A Comparative Study of Electrical Transport Phenomena in Ultrathin vs. Nanoscale SOI MOSFETs Devices
Authors: A. Karsenty, A. Chelly
Abstract:
Ultrathin (UTD) and Nanoscale (NSD) SOI-MOSFET devices, sharing a similar W/L but with a channel thickness of 46nm and 1.6nm respectively, were fabricated using a selective “gate recessed” process on the same silicon wafer. The electrical transport characterization at room temperature has shown a large difference between the two kinds of devices and has been interpreted in terms of a huge unexpected series resistance. Electrical characteristics of the Nanoscale device, taken in the linear region, can be analytically derived from the ultrathin device ones. A comparison of the structure and composition of the layers, using advanced techniques such as Focused Ion Beam (FIB) and High Resolution TEM (HRTEM) coupled with Energy Dispersive X-ray Spectroscopy (EDS), contributes an explanation as to the difference of transport between the devices.
Keywords: Nanoscale Devices, SOI MOSFET, Analytical Model, Electron Transport.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1088906
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010References:
[1] D. Esseni, P. Palestri and L. Selmi, "Nanoscale MOS transistors, semi-classical transport and applications", Cambridge University Press, 2011.
[2] A. Karsenty, A. Sa’ar, N. Ben-Yosef, and J. Shappir, "Enhanced electroluminescence in silicon-on-insulator metal-oxide-semiconductor transistors with thin silicon layer", Appl. Phys. Lett., 82, 4830 (2003).
[3] D. Abraham, A. Chelly, D. Elbaz, S. Schiff, M. Nabozny, and Z. Zalevsky, "Modeling of Current-Voltage Characteristics of the Photoactivated Device Based on SOI Technology", Active and Passive Electronic Components, vol. 2012, Article ID 276145, 7 pages, 2012.
[4] M. Chan, F. Assaderaghi, S. A. Parke, S. S.Yuen, C. Hu, and P. K. Ko, "Recess channel structure for reducing source/drain series resistance in ultra-thin SOI MOSFETs", Proc. IEEE Int. SOI Conf.,Oct.1993, pp.172–173.
[5] S. Cristaloveanu and S. S. Li, "Methods of Forming SOI Wafers - Electrical Characterization of S.O.I. Material and Devices", Kluwer Academic Publishers, Chapter 2, p. 7-15, 1995.
[6] S. Cristoloveanu, Status, "Trends and Challenges of Silicon-on-Insulator Technology - SOI: A Metamorphosis of Silicon", IEEE Circuits & Devices, p. 26-32, January 1999.
[7] M. Bruel, B. Aspar, B. Charlet, C. Maleville, T. Poumeyrol, A. Soubie, A.-J. Auberton-Herve, J. M. Lamure, T. Barge, F. Metral, and S. Trucchi, "SMART CUT: A Promising New SOI Material Technology", Proceedings 1995 IEEE International Conference, p. 178-179, October 1995.
[8] B. Dance, "European SOI Comes of Age, Semiconductor International", p. 83-90, November 1994.
[9] L. Peters, "SOI Takes Over Where Silicon Leaves Off", Semiconductor International, March 1993.
[10] M. Alles and S. Wilson, "Thin Film Silicon on Insulator: An Enabling Technology", Semiconductor International, April 1997.
[11] A. J. Auberton-Herve and Tadashi Nishimura, "SOI-based devices: Status Overview", Solid State Technology, July 1994.
[12] A. J. Auberton-Herve, J. M. Lamure, T. Barge, M. Bruel, B. Aspar, and J. L. Pelloie, "SOI Materials for ULSI Applications", Semiconductor International, p.97-104, October 1995.
[13] T. E. Thompson, "SOI sandwich promises fast, low-power ICs", Electronic Business Today, p. 43-47, October 1995.
[14] J. Rhea, "DARPA low power program aims at mobile applications", Military & Aerospace Electronics, July 1996.
[15] P. H. Singer, "U. S. Chipmakers: Penny-Wise, Million-Dollar Foolish", Semiconductor International, August 1995.
[16] M. Bruel, B. Aspar, B. Charlet, C. Maleville, T. Poumeyrol, A. Soubie, A.-J. Auberton-Herve, J. M. Lamure, T. Barge, F. Metral, and S. Trucchi, “SMART CUT ®: A Promising New SOI Material Technology”, Proceedings 1995 IEEE International Conference, p. 178-179, October 1995.
[17] B. Aspar, C. Pudda, A. M. Papon, A.J. Auberton-Herve, and J. M. Lamure, "Ultra-thin buried oxide layers formed by low dose SIMOX processes", The Electrochemical Society: proceedings, Vol. 94, No. 11, p. 62, abstract 541 Silicon On Insulator Technology and Devices edited by S. Cristoloveanu.
[18] R. Datta, L. P. Allen, R. P. Dolan, K. S. Jones, and M. Farley, "Independent implant parameter effects on SIMOX SOI dislocation formation", Materials Science & Engineering B, Vol. 46, Elsevier Science publications p. 8-13, 1997.
[19] V. V. Afanas’ev, G. A. Brown, H. L. Hughes, S. T. Liu, and A. G. Revesz, "Conducting and Charge-Trapping Defects in Buried Oxide Layers of SIMOX Structures", J. Electrochem. Soc., Vol. 143, No. 1, p. 347-352, January 1996.
[20] A. Karsenty, A. Chelly, "Modeling the Transfer Characteristics for High Series Resistance Nanoscale Silicon-On-Insulator (SOI) MOSFETs", Appl. Phys. Lett., submitted for publication.
[21] A. Karsenty, "Study of the Electrical and Electro-Optical Phenomena in Thin SOI MOS Transistors", PhD Thesis, Hebrew University Of Jerusalem, May 2003.
[22] L. Do Thanh and P. Balk, "Elimination and Generation of Si-SiO2 Interface Traps by Low Temperature Hydrogen Annealing", J. Electrochem. Soc., Vol. 135, No. 7, p. 1797-1801, July 1988.
[23] S. Cristoloveanu and T. Ouisse, "The Physics and Chemistry of SiO2 and the Si-SiO2 Interface 2", edited by C.R. Helms and B.E. Deal Plenum Press New York, p. 309-318, 1993.
[24] V. V. Afanas’ev, A. G. Revesz, and H. L. Hughes, "Confinement Phenomena in Buried Oxides of SIMOX Structures as Affected by Processing", J. Electrochem. Soc., Vol. 143, No. 2, p. 695-700, February 1996.
[25] J. Wan, C. Le Royer, A. Zaslavsky, S. Cristoloveanu, "Gate-induced drain leakage in FD-SOI devices: What the TFET teaches us about the MOSFET", Microelectronic Engineering, Volume 88, issue 7, July 2011, Pages 1301-1304.
[26] J. Wang, N. Kistler, J. Woo, and C. R. Viswanathan, "Mobility-field behavior of fully depleted SOI MOSFET's", IEEE Electron Device Lett. 15, 117 (1994).
[27] D. Esseni, M. Mastrapasqua, G.K. Celler, C. Fiegna, L. Selmi, and E. Sangiorgi, "Low field electron and hole mobility of SOI transistors fabricated on ultrathin silicon films for deep submicrometer technology application", IEEE Electron Device Lett. 48, 2842 (2001).
[28] K. Uchida and S. Takagi, "Carrier scattering induced by thickness fluctuation of silicon-on-insulator film in ultrathin-body metal–oxide–semiconductor field-effect transistors", Appl. Phys. Lett. 82, 2916 (2003).
[29] T. Ernst, S. Cristoloveanu, G. Ghibaudo, T.Ouisse, S. Horiguchi, Y. Ono, Y. Takahashi and K. Murase, "Ultimately thin double-gate SOI MOSFETs", IEEE Trans. Electron Devices ED-50, 3 (2003).
[30] Y. Omura, S. Horiguchi, M. Tabe and K. Kishi, "Quantum-Mechanical Effects on the Threshold Voltage of Ultathin-SOI nMOSFET’s", IEEE Electron Device Lett. 14, 569 (1993).
[31] J. H. Choi, Y.J. Park and H.S. Min, "Electron mobility behavior in extremely thin SOI technology with MOSFETs", IEEE Electron Device Lett. 16, 527 (1995).
[32] M. Schmidt, M.C. Lemm. H.D.B. Gottlob, F. Driussi, L.Selmi and H. Kurz, "Mobility extraction in SOI MOSFETs with sub 1 nm body thickness", Solid State Electronics 53, 1246 (2009).
[33] K. Lee, M. Shur and T. A. Fjeldly, "Semiconductor device modeling for VLSI", Prentice Hall 244 (1993).
[34] K. K. NG and W. T. Lynch, "Analysis of the gate-voltage-dependent series resistance of MOSFET's", IEEE Trans. Electron Devices ED-33, 7 (1986).