Oxygen-Interstitials and Group-V Element Doping for p-Type ZnO
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33090
Oxygen-Interstitials and Group-V Element Doping for p-Type ZnO

Authors: A. M. Gsiea, J. P. Goss, P. R. Briddon, K. M. Etmimi

Abstract:

In realizing devices using ZnO, a key challenge is the production of p-type material. Substitution of oxygen by a group-V impurity is thought to result in deep acceptor levels, but a candidate made up from a complex of a group-V impurity (P, As, Sb) on a Zn site coupled with two vacant Zn sites is widely viewed as a candidate. We show using density-functional simulations that in contrast to such a view, complexes involving oxygen interstitials are energetically more favorable, resulting in group-V impurities coordinated with four, five or six oxygen atoms.

Keywords: DFT, Oxygen, p-Type, ZnO.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1076230

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2485

References:


[1] D. M. Bagnall, Y. F. Chen, , Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, Appl. Phys. Lett. 70, 2230 (1997).
[2] Z. K. Tang, G. K. L.Wong, M. Yu, P. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Appl. Phys. Lett. 72, 464 (1998).
[3] D. K. Hwang, S. H. Kang, J. H. Lim, E. J. Yang, J. Y. Oh, J. H. Yang, and S. J. Park, Appl. Phys. Lett. 86, 222101 (2005).
[4] S. B. Zhang, S.-H. Wei, and A. Zunger, Phys. Rev. B 63, 075205 (2001).
[5] A. Kobayashi, O. F. Sankey, and J. D. Dow, Phys. Rev. B 28, 946 (1983).
[6] C. H. Park, S. B. Zhang, and S.-H. Wei, Phys. Rev. B 66, 073202 (2002).
[7] J. L. Lyons, A. Janotti, and C. G. Van de Walle, Appl. Phys. Lett. 95, 252105 (2009).
[8] S. Lany and A. Zunger, Phys. Rev. B 81, 205209 (2010).
[9] D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, Appl. Phys. Lett. 80, 1830 (2002).
[10] Y. R. Ryu, T. S. Lee, and H. W. White, Appl. Phys. Lett. 83, 87 (2003).
[11] J. M. Bian, X. M. Li, C. Y. Zhang, W. D. Yu, and X. D. Gao, Appl. Phys. Lett. 85, 4070 (2004).
[12] A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, S. F. Ohtani, K. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, Nature Mater. 4, 42 (2005).
[13] Y. R. Ryua, T. S. Lee, J. H. Leem, and H. W. White, Appl. Phys. Lett. 83, 4032 (2003).
[14] K.-K. Kim, H.-S. Kim, D.-K. Hwang, J.-H. Lim, and S.-J. Park, Appl. Phys. Lett. 83, 63 (2003).
[15] F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, and J. L. Liu, Appl. Phys. Lett. 87, 252101 (2005).
[16] F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, and J. L. Liu, Appl. Phys. Lett. 87, 252102 (2005).
[17] A. Allenic, W. Guo, Y. B. Chen, Y. Che, Z. D. Hu, B. Lu, and X. Q. Pan, J. Phys. D 41, 025103 (2008).
[18] G. Xiong, J. Wilkinson, B. Mischuck, S. T¨uzemen, K. B. Ucer, and R. T. Williams, Appl. Phys. Lett. 80, 1195 (2002).
[19] Y. W. Heo, K. Ip, S. J. Park, S. J. Pearton, and D. P. Norton, Appl. Phys. Lett. 78, 53 (2004).
[20] S. Limpijumnong, S. B. Zhang, S.-H.. Wei, and C. H. Park, Phys. Rev. Lett. 92, 155504 (2004).
[21] W.-J. Lee, J. Kang, and K. J. Chang, Phys. Rev. B 73, 024117 (2006).
[22] D. E. Pugel, R. D. Vispute, S. S. Hullavarad, T. Venkatesan, and B. Varughese, J. Appl. Phys. 101, 063538 (2007).
[23] U. Wahl, J. G. Correia, T. Mendonc┬©a, and S. Decoster, Appl. Phys. Lett. 94, 261901 (2009).
[24] U. Wahl, E. Rita, J. G. Correia, A. C. Marques, E. Alves, J. C. Soares, and ISOLDE Collaboration, Phys. Rev. Lett. 95, 215503 (2005).
[25] J. M. Qin, B. Yao, Y. Yan, J. Y. Zhang, X. P. Jia, Z. Z. Zhang, B. H. Li, C. X. Shan, and D. Z. Shen, Appl. Phys. Lett. 95, 022101 (2009).
[26] J. Hu and B. C. Pan, J. Chem. Phys. 129, 154706 (2008).
[27] P. Erhart, K. Albe, and A. Klein, Phys. Rev. B 73, 205203 (2006).
[28] A. Janotti and C. G. Van de Walle, Phys. Rev. B 76, 165202 (2007).
[29] P. R. Briddon and R. Jones, Phys. Status Solidi B 217, 131 (2000).
[30] M. J. Rayson and P. R. Briddon, Computer Phys. Comm. 178, 128 (2008).
[31] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
[32] N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).
[33] J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
[34] J. P. Goss, M. J. Shaw, and P. R. Briddon, in Theory of Defects in Semiconductors, Vol. 104 of Topics in Applied Physics, edited by David A. Drabold and Stefan K. Estreicher (Springer, Berlin/Heidelberg, 2007), pp. 69-94.
[35] M. J. Rayson and P. R. Briddon, Phys. Rev. B 80, 205104 (2009).
[36] CRC handbook of chemistry and physics, 73 ed., edited by D. R. Lide (CRC, Boca Raton, FL, 1992).
[37] S. Lany and A. Zunger, Phys. Rev. B 78, 235104 (2008).
[38] We do not include nitrogen in this study as the chemistry of this species is distinct from that of the larger main-group elements. A study of the comparable systems involving N is in preparation.
[39] Z. G. Yu, H. Gong, and P. Wu, Appl. Phys. Lett. 86, 212105 (2005).
[40] R.-Y. Tian and Y.-J. Zhao, J. Appl. Phys. 106, 043707 (2009).
[41] C. H. Park, S. B. Zhang, and Su-Huai Wei, Phys. Rev. B 66, 073202 (2002).
[42] Since the composition of these centers differs by one Zn and one O atom, the difference in the formation energies is independent of ╬╝O.
[43] R. Qin, J. Zheng, J. Lu, L. Wang, L. Lai, G. Luo, J. Zhou, H. Li, Z. Gao, G. Li, and W. N. Mei, J. Phys. Chem. C 113, 9541 (2009).
[44] J. Dong, A. A. Kinkhabwala, and P. F. McMillan, Phys. Scr. 10, 2319 (2004).
[45] F. Brunet, A.-M. Flank, J.-P. Iti'e, T. Irifune, and P. Lagarde, Am. Miner. 92, 989 (2007).
[46] N. V. Timosheva, A. Chandrasekaran, R. O. Day, and R. R. Holmes, Inorg. Chem. 37, 3862 (1998).
[47] D.-K. Hwang, H.-S. Kim, J.-H. Lim, J.-Y. Oh, J.-H. Yang, S.-J. Park, K.-K. Kim, D. C. Look, and Y. S. Park, Appl. Phys. Lett. 86, 151917 (2005).
[48] X. Xu, Y. Shen, N. Xu, W. Hu, J. Lai, Z. Ying, and J. Wu, Vacuum, in press, 2010.
[49] V. Vaithianathan, K. Asokan, J. Y. Park, and S. S. Kim, Appl. Phys. A 94, 995 (2009).
[50] W. Y. Ching and P. Rulis, Phys. Rev. B 77, 125116 (2008).
[51] J. Pellicer-Porres, A. M. Saitta, A. Polian, J. P. Itie, and M. Hanfland, Nature Mater. 6, 698 (2007).
[52] S. D. Perez, J. Haines, U. Amador, E. Moran, and A. Vegas, Surface Sci. 62, 1019 (2006).
[53] F. Brunet, A.-M. Flank, Itie J.-P., T. Irifune, and P. Lagarde, Adv. Mat. 92, 989 (2007).
[54] A. B. Padmaperuma, L. S. Sapochak, and P. E. Burrows, Chem. of Materials 18, 2389 (2006).
[55] The case of N is quite different, with structures formed resembling common N-O molecular species, which will be the subject of a future paper.
[56] P. Erhart and K. Albe, Phys. Rev. B 73, 115207 (2006).
[57] B. Claflin, D. C. Look, S. J. Park, and G. Cantwell, J. Cryst. Growth 287, 16 (2006).
[58] G. Hu and H. Gong, Acta Mater. 56, 5066 (2008).