and structures, prepared by hard template method, were applied as carriers in the adsorption and controlled release of active pharmaceutical ingredients. In the first stage, the carbon materials were synthesized and functionalized with carboxylic groups by chemical oxidation using ammonium persulfate solution and then with amine groups. Materials obtained were thoroughly characterized with respect to morphology (scanning electron microscopy), structure (X-ray diffraction, transmission electron microscopy), characteristic functional groups (FT-IR spectroscopy), acid-base nature of surface groups (Boehm titration), parameters of the porous structure (low-temperature nitrogen adsorption) and thermal stability (TG analysis). This was followed by a series of tests of adsorption and release of paracetamol, benzocaine, and losartan potassium. Drug release experiments were performed in the simulated gastric fluid of pH 1.2 and phosphate buffer of pH 7.2 or 6.8 at 37.0 °C. The XRD patterns in the small-angle range and TEM images revealed that functionalization of mesoporous carbons with carboxylic or amine groups leads to the decreased ordering of their structure. Moreover, the modification caused a considerable reduction of the carbon-specific surface area and pore volume, but it simultaneously resulted in changing their acid-base properties. Mesoporous carbon materials exhibit different morphologies, which affect the host-guest interactions during the adsorption process of active pharmaceutical ingredients. All mesoporous carbons show high adsorption capacity towards drugs. The sorption capacity of materials is mainly affected by BET surface area and the structure/size matching between adsorbent and adsorbate. Selected APIs are linked to the surface of carbon materials mainly by hydrogen bonds, van der Waals forces, and electrostatic interactions. The release behavior of API is highly dependent on the physicochemical properties of mesoporous carbons. The release rate of APIs could be regulated by the introduction of functional groups and by changing the pH of the receptor medium. Acknowledgments—This research was supported by the National Science Centre, Poland (project SONATA-12 no: 2016/23/D/NZ7/01347).

Keywords: ordered mesoporous carbons, sorption capacity, drug delivery, carbon nanocarriers

Procedia PDF Downloads 154
341 Anticancer Activity of Milk Fat Rich in Conjugated Linoleic Acid Against Ehrlich Ascites Carcinoma Cells in Female Swiss Albino Mice

Authors: Diea Gamal Abo El-Hassan, Salwa Ahmed Aly, Abdelrahman Mahmoud Abdelgwad

Abstract:

The major conjugated linoleic acid (CLA) isomers have anticancer effect, especially breast cancer cells, inhibits cell growth and induces cell death. Also, CLA has several health benefits in vivo, including antiatherogenesis, antiobesity, and modulation of immune function. The present study aimed to assess the safety and anticancer effects of milk fat CLA against in vivo Ehrlich ascites carcinoma (EAC) in female Swiss albino mice. This was based on acute toxicity study, detection of the tumor growth, life span of EAC bearing hosts, and simultaneous alterations in the hematological, biochemical, and histopathological profiles. Materials and Methods: One hundred and fifty adult female mice were equally divided into five groups. Groups (1-2) were normal controls, and Groups (3-5) were tumor transplanted mice (TTM) inoculated intraperitoneally with EAC cells (2×106 /0.2 mL). Group (3) was (TTM positive control). Group (4) TTM fed orally on balanced diet supplemented with milk fat CLA (40 mg CLA/kg body weight). Group (5) TTM fed orally on balanced diet supplemented with the same level of CLA 28 days before tumor cells inoculation. Blood samples and specimens from liver and kidney were collected from each group. The effect of milk fat CLA on the growth of tumor, life span of TTM, and simultaneous alterations in the hematological, biochemical, and histopathological profiles were examined. Results: For CLA treated TTM, significant decrease in tumor weight, ascetic volume, viable Ehrlich cells accompanied with increase in life span were observed. Hematological and biochemical profiles reverted to more or less normal levels and histopathology showed minimal effects. Conclusion: The present study proved the safety and anticancer efficiency of milk fat CLA and provides a scientific basis for its medicinal use as anticancer attributable to the additive or synergistic effects of its isomers.

Keywords: anticancer activity, conjugated linoleic acid, Ehrlich ascites carcinoma, % increase in life span, mean survival time, tumor transplanted mice.

Procedia PDF Downloads 65
340 Saco Sweet Cherry from Fundão Region, Portugal: Chemical Profile and Health-Promoting Properties

Authors: Luís R. Silva, Ana C. Gonçalves, Catarina Bento, Fábio Jesus, Branca M. Silva

Abstract:

Prunus avium Linnaeus, more known as sweet cherry, is one of the most appreciated fruit worldwide. Most of these quantities are produced in Fundão region, being Saco the cultivar most produced. Saco is very rich in bioactive compounds, especially phenolics, and presents great antioxidant capacity. The purpose of the present study was to investigate the chemical profile and biological potential, concerning antioxidant, anti-diabetic activity and protective effects towards erythrocytes by Saco sweet cherry collected from Fundão region (Portugal). The hydroethanolic extracts were prepared and passed through a C18 solid-phase extraction column. The phenolic profile analyzed by LC-DAD method allowed to the identification of 22 phenolic compounds, being 16 non-phenolics and 6 anthocyanins. In respect to non-coloured phenolics, 3-O-caffeoylquinic and ρ-coumaroylquinic acids were the main ones. Concerning to anthocyanins, cyanidin-3-O-rutinoside was found in higher amounts. Relatively to biological potential, Saco showed great antioxidant potential, through DPPH and NO radical assays, with IC50 =16.24 ± 0.46 µg/mL and IC50 = 176.69 ± 3.35 µg/mL for DPPH and NO, respectively. These results were similar to those obtained for ascorbic acid control (IC50 = 16.92 ± 0.69 and IC50 = 162.66 ± 1.31 μg/mL for DPPH and NO, respectively). In respect to antidiabetic potential, Saco revealed capacity to inhibit α-glucosidase in a dose-dependent manner (IC50 = 10.79 ± 0.40 µg/mL), being much active than positive control acarbose (IC50 = 306.66 ± 0.84 μg/mL). Additionally, Saco extracts revealed protective effects against ROO•-mediated toxicity generated by AAPH in human blood erythrocytes, inhibiting hemoglobin oxidation (IC50 = 38.57 ± 0.96 μg/mL) and hemolysis (IC50 = 73.03 ± 1.48 μg/mL), in a concentration-dependent manner. However, Saco extracts were less effective than quercetin control (IC50 = 3.10 μg/mL and IC50 = 0.7 μg/mL for inhibition of hemoglobin oxidation and hemolysis, respectively). The results obtained showed that Saco is an excellent source of phenolic compounds. These ones are natural antioxidant substances, which easily capture reactive species. This work presents new insights regarding sweet cherry antioxidant properties which may be useful for the future development of new therapeutic strategies for preventing or attenuating oxidative-related disorders.

Keywords: antioxidant capacity, health benefits, phenolic compounds, saco

Procedia PDF Downloads 297
339 Ameliorative Effect of Curcuma Longa against Arsenic Induced Reproductive Toxicity in Charles Foster Rats

Authors: Shazia Naheed Akhter, Rekha Kumari

Abstract:

An estimated 70 million population are exposed to arsenic poisoning in India in recent times. Arsenic contamination in the groundwater has caused serious health hazards among the exposed population. In Bihar, the first district was Bhojpur, where arsenic causing health issues were reported in 2002. Presently, there are 18 districts that are reported arsenic poisoning in the groundwater. The exposed population is firstly diseased with various symptoms such as skin manifestations, loss of appetite, constipation, hormonal disorders, etc. The long duration exposure has led to cause infertility in the male subjects. The present study thus aims to develop the antidote against arsenic-induced male reproductive toxicity in animal models. The study was carried out on Charles Foster Rats after the approval from Institutional Animal Ethics Committee. A total of n=18 rats (12 weeks old) of an average weight of 160 ± 20 g were used for the study. The study group included n=6 control and n= 12 treated with sodium arsenite orally at the dose of 8mg/Kg b.w daily for 40 days. The n= 6 animals were dissected and the rest n=6 was administered orally with Curcuma longa rhizome ethanolic extract at the dose of 600mg/Kg b.w per day for 40 days. At the end of the entire experiment, all the animals were dissected out and their reproductive organs were taken out, especially epididymis for sperm counts, sperm motility, sperm mortality, sperm morphology. The blood samples were collected for the hormonal assay (testosterone and luteinizing hormone), as well as for hematological and biochemical analysis. The study showed a high magnitude of degeneration in the reproductive organs of the rats in the arsenic-treated group. There were degenerative fluctuations in the sperm counts, sperm motility, sperm mortality, sperm morphology and in the hormonal parameters, as well as in the hematological and biochemical parameters in the arsenic-treated rats. But, after the administration of Curcuma longa, there was significant amelioration in all these parameters. Therefore, the present study shows that Curcuma longa plays a vital role to combat arsenic-induced male reproductive toxicity.

Keywords: sodium arsenite, Charles foster rats, ethanolic rhizome extract of curcuma longa, male reproductive toxicity, amelioration

Procedia PDF Downloads 198
338 Laboratory Diagnostic Testing of Peste des Petits Ruminants in Georgia

Authors: Nino G. Vepkhvadze, Tea Enukidze

Abstract:

Every year the number of countries around the world face the risk of the spread of infectious diseases that bring significant ecological and social-economic damage. Hence, the importance of food product safety is emphasized that is the issue of interest for many countries. To solve them, it’s necessary to conduct preventive measures against the diseases, have accurate diagnostic results, leadership, and management. The Peste des petits ruminants (PPR) disease is caused by a morbillivirus closely related to the rinderpest virus. PPR is a transboundary disease as it emerges and evolves, considered as one of the top most damaging animal diseases. The disease imposed a serious threat to sheep-breeding when the farms of sheep, goats are significantly growing within the country. In January 2016, PPR was detected in Georgia. Up to present the origin of the virus, the age relationship of affected ruminants and the distribution of PPRV in Georgia remains unclear. Due to the nature of PPR, and breeding practices in the country, reemerging of the disease in Georgia is highly likely. The purpose of the studies is to provide laboratories with efficient tools allowing the early detection of PPR emergence and re-emergences. This study is being accomplished under the Biological Threat Reduction Program project with the support of the Defense Threat Reduction Agency (DTRA). The purpose of the studies is to investigate the samples and identify areas at high risk of the disease. Georgia has a high density of small ruminant herds bred as free-ranging, close to international borders. Kakheti region, Eastern Georgia, will be considered as area of high priority for PPR surveillance. For this reason, in 2019, in Kakheti region investigated n=484 sheep and goat serum and blood samples from the same animals, utilized serology and molecular biology methods. All samples were negative by RT-PCR, and n=6 sheep samples were seropositive by ELISA-Ab. Future efforts will be concentrated in areas where the risk of PPR might be high such as international bordering regions of Georgia. For diagnostics, it is important to integrate the PPRV knowledge with epidemiological data. Based on these diagnostics, the relevant agencies will be able to control the disease surveillance.

Keywords: animal disease, especially dangerous pathogen, laboratory diagnostics, virus

Procedia PDF Downloads 98