Search results for: empirical mapping
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1085

Search results for: empirical mapping

5 A Multi-Phase Methodology for Investigating Localisation Policies within the GCC: The Hotel Industry in the KSA and the UAE

Authors: Areej Azhar, Peter Duncan, David Edgar

Abstract:

Due to a high unemployment rate among local people and a high reliance on expatriate workers, the governments in the Gulf Co-operation Council (GCC) countries have been implementing programmes of localisation (replacing foreign workers with GCC nationals). These programmes have been successful in the public sector but much less so in the private sector. However, there are now insufficient jobs for locals in the public sector and the onus to provide employment has fallen on the private sector. This paper is concerned with a study, which is a work in progress (certain elements are complete but not the whole study), investigating the effective implementation of localisation policies in four- and five-star hotels in the Kingdom of Saudi Arabia (KSA) and the United Arab Emirates (UAE). The purpose of the paper is to identify the research gap, and to present the need for the research. Further, it will explain how this research was conducted. Studies of localisation in the GCC countries are under-represented in scholarly literature. Currently, the hotel sectors in KSA and UAE play an important part in the countries’ economies. However, the total proportion of Saudis working in the hotel sector in KSA is slightly under 8%, and in the UAE, the hotel sector remains highly reliant on expatriates. There is therefore a need for research on strategies to enhance the implementation of the localisation policies in general and in the hotel sector in particular. Further, despite the importance of the hotel sector to their economies, there remains a dearth of research into the implementation of localisation policies in this sector. Indeed, as far as the researchers are aware, there is no study examining localisation in the hotel sector in KSA, and few in the UAE. This represents a considerable research gap. Regarding how the research was carried out, a multiple case study strategy was used. The four- and five-star hotel sector in KSA is one of the cases, while the four- and five-star hotel sector in the UAE is the other case. Four- and five-star hotels in KSA and the UAE were chosen as these countries have the longest established localisation policies of all the GCC states and there are more hotels of these classifications in these countries than in any of the other Gulf countries. A literature review was carried out to underpin the research. The empirical data were gathered in three phases. In order to gain a pre-understanding of the issues pertaining to the research context, Phase I involved eight unstructured interviews with officials from the Saudi Commission for Tourism and Antiquities (three interviewees); the Saudi Human Resources Development Fund (one); the Abu Dhabi Tourism and Culture Authority (three); and the Abu Dhabi Development Fund (one).

In Phase II, a questionnaire was administered to 24 managers and 24 employees in four- and five-star hotels in each country to obtain their beliefs, attitudes, opinions, preferences and practices concerning localisation. Unstructured interviews were carried out in Phase III with six managers in each country in order to allow them to express opinions that may not have been explored in sufficient depth in the questionnaire. The interviews in Phases I and III were analysed using thematic analysis and SPSS will be used to analyse the questionnaire data. It is recommended that future research be undertaken on a larger scale, with a larger sample taken from all over KSA and the UAE rather than from only four cities (i.e., Riyadh and Jeddah in KSA and Abu Dhabi and Sharjah in the UAE), as was the case in this research.

Keywords: KSA, UAE, localisation, hotels, Human Resource Management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2526
4 Seismic Response of Reinforced Concrete Buildings: Field Challenges and Simplified Code Formulas

Authors: Michel Soto Chalhoub

Abstract:

Building code-related literature provides recommendations on normalizing approaches to the calculation of the dynamic properties of structures. Most building codes make a distinction among types of structural systems, construction material, and configuration through a numerical coefficient in the expression for the fundamental period. The period is then used in normalized response spectra to compute base shear. The typical parameter used in simplified code formulas for the fundamental period is overall building height raised to a power determined from analytical and experimental results. However, reinforced concrete buildings which constitute the majority of built space in less developed countries pose additional challenges to the ones built with homogeneous material such as steel, or with concrete under stricter quality control. In the present paper, the particularities of reinforced concrete buildings are explored and related to current methods of equivalent static analysis. A comparative study is presented between the Uniform Building Code, commonly used for buildings within and outside the USA, and data from the Middle East used to model 151 reinforced concrete buildings of varying number of bays, number of floors, overall building height, and individual story height. The fundamental period was calculated using eigenvalue matrix computation. The results were also used in a separate regression analysis where the computed period serves as dependent variable, while five building properties serve as independent variables. The statistical analysis shed light on important parameters that simplified code formulas need to account for including individual story height, overall building height, floor plan, number of bays, and concrete properties. Such inclusions are important for reinforced concrete buildings of special conditions due to the level of concrete damage, aging, or materials quality control during construction. Overall results of the present analysis show that simplified code formulas for fundamental period and base shear may be applied but they require revisions to account for multiple parameters. The conclusion above is confirmed by the analytical model where fundamental periods were computed using numerical techniques and eigenvalue solutions. This recommendation is particularly relevant to code upgrades in less developed countries where it is customary to adopt, and mildly adapt international codes. We also note the necessity of further research using empirical data from buildings in Lebanon that were subjected to severe damage due to impulse loading or accelerated aging. However, we excluded this study from the present paper and left it for future research as it has its own peculiarities and requires a different type of analysis.

Keywords: Seismic behavior, reinforced concrete, simplified code formulas, equivalent static analysis, base shear, response spectra.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2644
3 Analysis of Stress and Strain in Head Based Control of Cooperative Robots through Tetraplegics

Authors: Jochen Nelles, Susanne Kohns, Julia Spies, Friederike Schmitz-Buhl, Roland Thietje, Christopher Brandl, Alexander Mertens, Christopher M. Schlick

Abstract:

Industrial robots as part of highly automated manufacturing are recently developed to cooperative (light-weight) robots. This offers the opportunity of using them as assistance robots and to improve the participation in professional life of disabled or handicapped people such as tetraplegics. Robots under development are located within a cooperation area together with the working person at the same workplace. This cooperation area is an area where the robot and the working person can perform tasks at the same time. Thus, working people and robots are operating in the immediate proximity. Considering the physical restrictions and the limited mobility of tetraplegics, a hands-free robot control could be an appropriate approach for a cooperative assistance robot. To meet these requirements, the research project MeRoSy (human-robot synergy) develops methods for cooperative assistance robots based on the measurement of head movements of the working person. One research objective is to improve the participation in professional life of people with disabilities and, in particular, mobility impaired persons (e.g. wheelchair users or tetraplegics), whose participation in a self-determined working life is denied. This raises the research question, how a human-robot cooperation workplace can be designed for hands-free robot control. Here, the example of a library scenario is demonstrated. In this paper, an empirical study that focuses on the impact of head movement related stress is presented. 12 test subjects with tetraplegia participated in the study. Tetraplegia also known as quadriplegia is the worst type of spinal cord injury. In the experiment, three various basic head movements were examined. Data of the head posture were collected by a motion capture system; muscle activity was measured via surface electromyography and the subjective mental stress was assessed via a mental effort questionnaire. The muscle activity was measured for the sternocleidomastoid (SCM), the upper trapezius (UT) or trapezius pars descendens, and the splenius capitis (SPL) muscle. For this purpose, six non-invasive surface electromyography sensors were mounted on the head and neck area. An analysis of variance shows differentiated muscular strains depending on the type of head movement. Systematically investigating the influence of different basic head movements on the resulting strain is an important issue to relate the research results to other scenarios. At the end of this paper, a conclusion will be drawn and an outlook of future work will be presented.

Keywords: Assistance robot, human-robot-interaction, motion capture, stress-strain-concept, surface electromyography, tetraplegia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1688
2 Generative Design of Acoustical Diffuser and Absorber Elements Using Large-Scale Additive Manufacturing

Authors: S. Aziz, B. Alexander, C. Gengnagel, S. Weinzierl

Abstract:

This paper explores a generative design, simulation, and optimization workflow for the integration of acoustical diffuser and/or absorber geometry with embedded coupled Helmholtz-resonators for full scale 3D printed building components. Large-scale additive manufacturing in conjunction with algorithmic CAD design tools enables a vast amount of control when creating geometry. This is advantageous regarding the increasing demands of comfort standards for indoor spaces and the use of more resourceful and sustainable construction methods and materials. The presented methodology highlights these new technological advancements and offers a multimodal and integrative design solution with the potential for an immediate application in the AEC-Industry. In principle, the methodology can be applied to a wide range of structural elements that can be manufactured by additive manufacturing processes. The current paper focuses on a case study of an application for a biaxial load-bearing beam grillage made of reinforced concrete, which allows for a variety of applications through the combination of additive prefabricated semi-finished parts and in-situ concrete supplementation. The semi-prefabricated parts or formwork bodies form the basic framework of the supporting structure and at the same time have acoustic absorption and diffusion properties that are precisely acoustically programmed for the space underneath the structure. To this end, a hybrid validation strategy is being explored using a digital and cross-platform simulation environment, verified with physical prototyping. The iterative workflow starts with the generation of a parametric design model for the acoustical geometry using the algorithmic visual scripting editor Grasshopper3D inside the Building Information Modeling (BIM) software Revit. Various geometric attributes (i.e., bottleneck and cavity dimensions) of the resonator are parameterized and fed to a numerical optimization algorithm which can modify the geometry with the goal of increasing absorption at resonance and increasing the bandwidth of the effective absorption range. Using Rhino.Inside and LiveLink for Revit the generative model was imported directly into the Multiphysics simulation environment COMSOL. The geometry was further modified and prepared for simulation in a semi-automated process. The incident and scattered pressure fields were simulated from which the surface normal absorption coefficients were calculated. This reciprocal process was repeated to further optimize the geometric parameters. Subsequently the numerical models were compared to a set of 3D concrete printed physical twin models which were tested in a .25 m x .25 m impedance tube. The empirical results served to improve the starting parameter settings of the initial numerical model. The geometry resulting from the numerical optimization was finally returned to grasshopper for further implementation in an interdisciplinary study.

Keywords: Acoustical design, additive manufacturing, computational design, multimodal optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 500
1 Malaria Prone Zones of West Bengal: A Spatio-Temporal Scenario

Authors: Meghna Maiti, Utpal Roy

Abstract:

In India, till today, malaria is considered to be one of the significant infectious diseases. Most of the cases regional geographical factors are the principal elements to let the places a unique identity. The incidence and intensity of infectious diseases are quite common and affect different places differently across the nation. The present study aims to identify spatial clusters of hot spots and cold spots of malaria incidence and their seasonal variation during the three periods of 2012-2014, 2015-2017 and 2018-20 in the state of West Bengal in India. As malaria is a vector-borne disease, numbers of positive test results are to be reported by the laboratories to the Department of Health, West Bengal (through the National Vector Borne Disease Control Programme). Data on block-wise monthly malaria positive cases are collected from Health Management Information System (HMIS), Ministry of Health and Family Welfare, Government of India. Moran’s I statistic is performed to assess the spatial autocorrelation of malaria incidence. The spatial statistical analysis mainly Local Indicators of Spatial Autocorrelation (LISA) cluster and Local Geary Cluster are applied to find the spatial clusters of hot spots and cold spots and seasonal variability of malaria incidence over the three periods. The result indicates that the spatial distribution of malaria is clustered during each of the three periods of 2012-2014, 2015-2017 and 2018-20. The analysis shows that in all the cases, high-high clusters are primarily concentrated in the western (Purulia, Paschim Medinipur districts), central (Maldah, Murshidabad districts) and the northern parts (Jalpaiguri, Kochbihar districts) and low-low clusters are found in the lower Gangetic plain (central-south) mainly and northern parts of West Bengal during the stipulated period. Apart from this seasonal variability inter-year variation is also visible. The results from different methods of this study indicate significant variation in the spatial distribution of malaria incidence in West Bengal and high incidence clusters are primarily persistently concentrated over the western part during 2012-2020 along with a strong seasonal pattern with a peak in rainy and autumn. By applying the different techniques in identifying the different degrees of incidence zones of malaria across West Bengal, some specific pockets or malaria hotspots are marked and identified where the incidence rates are quite harmonious over the different periods. From this analysis, it is clear that malaria is not a disease that is distributed uniformly across the state; some specific pockets are more prone to be affected in particular seasons of each year. Disease ecology and spatial patterns must be the factors in explaining the real factors for the higher incidence of this issue within those affected districts. The further study mainly by applying empirical approach is needed for discerning the strong relationship between communicable disease and other associated affecting factors.

Keywords: Malaria, infectious diseases, spatial statistics, spatial autocorrelation, LISA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 420