Search results for: Yi-Ping Lo
3 Evaluation of Aerodynamic Noise Generation by a Generic Side Mirror
Authors: Yiping Wang, Zhengqi Gu, Weiping Li, Xiaohui Lin
Abstract:
The aerodynamic noise radiation from a side view mirror (SVM) in the high-speed airflow is calculated by the combination of unsteady incompressible fluid flow analysis and acoustic analysis. The transient flow past the generic SVM is simulated with variable turbulence model, namely DES Detached Eddy Simulation and LES (Large Eddy Simulation). Detailed velocity vectors and contour plots of the time-varying velocity and pressure fields are presented along cut planes in the flow-field. Mean and transient pressure are also monitored at several points in the flow field and compared to corresponding experimentally data published in literature. The acoustic predictions made using the Ffowcs-Williams-Hawkins acoustic analogy (FW-H) and the boundary element (BEM).
Keywords: Aerodynamic noise, BEM, DES, FW-H acousticanalogy, LES
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29362 Growth of Non-Polar a-Plane AlGaN Epilayer with High Crystalline Quality and Smooth Surface Morphology
Authors: Abbas Nasir, Xiong Zhang, Sohail Ahmad, Yiping Cui
Abstract:
Non-polar a-plane AlGaN epilayers of high structural quality have been grown on r-sapphire substrate by using metalorganic chemical vapor deposition (MOCVD). A graded non-polar AlGaN buffer layer with variable aluminium concentration was used to improve the structural quality of the non-polar a-plane AlGaN epilayer. The characterisations were carried out by high-resolution X-ray diffraction (HR-XRD), atomic force microscopy (AFM) and Hall effect measurement. The XRD and AFM results demonstrate that the Al-composition-graded non-polar AlGaN buffer layer significantly improved the crystalline quality and the surface morphology of the top layer. A low root mean square roughness 1.52 nm is obtained from AFM, and relatively low background carrier concentration down to 3.9× cm-3 is obtained from Hall effect measurement.
Keywords: Non-polar AlGaN epilayer, Al composition-graded AlGaN layer, root mean square, background carrier concentration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5341 Time Series Simulation by Conditional Generative Adversarial Net
Authors: Rao Fu, Jie Chen, Shutian Zeng, Yiping Zhuang, Agus Sudjianto
Abstract:
Generative Adversarial Net (GAN) has proved to be a powerful machine learning tool in image data analysis and generation. In this paper, we propose to use Conditional Generative Adversarial Net (CGAN) to learn and simulate time series data. The conditions include both categorical and continuous variables with different auxiliary information. Our simulation studies show that CGAN has the capability to learn different types of normal and heavy-tailed distributions, as well as dependent structures of different time series. It also has the capability to generate conditional predictive distributions consistent with training data distributions. We also provide an in-depth discussion on the rationale behind GAN and the neural networks as hierarchical splines to establish a clear connection with existing statistical methods of distribution generation. In practice, CGAN has a wide range of applications in market risk and counterparty risk analysis: it can be applied to learn historical data and generate scenarios for the calculation of Value-at-Risk (VaR) and Expected Shortfall (ES), and it can also predict the movement of the market risk factors. We present a real data analysis including a backtesting to demonstrate that CGAN can outperform Historical Simulation (HS), a popular method in market risk analysis to calculate VaR. CGAN can also be applied in economic time series modeling and forecasting. In this regard, we have included an example of hypothetical shock analysis for economic models and the generation of potential CCAR scenarios by CGAN at the end of the paper.
Keywords: Conditional Generative Adversarial Net, market and credit risk management, neural network, time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1199