Production of High-Content Fructo-Oligosaccharides
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Production of High-Content Fructo-Oligosaccharides

Authors: C. Nobre, C. C. Castro, A.-L. Hantson, J. A. Teixeira, L. R. Rodrigues, G. De Weireld

Abstract:

Fructo-oligosaccharides (FOS) are produced from sucrose by Aureobasidium pullulans in yields between 40-60% (w/w). To increase the amount of FOS it is necessary to remove the small, non-prebiotic sugars, present. Two methods for producing high-purity FOS have been developed: the use of microorganisms able to consume small saccharides; and the use of continuous chromatography to separate sugars: simulated moving bed (SMB). It is herein proposed the combination of both methods. The aim of this study is to optimize the composition of the fermentative broth (in terms of salts and sugars) that will be further purified by SMB. A yield of 0.63 gFOS.gSucrose^-1 was obtained with A. pullulans using low amounts of salts in the initial fermentative broth. By removing the small sugars, Saccharomyces cerevisiae and Zymomonas mobilis increased the percentage of FOS from around 56.0% to 83% (w/w) in average, losing only 10% (w/w) of FOS during the recovery process.

Keywords: Fructo-oligosaccharides, microbial treatment, Saccharomyces cerevisiae, Zymomonas mobilis.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1099164

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2391

References:


[1] A. Franck, “Technological functionality of inulin and oligofructose,” Br. J. Nutr., vol. 87, no. 2, pp. 287–291, Mar. 2007.
[2] P. A. A. Coussement, “Nutritional and health benefits of inulin and oligofructose inulin and oligofructose : safe intakes and legal status,” J. Nutr., pp. 1412–1417, 1999.
[3] S. I. Mussatto, C. N. Aguilar, L. R. Rodrigues, and J. A. Teixeira, “Colonization of Aspergillusjaponicus on synthetic materials and application to the production of fructooligosaccharides,” Carbohydr. Res., vol. 344, no. 6, pp. 795–800, Apr. 2009.
[4] L. Caicedo, E. Silva, and O. Sánchez, “Semibatch and continuous fructooligosaccharides production by Aspergillus sp. N74 in a mechanically agitated airlift reactor,” J. Chem. Technol. Biotechnol., vol. 84, no. 5, pp. 650–656, May 2009.
[5] A. Dominguez, C. Nobre, L. R. Rodrigues, A. M. Peres, D. Torres, I. Rocha, N. Lima, and J. A. Teixeira, “New improved method for fructooligosaccharides production by Aureobasidiumpullulans,” Carbohydr. Polym., vol. 89, no. 4, pp. 1174–9, Aug. 2012.
[6] P. T. Sangeetha, M. N. Ramesh, and S. G. Prapulla, “Recent trends in the microbial production, analysis and application of fructooligosaccharides,” Trends Food Sci. Technol., vol. 16, no. 10, pp. 442–457, Oct. 2005.
[7] C. Nobre, P. Suvarov, and G. De Weireld, “Evaluation of commercial resins for fructo-oligosaccharide separation.” N. Biotechnol., vol. 31, no. 1, pp. 55–63, Jan. 2014.
[8] C. Nobre, J. A. Teixeira, and L. R. Rodrigues, “Fructo-oligosaccharides purification from a fermentative broth using an activated charcoal column,” N. Biotechnol., vol. 29, no. 3, pp. 395–401, Feb. 2012.
[9] C. Nobre, J. A. Teixeira, and L. R. Rodrigues, “New trends and technological challenges in the industrial production and purification of fructo-oligosaccharides,” Crit. Rev. Food Sci. Nutr., vol. doi:10.108, 2013.
[10] M. Mazzoti, G. Storti, and M. Morbidelli, “Optimal operation of simulated moving bed units for nonlinear chromatographic separations,” J. Chromatogr. A, vol. 769, pp. 3–24, 1997.
[11] P. Sá Gomes, M. Minceva, and A. E. Rodrigues, “Simulated moving bed technology: old and new,” Adsorption, vol. 12, no. 5–6, pp. 375–392, Sep. 2006.
[12] K. Vaňková and M. Polakovič, “Optimization of single-column chromatographic separation of fructooligosaccharides,” Process Biochem., vol. 45, no. 8, pp. 1325–1329, Aug. 2010.
[13] D. C. Sheu, P. J. Lio, S. T. Chen, C. T. Lin, and K. J. Duan, “Production of fructooligosaccharides in high yield using a mixed enzyme system of β -fructofuranosidase and glucose oxidase,” Biotechnol. Lett., vol. 23, pp. 1499–1503, 2001.
[14] Y. Yang, J. Wang, D. Teng, and F. Zhang, “Preparation of high-purity fructo-oligosaccharides by Aspergillusjaponicus β-fructofuranosidase and successive cultivation with yeast,” J. Agric. Food Chem, vol. 56, no. 8, pp. 2805–2809, 2008.
[15] K. H. Jung, J. H. Kim, Y. J. Jeon, and J. H. Lee, “Production of high fructo-oligosaccharides syrup with two enzyme system of fructosyltransferase and glucose oxidase,” Biotechnol. Lett., vol. 15, no. 1, pp. 65–70, 1993.
[16] J. W. Yun, M. G. Lee, and S. K. Song, “Batch production of high-content fructo-oligosaccharides from sucrose by the mixed-enzyme system of β-fructofuranosidase and glucose oxidase,” J. Ferment. Bioeng., vol. 77, no. 2, pp. 159–163, Jan. 1994.
[17] S. Yoon, R. Mukerjea, and J. F. Robyt, “Specificity of yeast (Saccharomyces cerevisiae) in removing carbohydrates by fermentation,” vol. 338, pp. 1127–1132, 2003.
[18] R. Crittenden and M. Playne, “Production, properties and applications of food-grade oligosaccharides,” Trends Food Sc, vol. 7, no. 11, pp. 353–361, 1996.
[19] G. Kelly, “Inulin-type prebiotics: a review ( Part 2 ),” Altern. Med. Rev., vol. 14, no. 1, 2009.
[20] L. G. Dias, A. C. A. Veloso, D. M. Correia, O. Rocha, D. Torres, I. Rocha, L. R. Rodrigues, and A. M. Peres, “UV spectrophotometry method for the monitoring of galacto-oligosaccharides production,” Food Chem., vol. 113, no. 1, pp. 246–252, Mar. 2009.
[21] C. Nobre, M. J. Santos, A. Dominguez, D. Torres, O. Rocha, A. M. Peres, I. Rocha, E. C. Ferreira, J. A. Teixeira, and L. R. Rodrigues, “Comparison of adsorption equilibrium of fructose, glucose and sucrose on potassium gel-type and macroporous sodium ion-exchange resins.,” Anal. Chim. Acta, vol. 654, no. 1, pp. 71–6, Nov. 2009.
[22] K. H. Jung, J. W. Yun, K. R. Kang, J. Y. Lim, and J. H. Lee, “Mathematical model for enzymatic production of fructo-oligosaccharides from sucrose,” Enzyme Microb. Technol., vol. 11, no. 8, pp. 491–494, Aug. 1989.