Search results for: immunoglobulins
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

Search results for: immunoglobulins

2 The Influence of Heat Treatment on Antimicrobial Proteins in Milk

Authors: Jelena Zagorska, Inga Ciprovica

Abstract:

the obligatory step during immunoglobulin and lysozyme concentration process is thermal treatment. The combination of temperature and time used in processing can affect the structure of the proteins and involve unfolding and aggregation. The aim of the present study was to evaluate the heat stability of total Igs, the particular immunoglobulin classes and lysozyme in milk. Milk samples were obtained from conventional dairy herd in Latvia. Raw milk samples were pasteurized in different regimes: 63 °C 30 min, 72 °C 15-20 s, 78 °C 15-20 s, 85 °C 15-20 s, 95 °C 15-20 s. The concentrations of Igs (IgA, IgG, IgM) and lysozyme were determined by turbodimetric method. During research was established, that activity of antimicrobial proteins decreases differently. Less concentration reduce was established in a case of lysozyme.

Keywords: immunoglobulins, lysozyme, milk, pasteurization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2210
1 All Proteins Have a Basic Molecular Formula

Authors: Homa Torabizadeh

Abstract:

This study proposes a basic molecular formula for all proteins. A total of 10,739 proteins belonging to 9 different protein groups classified on the basis of their functions were selected randomly. They included enzymes, storage proteins, hormones, signalling proteins, structural proteins, transport proteins, immunoglobulins or antibodies, motor proteins and receptor proteins. After obtaining the protein molecular formula using the ProtParam tool, the H/C, N/C, O/C, and S/C ratios were determined for each randomly selected sample. In this case, H, N, O, and S coefficients were specified per carbon atom. Surprisingly, the results demonstrated that H, N, O, and S coefficients for all 10,739 proteins are similar and highly correlated. This study demonstrates that despite differences in the structure and function, all known proteins have a similar basic molecular formula CnH1.58 ± 0.015nN0.28 ± 0.005nO0.30 ± 0.007nS0.01 ± 0.002n. The total correlation between all coefficients was found to be 0.9999.

Keywords: Protein molecular formula, Basic unit formula, Protparam tool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8080