Search results for: multi-hop routing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 302

Search results for: multi-hop routing

2 Spatial Clustering Model of Vessel Trajectory to Extract Sailing Routes Based on AIS Data

Authors: Lubna Eljabu, Mohammad Etemad, Stan Matwin

Abstract:

The automatic extraction of shipping routes is advantageous for intelligent traffic management systems to identify events and support decision-making in maritime surveillance. At present, there is a high demand for the extraction of maritime traffic networks that resemble the real traffic of vessels accurately, which is valuable for further analytical processing tasks for vessels trajectories (e.g., naval routing and voyage planning, anomaly detection, destination prediction, time of arrival estimation). With the help of big data and processing huge amounts of vessels’ trajectory data, it is possible to learn these shipping routes from the navigation history of past behaviour of other, similar ships that were travelling in a given area. In this paper, we propose a spatial clustering model of vessels’ trajectories (SPTCLUST) to extract spatial representations of sailing routes from historical Automatic Identification System (AIS) data. The whole model consists of three main parts: data preprocessing, path finding, and route extraction, which consists of clustering and representative trajectory extraction. The proposed clustering method provides techniques to overcome the problems of: (i) optimal input parameters selection; (ii) the high complexity of processing a huge volume of multidimensional data; (iii) and the spatial representation of complete representative trajectory detection in the context of trajectory clustering algorithms. The experimental evaluation showed the effectiveness of the proposed model by using a real-world AIS dataset from the Port of Halifax. The results contribute to further understanding of shipping route patterns. This could aid surveillance authorities in stable and sustainable vessel traffic management.

Keywords: Vessel trajectory clustering, trajectory mining, Spatial Clustering, marine intelligent navigation, maritime traffic network extraction, sdailing routes extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 357
1 C-LNRD: A Cross-Layered Neighbor Route Discovery for Effective Packet Communication in Wireless Sensor Network

Authors: K. Kalaikumar, E. Baburaj

Abstract:

One of the problems to be addressed in wireless sensor networks is the issues related to cross layer communication. Cross layer architecture shares the information across the layer, ensuring Quality of Services (QoS). With this shared information, MAC protocol adapts effective functionality maintenance such as route selection on changeable sensor network environment. However, time slot assignment and neighbour route selection time duration for cross layer have not been carried out. The time varying physical layer communication over cross layer causes high traffic load in the sensor network. Though, the traffic load was reduced using cross layer optimization procedure, the computational cost is high. To improve communication efficacy in the sensor network, a self-determined time slot based Cross-Layered Neighbour Route Discovery (C-LNRD) method is presented in this paper. In the presented work, the initial process is to discover the route in the sensor network using Dynamic Source Routing based Medium Access Control (MAC) sub layers. This process considers MAC layer operation with dynamic route neighbour table discovery. Then, the discovered route path for packet communication employs Broad Route Distributed Time Slot Assignment method on Cross-Layered Sensor Network system. Broad Route means time slotting on varying length of the route paths. During packet communication in this sensor network, transmission of packets is adjusted over the different time with varying ranges for controlling the traffic rate. Finally, Rayleigh fading model is developed in C-LNRD to identify the performance of the sensor network communication structure. The main task of Rayleigh Fading is to measure the power level of each communication under MAC sub layer. The minimized power level helps to easily reduce the computational cost of packet communication in the sensor network. Experiments are conducted on factors such as power factor, on packet communication, neighbour route discovery time, and information (i.e., packet) propagation speed.

Keywords: Medium access control, neighbour route discovery, wireless sensor network, Rayleigh fading, distributed time slot assignment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 727