Search results for: agriculture transformation
10 Unleashing Potential in Pedagogical Innovation for STEM Education: Applying Knowledge Transfer Technology to Guide a Co-Creation Learning Mechanism for the Lingering Effects Amid COVID-19
Authors: Lan Cheng, Harry Qin, Yang Wang
Abstract:
Background: COVID-19 has induced the largest digital learning experiment in history. There is also emerging research evidence that students have paid a high cost of learning loss from virtual learning. University-wide survey results demonstrate that digital learning remains difficult for students who struggle with learning challenges, isolation, or a lack of resources. Large-scale efforts are therefore increasingly utilized for digital education. To better prepare students in higher education for this grand scientific and technological transformation, STEM education has been prioritized and promoted as a strategic imperative in the ongoing curriculum reform essential for unfinished learning needs and whole-person development. Building upon five key elements identified in the STEM education literature: Problem-based Learning, Community and Belonging, Technology Skills, Personalization of Learning, Connection to the External Community, this case study explores the potential of pedagogical innovation that integrates computational and experimental methodologies to support, enrich, and navigate STEM education. Objectives: The goal of this case study is to create a high-fidelity prototype design for STEM education with knowledge transfer technology that contains a Cooperative Multi-Agent System (CMAS), which has the objectives of (1) conduct assessment to reveal a virtual learning mechanism and establish strategies to facilitate scientific learning engagement, accessibility, and connection within and beyond university setting, (2) explore and validate an interactional co-creation approach embedded in project-based learning activities under the STEM learning context, which is being transformed by both digital technology and student behavior change,(3) formulate and implement the STEM-oriented campaign to guide learning network mapping, mitigate the loss of learning, enhance the learning experience, scale-up inclusive participation. Methods: This study applied a case study strategy and a methodology informed by Social Network Analysis Theory within a cross-disciplinary communication paradigm (students, peers, educators). Knowledge transfer technology is introduced to address learning challenges and to increase the efficiency of Reinforcement Learning (RL) algorithms. A co-creation learning framework was identified and investigated in a context-specific way with a learning analytic tool designed in this study. Findings: The result shows that (1) CMAS-empowered learning support reduced students’ confusion, difficulties, and gaps during problem-solving scenarios while increasing learner capacity empowerment, (2) The co-creation learning phenomenon have examined through the lens of the campaign and reveals that an interactive virtual learning environment fosters students to navigate scientific challenge independently and collaboratively, (3) The deliverables brought from the STEM educational campaign provide a methodological framework both within the context of the curriculum design and external community engagement application. Conclusion: This study brings a holistic and coherent pedagogy to cultivates students’ interest in STEM and develop them a knowledge base to integrate and apply knowledge across different STEM disciplines. Through the co-designing and cross-disciplinary educational content and campaign promotion, findings suggest factors to empower evidence-based learning practice while also piloting and tracking the impact of the scholastic value of co-creation under the dynamic learning environment. The data nested under the knowledge transfer technology situates learners’ scientific journey and could pave the way for theoretical advancement and broader scientific enervators within larger datasets, projects, and communities.Keywords: co-creation, cross-disciplinary, knowledge transfer, STEM education, social network analysis
Procedia PDF Downloads 1149 Light Sensitive Plasmonic Nanostructures for Photonic Applications
Authors: Istvan Csarnovics, Attila Bonyar, Miklos Veres, Laszlo Himics, Attila Csik, Judit Kaman, Julia Burunkova, Geza Szanto, Laszlo Balazs, Sandor Kokenyesi
Abstract:
In this work, the performance of gold nanoparticles were investigated for stimulation of photosensitive materials for photonic applications. It was widely used for surface plasmon resonance experiments, not in the last place because of the manifestation of optical resonances in the visible spectral region. The localized surface plasmon resonance is rather easily observed in nanometer-sized metallic structures and widely used for measurements, sensing, in semiconductor devices and even in optical data storage. Firstly, gold nanoparticles on silica glass substrate satisfy the conditions for surface plasmon resonance in the green-red spectral range, where the chalcogenide glasses have the highest sensitivity. The gold nanostructures influence and enhance the optical, structural and volume changes and promote the exciton generation in gold nanoparticles/chalcogenide layer structure. The experimental results support the importance of localized electric fields in the photo-induced transformation of chalcogenide glasses as well as suggest new approaches to improve the performance of these optical recording media. Results may be utilized for direct, micrometre- or submicron size geometrical and optical pattern formation and used also for further development of the explanations of these effects in chalcogenide glasses. Besides of that, gold nanoparticles could be added to the organic light-sensitive material. The acrylate-based materials are frequently used for optical, holographic recording of optoelectronic elements due to photo-stimulated structural transformations. The holographic recording process and photo-polymerization effect could be enhanced by the localized plasmon field of the created gold nanostructures. Finally, gold nanoparticles widely used for electrochemical and optical sensor applications. Although these NPs can be synthesized in several ways, perhaps one of the simplest methods is the thermal annealing of pre-deposited thin films on glass or silicon surfaces. With this method, the parameters of the annealing process (time, temperature) and the pre-deposited thin film thickness influence and define the resulting size and distribution of the NPs on the surface. Localized surface plasmon resonance (LSPR) is a very sensitive optical phenomenon and can be utilized for a large variety of sensing purposes (chemical sensors, gas sensors, biosensors, etc.). Surface-enhanced Raman spectroscopy (SERS) is an analytical method which can significantly increase the yield of Raman scattering of target molecules adsorbed on the surface of metallic nanoparticles. The sensitivity of LSPR and SERS based devices is strongly depending on the used material and also on the size and geometry of the metallic nanoparticles. By controlling these parameters the plasmon absorption band can be tuned and the sensitivity can be optimized. The technological parameters of the generated gold nanoparticles were investigated and influence on the SERS and on the LSPR sensitivity was established. The LSPR sensitivity were simulated for gold nanocubes and nanospheres with MNPBEM Matlab toolbox. It was found that the enhancement factor (which characterize the increase in the peak shift for multi-particle arrangements compared to single-particle models) depends on the size of the nanoparticles and on the distance between the particles. This work was supported by GINOP- 2.3.2-15-2016-00041 project, which is co-financed by the European Union and European Social Fund. Istvan Csarnovics is grateful for the support through the New National Excellence Program of the Ministry of Human Capacities, supported by the ÚNKP-17-4 Attila Bonyár and Miklós Veres are grateful for the support of the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.Keywords: light sensitive nanocomposites, metallic nanoparticles, photonic application, plasmonic nanostructures
Procedia PDF Downloads 3048 Revolutionizing Financial Forecasts: Enhancing Predictions with Graph Convolutional Networks (GCN) - Long Short-Term Memory (LSTM) Fusion
Authors: Ali Kazemi
Abstract:
Those within the volatile and interconnected international economic markets, appropriately predicting market trends, hold substantial fees for traders and financial establishments. Traditional device mastering strategies have made full-size strides in forecasting marketplace movements; however, monetary data's complicated and networked nature calls for extra sophisticated processes. This observation offers a groundbreaking method for monetary marketplace prediction that leverages the synergistic capability of Graph Convolutional Networks (GCNs) and Long Short-Term Memory (LSTM) networks. Our suggested algorithm is meticulously designed to forecast the traits of inventory market indices and cryptocurrency costs, utilizing a comprehensive dataset spanning from January 1, 2015, to December 31, 2023. This era, marked by sizable volatility and transformation in financial markets, affords a solid basis for schooling and checking out our predictive version. Our algorithm integrates diverse facts to construct a dynamic economic graph that correctly reflects market intricacies. We meticulously collect opening, closing, and high and low costs daily for key inventory marketplace indices (e.g., S&P 500, NASDAQ) and widespread cryptocurrencies (e.g., Bitcoin, Ethereum), ensuring a holistic view of marketplace traits. Daily trading volumes are also incorporated to seize marketplace pastime and liquidity, providing critical insights into the market's shopping for and selling dynamics. Furthermore, recognizing the profound influence of the monetary surroundings on financial markets, we integrate critical macroeconomic signs with hobby fees, inflation rates, GDP increase, and unemployment costs into our model. Our GCN algorithm is adept at learning the relational patterns amongst specific financial devices represented as nodes in a comprehensive market graph. Edges in this graph encapsulate the relationships based totally on co-movement styles and sentiment correlations, enabling our version to grasp the complicated community of influences governing marketplace moves. Complementing this, our LSTM algorithm is trained on sequences of the spatial-temporal illustration discovered through the GCN, enriched with historic fee and extent records. This lets the LSTM seize and expect temporal marketplace developments accurately. Inside the complete assessment of our GCN-LSTM algorithm across the inventory marketplace and cryptocurrency datasets, the version confirmed advanced predictive accuracy and profitability compared to conventional and opportunity machine learning to know benchmarks. Specifically, the model performed a Mean Absolute Error (MAE) of 0.85%, indicating high precision in predicting day-by-day charge movements. The RMSE was recorded at 1.2%, underscoring the model's effectiveness in minimizing tremendous prediction mistakes, which is vital in volatile markets. Furthermore, when assessing the model's predictive performance on directional market movements, it achieved an accuracy rate of 78%, significantly outperforming the benchmark models, averaging an accuracy of 65%. This high degree of accuracy is instrumental for techniques that predict the course of price moves. This study showcases the efficacy of mixing graph-based totally and sequential deep learning knowledge in economic marketplace prediction and highlights the fee of a comprehensive, records-pushed evaluation framework. Our findings promise to revolutionize investment techniques and hazard management practices, offering investors and economic analysts a powerful device to navigate the complexities of cutting-edge economic markets.Keywords: financial market prediction, graph convolutional networks (GCNs), long short-term memory (LSTM), cryptocurrency forecasting
Procedia PDF Downloads 637 Optimum Irrigation System Management for Climate Resilient and Improved Productivity of Flood-based Livelihood Systems
Authors: Mara Getachew Zenebe, Luuk Fleskens, Abdu Obieda Ahmed
Abstract:
This paper seeks to advance our scientific understanding of optimizing flood utilization in regions impacted by climate change, with a focus on enhancing agricultural productivity through effective irrigation management. The study was conducted as part of a three-year (2021 to 2023) USAID-supported initiative aimed at promoting Economic Growth and Peace in the Gash Agricultural Scheme (GAS), situated in Sudan's water-stressed Eastern region. GAS is the country's largest flood-irrigated scheme, covering 100,800 hectares of cultivable land, with a potential to provide the food security needs of over a quarter of a million agro-pastoral community members. GAS relies on the Gash River, which sources its water from high-intensity rainfall events in the highlands of Ethiopia and Eritrea. However, climate change and variations in these highlands have led to increased variability in the Gash River's flow. The study conducted water balance analyses based on a ten-year dataset of the annual Gash River flow, irrigated area; as well as the evapotranspiration demand of the major sorghum crop. Data collection methods included field measurements, surveys, remote sensing, and CropWat modelling. The water balance assessment revealed that the existing three-year rotation-based irrigation system management, capping cultivated land at 33,000 hectares annually, is excessively risk-averse. While this system reduced conflicts among the agro-pastoral communities by consistently delivering on the land promised to be annually cultivated, it also increased GAS's vulnerability to flood damage due to several reasons. The irrigation efficiency over the past decade was approximately 30%, leaving significant unharnessed floodwater that caused damage to infrastructure and agricultural land. The three-year rotation resulted in inadequate infrastructural maintenance, given the destructive nature of floods. Additionally, it led to infrequent land tillage, allowing the encroachment of mesquite trees hindering major sorghum crop growth. Remote sensing data confirmed that mesquite trees have overtaken 70,000 hectares in the past two decades, rendering them unavailable for agriculture. The water balance analyses suggest shifting to a two-year rotation, covering approximately 50,000 hectares annually while maintaining risk aversion. This shift could boost GAS's annual sorghum production by two-thirds, exceeding 850,000 tons. The scheme's efficiency can be further enhanced through low-cost on-farm interventions. Currently, large irrigation plots that range from 420 to 756 hectares are irrigated with limited water distribution guidance, leading to uneven irrigation. As demonstrated through field trials, implementing internal longitudinal bunds and horizontal deflector bunds can increase adequately irrigated parts of the irrigation plots from 50% to 80% and thus nearly double the sorghum yield to 2 tons per hectare while reducing the irrigation duration from 30 days to a maximum of 17 days. Flow measurements in 2021 and 2022 confirmed that these changes sufficiently meet the sorghum crop's water requirements, even with a conservative 60% field application efficiency assumption. These insights and lessons from the GAS on enhancing agricultural resilience and sustainability in the face of climate change are relevant to flood-based livelihood systems globally.Keywords: climate change, irrigation management and productivity, variable flood flows, water balance analysis
Procedia PDF Downloads 726 Times2D: A Time-Frequency Method for Time Series Forecasting
Authors: Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan
Abstract:
Time series data consist of successive data points collected over a period of time. Accurate prediction of future values is essential for informed decision-making in several real-world applications, including electricity load demand forecasting, lifetime estimation of industrial machinery, traffic planning, weather prediction, and the stock market. Due to their critical relevance and wide application, there has been considerable interest in time series forecasting in recent years. However, the proliferation of sensors and IoT devices, real-time monitoring systems, and high-frequency trading data introduce significant intricate temporal variations, rapid changes, noise, and non-linearities, making time series forecasting more challenging. Classical methods such as Autoregressive integrated moving average (ARIMA) and Exponential Smoothing aim to extract pre-defined temporal variations, such as trends and seasonality. While these methods are effective for capturing well-defined seasonal patterns and trends, they often struggle with more complex, non-linear patterns present in real-world time series data. In recent years, deep learning has made significant contributions to time series forecasting. Recurrent Neural Networks (RNNs) and their variants, such as Long short-term memory (LSTMs) and Gated Recurrent Units (GRUs), have been widely adopted for modeling sequential data. However, they often suffer from the locality, making it difficult to capture local trends and rapid fluctuations. Convolutional Neural Networks (CNNs), particularly Temporal Convolutional Networks (TCNs), leverage convolutional layers to capture temporal dependencies by applying convolutional filters along the temporal dimension. Despite their advantages, TCNs struggle with capturing relationships between distant time points due to the locality of one-dimensional convolution kernels. Transformers have revolutionized time series forecasting with their powerful attention mechanisms, effectively capturing long-term dependencies and relationships between distant time points. However, the attention mechanism may struggle to discern dependencies directly from scattered time points due to intricate temporal patterns. Lastly, Multi-Layer Perceptrons (MLPs) have also been employed, with models like N-BEATS and LightTS demonstrating success. Despite this, MLPs often face high volatility and computational complexity challenges in long-horizon forecasting. To address intricate temporal variations in time series data, this study introduces Times2D, a novel framework that parallelly integrates 2D spectrogram and derivative heatmap techniques. The spectrogram focuses on the frequency domain, capturing periodicity, while the derivative patterns emphasize the time domain, highlighting sharp fluctuations and turning points. This 2D transformation enables the utilization of powerful computer vision techniques to capture various intricate temporal variations. To evaluate the performance of Times2D, extensive experiments were conducted on standard time series datasets and compared with various state-of-the-art algorithms, including DLinear (2023), TimesNet (2023), Non-stationary Transformer (2022), PatchTST (2023), N-HiTS (2023), Crossformer (2023), MICN (2023), LightTS (2022), FEDformer (2022), FiLM (2022), SCINet (2022a), Autoformer (2021), and Informer (2021) under the same modeling conditions. The initial results demonstrated that Times2D achieves consistent state-of-the-art performance in both short-term and long-term forecasting tasks. Furthermore, the generality of the Times2D framework allows it to be applied to various tasks such as time series imputation, clustering, classification, and anomaly detection, offering potential benefits in any domain that involves sequential data analysis.Keywords: derivative patterns, spectrogram, time series forecasting, times2D, 2D representation
Procedia PDF Downloads 415 Non-Thermal Pulsed Plasma Discharge for Contaminants of Emerging Concern Removal in Water
Authors: Davide Palma, Dimitra Papagiannaki, Marco Minella, Manuel Lai, Rita Binetti, Claire Richard
Abstract:
Modern analytical technologies allow us to detect water contaminants at trace and ultra-trace concentrations highlighting how a large number of organic compounds is not efficiently abated by most wastewater treatment facilities relying on biological processes; we usually refer to these micropollutants as contaminants of emerging concern (CECs). The availability of reliable end effective technologies, able to guarantee the high standards of water quality demanded by legislators worldwide, has therefore become a primary need. In this context, water plasma stands out among developing technologies as it is extremely effective in the abatement of numerous classes of pollutants, cost-effective, and environmentally friendly. In this work, a custom-built non-thermal pulsed plasma discharge generator was used to abate the concentration of selected CECs in the water samples. Samples were treated in a 50 mL pyrex reactor using two different types of plasma discharge occurring at the surface of the treated solution or, underwater, working with positive polarity. The distance between the tips of the electrodes determined where the discharge was formed: underwater when the distance was < 2mm, at the water surface when the distance was > 2 mm. Peak voltage was in the 100-130kV range with typical current values of 20-40 A. The duration of the pulse was 500 ns, and the frequency of discharge could be manually set between 5 and 45 Hz. Treatment of 100 µM diclofenac solution in MilliQ water, with a pulse frequency of 17Hz, revealed that surface discharge was more efficient in the degradation of diclofenac that was no longer detectable after 6 minutes of treatment. Over 30 minutes were required to obtain the same results with underwater discharge. These results are justified by the higher rate of H₂O₂ formation (21.80 µmolL⁻¹min⁻¹ for surface discharge against 1.20 µmolL⁻¹min⁻¹ for underwater discharge), larger discharge volume and UV light emission, high rate of ozone and NOx production (up to 800 and 1400 ppb respectively) observed when working with surface discharge. Then, the surface discharge was used for the treatment of the three selected perfluoroalkyl compounds, namely, perfluorooctanoic acid (PFOA), perfluorohexanoic acid (PFHxA), and pefluorooctanesulfonic acid (PFOS) both individually and in mixture, in ultrapure and groundwater matrices with initial concentration of 1 ppb. In both matrices, PFOS exhibited the best degradation reaching complete removal after 30 min of treatment (degradation rate 0.107 min⁻¹ in ultrapure water and 0.0633 min⁻¹ in groundwater), while the degradation rate of PFOA and PFHxA was slower of around 65% and 80%, respectively. Total nitrogen (TN) measurements revealed levels up to 45 mgL⁻¹h⁻¹ in water samples treated with surface discharge, while, in analogous samples treated with underwater discharge, TN increase was 5 to 10 times lower. These results can be explained by the significant NOx concentrations (over 1400 ppb) measured above functioning reactor operating with superficial discharge; rapid NOx hydrolysis led to nitrates accumulation in the solution explaining the observed evolution of TN values. Ionic chromatography measures confirmed that the vast majority of TN was under the form of nitrates. In conclusion, non-thermal pulsed plasma discharge, obtained with a custom-built generator, was proven to effectively degrade diclofenac in water matrices confirming the potential interest of this technology for wastewater treatment. The surface discharge was proven to be more effective in CECs removal due to the high rate of formation of H₂O₂, ozone, reactive radical species, and strong UV light emission. Furthermore, nitrates enriched water obtained after treatment could be an interesting added-value product to be used as fertilizer in agriculture. Acknowledgment: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 765860.Keywords: CECs removal, nitrogen fixation, non-thermal plasma, water treatment
Procedia PDF Downloads 1194 An Integrated Multisensor/Modeling Approach Addressing Climate Related Extreme Events
Authors: H. M. El-Askary, S. A. Abd El-Mawla, M. Allali, M. M. El-Hattab, M. El-Raey, A. M. Farahat, M. Kafatos, S. Nickovic, S. K. Park, A. K. Prasad, C. Rakovski, W. Sprigg, D. Struppa, A. Vukovic
Abstract:
A clear distinction between weather and climate is a necessity because while they are closely related, there are still important differences. Climate change is identified when we compute the statistics of the observed changes in weather over space and time. In this work we will show how the changing climate contribute to the frequency, magnitude and extent of different extreme events using a multi sensor approach with some synergistic modeling activities. We are exploring satellite observations of dust over North Africa, Gulf Region and the Indo Gangetic basin as well as dust versus anthropogenic pollution events over the Delta region in Egypt and Seoul through remote sensing and utilize the behavior of the dust and haze on the aerosol optical properties. Dust impact on the retreat of the glaciers in the Himalayas is also presented. In this study we also focus on the identification and monitoring of a massive dust plume that blew off the western coast of Africa towards the Atlantic on October 8th, 2012 right before the development of Hurricane Sandy. There is evidence that dust aerosols played a non-trivial role in the cyclogenesis process of Sandy. Moreover, a special dust event "An American Haboob" in Arizona is discussed as it was predicted hours in advance because of the great improvement we have in numerical, land–atmosphere modeling, computing power and remote sensing of dust events. Therefore we performed a full numerical simulation to that event using the coupled atmospheric-dust model NMME–DREAM after generating a mask of the potentially dust productive regions using land cover and vegetation data obtained from satellites. Climate change also contributes to the deterioration of different marine habitats. In that regard we are also presenting some work dealing with change detection analysis of Marine Habitats over the city of Hurghada, Red Sea, Egypt. The motivation for this work came from the fact that coral reefs at Hurghada have undergone significant decline. They are damaged, displaced, polluted, stepped on, and blasted off, in addition to the effects of climate change on the reefs. One of the most pressing issues affecting reef health is mass coral bleaching that result from an interaction between human activities and climatic changes. Over another location, namely California, we have observed that it exhibits highly-variable amounts of precipitation across many timescales, from the hourly to the climate timescale. Frequently, heavy precipitation occurs, causing damage to property and life (floods, landslides, etc.). These extreme events, variability, and the lack of good, medium to long-range predictability of precipitation are already a challenge to those who manage wetlands, coastal infrastructure, agriculture and fresh water supply. Adding on to the current challenges for long-range planning is climate change issue. It is known that La Niña and El Niño affect precipitation patterns, which in turn are entwined with global climate patterns. We have studied ENSO impact on precipitation variability over different climate divisions in California. On the other hand the Nile Delta has experienced lately an increase in the underground water table as well as water logging, bogging and soil salinization. Those impacts would pose a major threat to the Delta region inheritance and existing communities. There has been an undergoing effort to address those vulnerabilities by looking into many adaptation strategies.Keywords: remote sensing, modeling, long range transport, dust storms, North Africa, Gulf Region, India, California, climate extremes, sea level rise, coral reefs
Procedia PDF Downloads 4863 Design and Construction of a Solar Dehydration System as a Technological Strategy for Food Sustainability in Difficult-to-Access Territories
Authors: Erika T. Fajardo-Ariza, Luis A. Castillo-Sanabria, Andrea Nieto-Veloza, Carlos M. Zuluaga-Domínguez
Abstract:
The growing emphasis on sustainable food production and preservation has driven the development of innovative solutions to minimize postharvest losses and improve market access for small-scale farmers. This project focuses on designing, constructing, and selecting materials for solar dryers in certain regions of Colombia where inadequate infrastructure limits access to major commercial hubs. Postharvest losses pose a significant challenge, impacting food security and farmer income. Addressing these losses is crucial for enhancing the value of agricultural products and supporting local economies. A comprehensive survey of local farmers revealed substantial challenges, including limited market access, inefficient transportation, and significant postharvest losses. For crops such as coffee, bananas, and citrus fruits, losses range from 0% to 50%, driven by factors like labor shortages, adverse climatic conditions, and transportation difficulties. To address these issues, the project prioritized selecting effective materials for the solar dryer. Various materials, recovered acrylic, original acrylic, glass, and polystyrene, were tested for their performance. The tests showed that recovered acrylic and glass were most effective in increasing the temperature difference between the interior and the external environment. The solar dryer was designed using Fusion 360® software (Autodesk, USA) and adhered to architectural guidelines from Architectural Graphic Standards. It features up to sixteen aluminum trays, each with a maximum load capacity of 3.5 kg, arranged in two levels to optimize drying efficiency. The constructed dryer was then tested with two locally available plant materials: green plantains (Musa paradisiaca L.) and snack bananas (Musa AA Simonds). To monitor performance, Thermo hygrometers and an Arduino system recorded internal and external temperature and humidity at one-minute intervals. Despite challenges such as adverse weather conditions and delays in local government funding, the active involvement of local producers was a significant advantage, fostering ownership and understanding of the project. The solar dryer operated under conditions of 31°C dry bulb temperature (Tbs), 55% relative humidity, and 21°C wet bulb temperature (Tbh). The drying curves showed a consistent drying period with critical moisture content observed between 200 and 300 minutes, followed by a sharp decrease in moisture loss, reaching an equilibrium point after 3,400 minutes. Although the solar dryer requires more time and is highly dependent on atmospheric conditions, it can approach the efficiency of an electric dryer when properly optimized. The successful design and construction of solar dryer systems in difficult-to-access areas represent a significant advancement in agricultural sustainability and postharvest loss reduction. By choosing effective materials such as recovered acrylic and implementing a carefully planned design, the project provides a valuable tool for local farmers. The initiative not only improves the quality and marketability of agricultural products but also offers broader environmental benefits, such as reduced reliance on fossil fuels and decreased waste. Additionally, it supports economic growth by enhancing the value of crops and potentially increasing farmer income. The successful implementation and testing of the dryer, combined with the engagement of local stakeholders, highlight its potential for replication and positive impact in similar contexts.Keywords: drying technology, postharvest loss reduction, solar dryers, sustainable agriculture
Procedia PDF Downloads 272 A Comprehensive Study of Spread Models of Wildland Fires
Authors: Manavjit Singh Dhindsa, Ursula Das, Kshirasagar Naik, Marzia Zaman, Richard Purcell, Srinivas Sampalli, Abdul Mutakabbir, Chung-Horng Lung, Thambirajah Ravichandran
Abstract:
These days, wildland fires, also known as forest fires, are more prevalent than ever. Wildfires have major repercussions that affect ecosystems, communities, and the environment in several ways. Wildfires lead to habitat destruction and biodiversity loss, affecting ecosystems and causing soil erosion. They also contribute to poor air quality by releasing smoke and pollutants that pose health risks, especially for individuals with respiratory conditions. Wildfires can damage infrastructure, disrupt communities, and cause economic losses. The economic impact of firefighting efforts, combined with their direct effects on forestry and agriculture, causes significant financial difficulties for the areas impacted. This research explores different forest fire spread models and presents a comprehensive review of various techniques and methodologies used in the field. A forest fire spread model is a computational or mathematical representation that is used to simulate and predict the behavior of a forest fire. By applying scientific concepts and data from empirical studies, these models attempt to capture the intricate dynamics of how a fire spreads, taking into consideration a variety of factors like weather patterns, topography, fuel types, and environmental conditions. These models assist authorities in understanding and forecasting the potential trajectory and intensity of a wildfire. Emphasizing the need for a comprehensive understanding of wildfire dynamics, this research explores the approaches, assumptions, and findings derived from various models. By using a comparison approach, a critical analysis is provided by identifying patterns, strengths, and weaknesses among these models. The purpose of the survey is to further wildfire research and management techniques. Decision-makers, researchers, and practitioners can benefit from the useful insights that are provided by synthesizing established information. Fire spread models provide insights into potential fire behavior, facilitating authorities to make informed decisions about evacuation activities, allocating resources for fire-fighting efforts, and planning for preventive actions. Wildfire spread models are also useful in post-wildfire mitigation strategies as they help in assessing the fire's severity, determining high-risk regions for post-fire dangers, and forecasting soil erosion trends. The analysis highlights the importance of customized modeling approaches for various circumstances and promotes our understanding of the way forest fires spread. Some of the known models in this field are Rothermel’s wildland fuel model, FARSITE, WRF-SFIRE, FIRETEC, FlamMap, FSPro, cellular automata model, and others. The key characteristics that these models consider include weather (includes factors such as wind speed and direction), topography (includes factors like landscape elevation), and fuel availability (includes factors like types of vegetation) among other factors. The models discussed are physics-based, data-driven, or hybrid models, also utilizing ML techniques like attention-based neural networks to enhance the performance of the model. In order to lessen the destructive effects of forest fires, this initiative aims to promote the development of more precise prediction tools and effective management techniques. The survey expands its scope to address the practical needs of numerous stakeholders. Access to enhanced early warning systems enables decision-makers to take prompt action. Emergency responders benefit from improved resource allocation strategies, strengthening the efficacy of firefighting efforts.Keywords: artificial intelligence, deep learning, forest fire management, fire risk assessment, fire simulation, machine learning, remote sensing, wildfire modeling
Procedia PDF Downloads 811 Impacts of Transformational Leadership: Petronas Stations in Sabah, Malaysia
Authors: Lizinis Cassendra Frederick Dony, Jirom Jeremy Frederick Dony, Cyril Supain Christopher
Abstract:
The purpose of this paper is to improve the devotion to leadership through HR practices implementation at the PETRONAS stations. This emphasize the importance of personal grooming and Customer Care hospitality training for their front line working individuals and teams’ at PETRONAS stations in Sabah. Based on Thomas Edison, International Leadership Journal, theory, research, education and development practice and application to all organizational phenomena may affect or be affected by leadership. FINDINGS – PETRONAS in short called Petroliam Nasional Berhad is a Malaysian oil and gas company that was founded on August 17, 1974. Wholly owned by the Government of Malaysia, the corporation is vested with the entire oil and gas resources in Malaysia and is entrusted with the responsibility of developing and adding value to these resources. Fortune ranks PETRONAS as the 68th largest company in the world in 2012. It also ranks PETRONAS as the 12th most profitable company in the world and the most profitable in Asia. As of the end of March 2005, the PETRONAS Group comprised 103 wholly owned subsidiaries, 19 partly owned outfits and 57 associated companies. The group is engaged in a wide spectrum of petroleum activities, including upstream exploration and production of oil and gas to downstream oil refining, marketing and distribution of petroleum products, trading, gas processing and liquefaction, gas transmission pipeline network operations, marketing of liquefied natural gas; petrochemical manufacturing and marketing; shipping; automotive engineering and property investment. PETRONAS has growing their marketing channel in a competitive market. They have combined their resources to pursue common goals. PETRONAS provides opportunity to carry out Industrial Training Job Placement to the University students in Malaysia for 6-8 months. The effects of the Industrial Training have exposed them to the real working environment experience acting representing on behalf of General Manager for almost one year. Thus, the management education and reward incentives schemes have aspire the working teams transformed to gain their good leadership. Furthermore, knowledge and experiences are very important in the human capital development transformation. SPSS extends the accurate analysis PETRONAS achievement through 280 questionnaires and 81 questionnaires through excel calculation distributed to interview face to face with the customers, PETRONAS dealers and front desk staffs stations in the 17 stations in Kota Kinabalu, Sabah. Hence, this research study will improve its service quality innovation and business sustainability performance optimization. ORIGINALITY / VALUE – The impact of Transformational Leadership practices have influenced the working team’s behaviour as a Brand Ambassadors of PETRONAS. Finally, the findings correlation indicated that PETRONAS stations needs more HR resources practices to deploy more customer care retention resources in mitigating the business challenges in oil and gas industry. Therefore, as the business established at stiff competition globally (Cooper, 2006; Marques and Simon, 2006), it is crucial for the team management should be capable to minimize noises risk, financial risk and mitigating any other risks as a whole at the optimum level. CONCLUSION- As to conclude this research found that both transformational and transactional contingent reward leadership4 were positively correlated with ratings of platoon potency and ratings of leadership for the platoon leader and sergeant were moderately inter correlated. Due to this identification, we recommended that PETRONAS management should offers quality team management in PETRONAS stations in a broader variety of leadership training specialization in the operation efficiency at the front desk Customer Care hospitality. By having the reliability and validity of job experiences, it leverages diversity teamwork and cross collaboration. Other than leveraging factor, PETRONAS also will strengthen the interpersonal front liners effectiveness and enhance quality of interaction through effective communication. Finally, through numerous CSR correlation studies regression PETRONAS performance on Corporate Social Performance and several control variables.1 CSR model activities can be mis-specified if it is not controllable under R & D which evident in various feedbacks collected from the local communities and younger generation is inclined to higher financial expectation from PETRONAS. But, however, it created a huge impact on the nation building as part of its social adaptability overreaching their business stakeholders’ satisfaction in Sabah.Keywords: human resources practices implementation (hrpi), source of competitive advantage in people’s development (socaipd), corporate social responsibility (csr), service quality at front desk stations (sqafd), impacts of petronas leadership (iopl)
Procedia PDF Downloads 347