Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31824
The Influence of Heat Treatment on Antimicrobial Proteins in Milk

Authors: Jelena Zagorska, Inga Ciprovica


the obligatory step during immunoglobulin and lysozyme concentration process is thermal treatment. The combination of temperature and time used in processing can affect the structure of the proteins and involve unfolding and aggregation. The aim of the present study was to evaluate the heat stability of total Igs, the particular immunoglobulin classes and lysozyme in milk. Milk samples were obtained from conventional dairy herd in Latvia. Raw milk samples were pasteurized in different regimes: 63 °C 30 min, 72 °C 15-20 s, 78 °C 15-20 s, 85 °C 15-20 s, 95 °C 15-20 s. The concentrations of Igs (IgA, IgG, IgM) and lysozyme were determined by turbodimetric method. During research was established, that activity of antimicrobial proteins decreases differently. Less concentration reduce was established in a case of lysozyme.

Keywords: immunoglobulins, lysozyme, milk, pasteurization

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2015


[1] B. Lonnerdal, "Human milk proteins: key components for the biological activity of human milk," Adv. Exp. Med. Biol., vol. 554, pp. 11-25, 2004.
[2] S. Séverin, X. Wenshui, "Milk biologically active components as nutraceuticals: Review," Crit. Rev. Food Sci. Nutr., vol. 45, pp. 645-656, 2005.
[3] N. Leon-Sicairos, F. Lopez-Soto, M. Reyes-Lopez, D. Godinez-Vargas, C. Ordaz-Pichardo, M. de la Garza, "Amoebicidal activity of milk, apolactoferrin, sIgA and lysozyme," Clin. Med. Res., vol. 4, pp. 106-113, June 2006.
[4] G. P. Gorbenko, V. M. loffe Kinnunen, K. J. Paavo, "Binding of Lysozyme to Phospholipid Bilayers: Evidence for Protein Aggregation upon Membrane Association," Biophys. J., vol. 93, pp. 140-153, Jule 2007.
[5] R. Mehra, P. Marnila, H. Korhonen, "Milk immunoglobulins for health promotion," International Dairy Journal, vol. 16, pp. 1262-1271, 2006.
[6] N. Benkerroum, "Antimicrobial activity of lysozyme with special relevance to milk," African Journal of Biotechnology, vol. 7, no. 25, pp. 4856-4867, December 2008.
[7] E. Mix, R. Goertsches, U. K. Zettl, "Immunoglobulins-basic considerations," J. Neurol., vol. 253, pp.V9-V17, September 2006.
[8] L. H. Walter, P. K. Theil, "Perspectives on Immunoglobulins in Colostrum and Milk," Nutrients vol. 3, pp. 442-474, April 2011.
[9] E. M. Lilius, P. Marnila, "The role of colostral antibodies in prevention of microbiological infections," Current Opinion in Infectious Diseases, vol. 14, pp. 295-300, June 2001.
[10] K. S. Kelly, "Bovine colostrums: A review of clinical uses," Alternative Medicine Review, vol. 8, pp. 378-394, March 2004.
[11] H. Korhonen, P. Marnila, H. S. Gill, "Bovine milk antibodies for health," British Journal of Nutrition, vol. 84, no. 1, pp. S135-S146, November 2000.
[12] J. E. Butler, "Passive immunity and immunoglobulin diversity. Indigenous Antimicrobial Agents of Milk-Recent Developments," IDF Special Issue, vol. 9404, no. 4, pp. 14-50, 1994.
[13] B. L. Larson, "Immunoglobulins of the mammary secretions," in Advanced Dairy Chemistry 1-Proteins, P. Fox, Ed. London: Elsevier Science Publishers, 1992, pp. 231-254.
[14] T. B. McFadden, T. E. Besser, G. M. Barrington, "Regulation of Immunoglobulin Transfer into Mammary Secretion of Ruminants," in Milk Composition, Production and Biotechnology, A. R. Welch, D. J. W. Burns, S. R. Davis, A.J. Popay, C.G. Prosser Ed. New Zealand: CAB International, 1997, pp. 133-151.
[15] C.-C. Chen, H.-M. Chang, "Effect of thermal protectants on the stability of bovine milk immunoglobulin," J. Agric. Food Chem., vol. 46, pp. 3570-3576, August 1998.
[16] P. Calmettes, L. Cser, E. Rajnavolgy, "Temperature and pH dependence of immunoglobulin G conformation," Arch. Biochem. Biophys., vol. 291, pp. 277-283, December 1991.
[17] E. Dominguez, M. D. Perez, M. Calvo, "Effect of heat treatment on the antigen-binding activity of anti-peroxidase immunoglobulins in bovine colostrum," J. Dairy Sci., vol. 80, pp. 3182-3187, December 1997.
[18] E. Dominguez, M. D. Perez, P. Puyol, L. Sanchez, M. Calvo, "Effect of pH on antigen-binding activity of IgG from bovine colostrum upon heating," J. Dairy Res., vol. 68, pp. 511-518, August 2001.
[19] G. Mainer, L. Sanchez, J. M. Ena, M. Calvo, "Kinetic and thermodynamic parameters for heat denaturation of bovine milk IgG, IgA and IgM," J. Food Sci., vol. 62, pp. 1034-1038, September 1997.
[20] C.-C. Chen, H.-M. Chang, "Effect of thermal protectants on the stability of bovine milk immunoglobulin G," J. Agric. Food Chem., vol.46, pp. 3570-3576, 1998.
[21] C.-C. Chen, Y.-Y. Tu, H.-M. Chang, "Thermal stability of bovine milk immunoglobulin G (IgG) and the effect of added thermal protectants on the stability". J. Food Sci., vol. 65, pp. 188-193, March 2000.
[22] J. Newman, A. Josephson, A. Cacatian, A. Tsang, “Spinal-Fluid Lysozyme in the Diagnosis of Central-Nervous-System Tumours,” Lancet, vol. 304, pp. 756–757, September 1974.
[23] N. Y. Farkey, “Other Enzymes,” in Encyclopedia of Dairy Sciences, H. Roginski, J. W. Fuquay, P. F. Fox Ed. Amsterdam: Academic Press, vol. 3, 2002, pp. 946–947.
[24] P. Walstra, T. J. Geurts, A. Noomen, A. Jellema, van M. A. J. S. Boekel, “Principles of Milk Properties and Processing,” in Dairy Technology, New York: Basel Marcel Dekker, 1999, pp. 709–727.
[25] R. T. Ellison, T. J. Giehl, „Killing of gram-negative bacteria by lactoferrin and lysozyme,” J Clin Invest., vol. 88, no. 4, pp. 1080–1091, October 1991.
[26] Y. H. Samaranayake, L. P. SamaranayakeE. H. N. Pow, V. T. Beena, K. W. S. Yeung, “Antifungal Effects of Lysozyme and Lactoferrin against Genetically Similar, Sequential Candida albicans Isolates from a Human Immunodeficiency Virus-Infected Southern Chinese Cohort,” J. Clin. Microbiol., vol. 39, no. 9, pp.3296–3302, September 2001.
[27] P. Maroni, C. Cuccuri, „Relationship between mammary gland infections and some milk immune parameters in Sardinian breed ewes,” Small Rum. Res., vol. 41, pp.1–7, July 2001.
[28] S. Priyadarshini, V. K. Kansal, „Biochemical characterization ofbuffalo (Bubalus bubalis) milk lysozyme,” Journal of Dairy Research, vol. 70, pp. 467–472. October 2003.
[29] J. Zagorska, I. Eihvalde, I. Gramatina, S. Sarvi, “Evaluation of colostrum quality and new possibilities for its application,” in Proc. of the Conference FoodBalt 2011, pp. 45–49, 2011.
[30] V. Tripathi, B. Vashishtha, „Bioactive compounds of colostrum and its application,” Food Reviews International, vol. 22, no. 3, pp. 225–244, July 2006.
[31] L. Elfstrand, H. Lindmark-Mansson, M. Paulsson, L. Nyberg, B. Akesson, “Immunoglobulins, growth factors and grows hormone in bovine colostrum and the effects of processing,” International Dairy Journal, vol. 12, pp. 879–887, 2002.
[32] Х. Грант, „Турбодиметрический способ количественного опредиление лизоцима с применением спектрофотометра СФУА”, Лабораторное дело. (Turbodimetric method for determination of lysozyme by means of spectrophotometer SFUA, A Laboratory manual), Грант Х., Яворковский Л.И., Блумберга И.А. (ред.), 300–304 стр. 1973, (In Russian).
[33] P. Marnila, H. Korhonen, “Immunoglobulins,” in Encyclopedia of Dairy Sciences, H. Roginski, J. W. Fuquay, P. F. Fox Ed. Amsterdam: Academic Press, vol. 3, 2002, pp. 1950–1956.
[34] I. Ciproviča, J. Zagorska, “Macroelements and antibodies in milk,” in Proc. of the International Scientific Conference “Implication of different production technologies on animal health and food products quality indices”. Sigulda, Latvia, pp. 135–139, 2008.
[35] J. Zagorska, I. Ciproviča, V. Miķelsone, “Baktericīdo vielu un antivielu satura izvērtējums dažādās lauksaimniecības sistēmās turēto govju pienā,” Latvijas Lauksaimniecības universitātes Raksti, vol. 18, no 313 pp. 45–50, 2007.
[36] L. D. Muller, D. K. Ellinger „Colostral Immunoglobulin concentrations among breeds of dairy cattle,” J. Dairy Sci., vol. 64, pp. 1727–1730, August 1981.
[37] A. Kummer, D. D. Kitts, E. Li-Chan, J. N. Losso, B. J. Skura, S. Nakai, ”Quantification of bovine IgG in milk using enzyme linked immunosorbent assay,” Food and Agricultural Immunology, vol. 4, pp. 93–102, 1992.
[38] E. Li-Chan, A. Kummer, J. N. Losso, D. D. Kitts, S. Nakai, “Stability of bovine immunoglobulins to thermal treatment and processing,” Food Research International, vol. 28, pp. 9–16, January 1995.
[39] G. Mainer, E. Dominguez, M. Randrup, L. Sanchez, M. Calvo, „Effect of heat treatment on anti-rotavirus activity of bovine colostrum,” J. Dairy Res. vol. 66, pp. 131–137, 1999.
[40] P. Lindstrom, M. Paulsson, T. Nylander, U. Elofsson, H. Lindmark- Mansson, „The effect of heat treatment on bovine immunoglobulins,” Milchwissenschaft., vol. 49, pp.67–71, 1994.
[41] W. Gao, L. Chen, L. B. Xu, X. H. Huang, „Specific activity against diarrheagenic bacteria in bovine immune milk and effect of pH on its antigen-binding activity upon heating,” J. Dairy Res. vol. 77, pp. 220– 224, May 2010.
[42] Z. Ustunol, C. Sypien, „Heat stability of bovine milk Immunoglobulins and their ability to bind Lactococci as determined by an ELISA,” J. Food. Sc., vol. 62, issue 6, pp. 1218–1222, July 2006.