Search results for: Yetunde R. Okeyinka
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

Search results for: Yetunde R. Okeyinka

3 Evaluating the Appropriateness of Passive Techniques Used in Achieving Thermal Comfort in Buildings: A Case of Lautech College of Health Sciences, Ogbomoso

Authors: Ilelabayo I. Adebisi, Yetunde R. Okeyinka, Abdulrasaq K. Ayinla

Abstract:

Architectural design is a complex process especially when the issue of user’s comfort, building sustainability and energy efficiency needs to be addressed. The current energy challenge and the seek for an environment where users will have a more physiological and psychological comfort in this part of the world have led various researchers to constantly explore the concept of passive design techniques. Passive techniques are design strategies used in regulating building indoor climates and improving users comfort without the use of energy driven devices. This paper describes and analyses the significance of passive techniques on indoor climates and their impact on thermal comfort of building users using LAUTECH College of health sciences Ogbomoso as a case study. The study aims at assessing the appropriateness of the passive strategies used in achieving comfort in their buildings with a view to evaluate their adequacy and effectiveness and suggesting how comfortable their building users are. This assessment was carried out through field survey and questionnaires and findings revealed that strategies such as Orientation, Spacing, Courtyards, window positioning and choice of landscape adopted are inadequate while only fins and roof overhangs are adequate. The finding also revealed that 72% of building occupants feel hot discomfort in their various spaces and hence have the urge to get fresh air from outside during work hours. The Mahoney table was used to provide appropriate architectural design recommendations to guide future designers in the study area.

Keywords: Energy challenge, passive cooling, techniques, thermal comfort, users comfort.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 900
2 A Review on Recycled Use of Solid Wastes in Building Materials

Authors: Oriyomi M. Okeyinka, David A. Oloke, Jamal M. Khatib

Abstract:

Large quantities of solid wastes being generated worldwide from sources such as household, domestic, industrial, commercial and construction demolition activities, leads to environmental concerns. Utilization of these wastes in making building construction materials can reduce the magnitude of the associated problems. When these waste products are used in place of other conventional materials, natural resources and energy are preserved and expensive and/or potentially harmful waste disposal is avoided. Recycling which is regarded as the third most preferred waste disposal option, with its numerous environmental benefits, stand as a viable option to offset the environmental impact associated with the construction industry. This paper reviews the results of laboratory tests and important research findings, and the potential of using these wastes in building construction materials with focus on sustainable development. Research gaps, which includes; the need to develop standard mix design for solid waste based building materials; the need to develop energy efficient method of processing solid waste use in concrete; the need to study the actual behavior or performance of such building materials in practical application and the limited real life application of such building materials have also been identified. A research is being proposed to develop an environmentally friendly, lightweight building block from recycled waste paper, without the use of cement, and with properties suitable for use as walling unit. This proposed research intends to incorporate, laboratory experimentation and modeling to address the identified research gaps.

Keywords: Recycling, solid waste, construction, building materials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7111
1 Sentiment Analysis of Fake Health News Using Naive Bayes Classification Models

Authors: Danielle Shackley, Yetunde Folajimi

Abstract:

As more people turn to the internet seeking health related information, there is more risk of finding false, inaccurate, or dangerous information. Sentiment analysis is a natural language processing technique that assigns polarity scores of text, ranging from positive, neutral and negative. In this research, we evaluate the weight of a sentiment analysis feature added to fake health news classification models. The dataset consists of existing reliably labeled health article headlines that were supplemented with health information collected about COVID-19 from social media sources. We started with data preprocessing, tested out various vectorization methods such as Count and TFIDF vectorization. We implemented 3 Naive Bayes classifier models, including Bernoulli, Multinomial and Complement. To test the weight of the sentiment analysis feature on the dataset, we created benchmark Naive Bayes classification models without sentiment analysis, and those same models were reproduced and the feature was added. We evaluated using the precision and accuracy scores. The Bernoulli initial model performed with 90% precision and 75.2% accuracy, while the model supplemented with sentiment labels performed with 90.4% precision and stayed constant at 75.2% accuracy. Our results show that the addition of sentiment analysis did not improve model precision by a wide margin; while there was no evidence of improvement in accuracy, we had a 1.9% improvement margin of the precision score with the Complement model. Future expansion of this work could include replicating the experiment process, and substituting the Naive Bayes for a deep learning neural network model.

Keywords: Sentiment analysis, Naive Bayes model, natural language processing, topic analysis, fake health news classification model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 487