An Experimental Investigation on the Amount of Drag Force of Sand on a Cone Moving at Low Uniform Speed
Authors: M. Jahanandish, Gh. Sadeghian, M. H. Daneshvar, M. H. Jahanandish
Abstract:
The amount of resistance of a particular medium like soil to the moving objects is the interest of many areas in science. These include soil mechanics, geotechnical engineering, powder mechanics etc. Knowledge of drag force is also used for estimating the amount of momentum of fired objects like bullets. This paper focuses on measurement of drag force of sand on a cone when it moves at a low constant speed. A 30-degree apex angle cone has been used for this purpose. The study consisted of both loose and dense conditions of the soil. The applied speed has been in the range of 0.1 to 10 mm/min. The results indicate that the required force is basically independent of the cone speed; but, it is very dependent on the material densification and confining stress.
Keywords: Drag force, sand, moving speed, friction angle, densification, confining stress.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1128217
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1365References:
[1] R. V. Giles, Theory and Problems of Fluid Mechanics and Hydraulics. Schaum Publishing Co., New York, 1962, 274 p.
[2] A. Schofield and P. Worth, Critical State Soil Mechanics. McGraw-Hill, 1968, London, 310 p.
[3] R. Albert, M. A. Pfeifer, A.-L. Barabási, and P. Schiffer, “Slow drag in a granular medium,” Physical Review Letters, 82, pp. 205-208, 1999.
[4] I. Albert, P. Tegzes, B. Kahng, R. Albert, J. Sample, M. Pfiefer, A.-L. Barabási, T. Vicsek, and P. Schiffer, “Jamming and fluctuations in granular drag,” Physical Review Letters, 84, pp. 5122-5125, 2000.
[5] I. Albert, P. Tegzes, R. Albert, J. G. Sample, A.-L. Barabási, T. Vicsek, and P. Schiffer, “Stick-slip fluctuations in granular drag,” Physical Review E, 64, 031307-1 – 031307-9, 2001.
[6] P. Schiffer, I. Albert, J. G. Sample, and A.-L. Barabási “The Drag Force in Granular Media,” in Powders and Grains 2001: Proceedings of Fourth International Conference on Micromechanics of Granular Media, ed. Y. Kishino, (A. A. Balkema, Lisse, 2001).
[7] I. Albert, J. G. Sample, A. J. Morss, S. Rajagopalan, A.-L. Barabási and P. Schiffer, “Granular Drag on a Discrete Object: Shape Effects on Jamming,” Physical Review E, 061303-1 – 061303-4, 2001.
[8] B. Kahng, I. Albert, P. Schiffer, and A.-L. Barabási, “Modeling Relaxation and Jamming in Granular Media,” Physical Review E, 64, 051303-1 – 051303-4, 2001.
[9] M. B. Stone, D. P. Bernstein, R. Barry, M. D. Pelc, Y. K. Tsui, and P. Schiffer, “Getting to the Bottom of a Granular Medium,” Nature, 427, pp. 503-504, 2004.
[10] M. B. Stone, R. Barry, D. P. Bernstein, M. D. Pelc, Y. K. Tsui, and P. Schiffer, “Studies of Local Jamming via Penetration of a Granular Medium,” Physical Review E, 70, 041301 – 1-10, 2004.
[11] C. Marone, B. M. Carpenter, and P. Schiffer, “Transition from Rolling to Jamming in Thin Granular Layers,” Physical Review Letters, 101, 248001– 1 -4, 2008.
[12] D. J. Costantino, T. J. Scheidemantel, M. B. Stone, C. Conger, K. Klein, M. Lohr, Z. Modig, and P. Schiffer, “Starting to move through a granular medium,” Physical Review Leters, 101, 108001, 2008.
[13] N. Gravish, P. B. Umbanhowar, and D. I. Goldman, “Force and flow transition in plowed granular media,” Physical Review Letters, 105 (12), pp. 042202, 2010.
[14] D. J. Costantino, J. Bartell, K. Scheidler, and P. Schiffer, “Low-velocity granular drag in reduced gravity,” Physical Review E, 83, 011305 – 1- 4, 2011.
[15] F. Guillard, Y. Forterre, and O. Pouliquen, “Depth-Independent Drag Force Induced by Stirring in Granular Media,” Physical Review Letters, 110, 138303, 2013.
[16] N. Gravish, P. B. Umbanhowar, and D. I. Goldman, “Force and flow at the onset of drag in plowed granular media,” Phys Rev E Stat Nonlin Soft Matter Phys., 89 (4), pp. 042202, 2014.