Search results for: Tarik Ozkul
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10

Search results for: Tarik Ozkul

10 Wireless Distributed Load-Shedding Management System for Non-Emergency Cases

Authors: Taha Landolsi, A. R. Al-Ali, Tarik Ozkul, Mohammad A. Al-Rousan

Abstract:

In this paper, we present a cost-effective wireless distributed load shedding system for non-emergency scenarios. In power transformer locations where SCADA system cannot be used, the proposed solution provides a reasonable alternative that combines the use of microcontrollers and existing GSM infrastructure to send early warning SMS messages to users advising them to proactively reduce their power consumption before system capacity is reached and systematic power shutdown takes place. A novel communication protocol and message set have been devised to handle the messaging between the transformer sites, where the microcontrollers are located and where the measurements take place, and the central processing site where the database server is hosted. Moreover, the system sends warning messages to the endusers mobile devices that are used as communication terminals. The system has been implemented and tested via different experimental results.

Keywords: Smart Grid, Load shedding, Demand SideManagement, GSM Wireless Networks, SCADA systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2627
9 Multi-Context Recurrent Neural Network for Time Series Applications

Authors: B. Q. Huang, Tarik Rashid, M-T. Kechadi

Abstract:

this paper presents a multi-context recurrent network for time series analysis. While simple recurrent network (SRN) are very popular among recurrent neural networks, they still have some shortcomings in terms of learning speed and accuracy that need to be addressed. To solve these problems, we proposed a multi-context recurrent network (MCRN) with three different learning algorithms. The performance of this network is evaluated on some real-world application such as handwriting recognition and energy load forecasting. We study the performance of this network and we compared it to a very well established SRN. The experimental results showed that MCRN is very efficient and very well suited to time series analysis and its applications.

Keywords: Gradient descent method, recurrent neural network, learning algorithms, time series, BP

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3041
8 Effect of One-Handed Pushing and Puling Strength at Different Handle Heights in Vertical Direction

Authors: Tarik H. Badi, Amer A. Boushaala

Abstract:

The purpose of this study was to measure the maximal isometric strength and to investigate the effects of different handleheights and elbow angles with respect to Mid. sagittal plane on the pushing and pulling strength in vertical direction. Eight male subjects performed a series of static strength measurement for each subject. The highest isometric strength was found in pulling at shoulder height (S.H.) (Mean = 60.29 lb., SD = 16.78 lb.) and the lowest isometric strength was found also in pulling at elbow height (E.H.) (Mean = 33.06 lb., SD = 6.56 lb.). Although the isometric strengths were higher at S.H than at E.H. for both activities, the maximal isometric strengths were compared statistically. ANOVA was performed. The results of the experiment revealed that there was a significant different between handle heights. However, there were no significant different between angles and activities, also no correlation between grip strength and activities.

Keywords: Pushing and pulling, one arm, vertical direction, isometric strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3077
7 Exoskeleton for Hemiplegic Patients: Mechatronic Approach to Move One Disabled Lower Limb

Authors: Alaoui Hamza, Moutacalli Mohamed Tarik, Chebak Ahmed

Abstract:

The number of people suffering from hemiplegia is growing each year. This lower limb disability affects all the aspects of their lives by taking away their autonomy. This implicates their close relatives, as well as the health system to provide the necessary care they need. The integration of exoskeletons in the medical field became a promising solution to resolve this issue. This paper presents an exoskeleton designed to help hemiplegic people get back the sensation and ability of normal walking. For this purpose, three step models have been created. The first step allows a simple forward movement of the leg. The second method is designed to overcome some obstacles in the patient path, and finally the third step model gives the patient total control over the device. Each of the control methods was designed to offer a solution to the challenges that the patients may face during the walking process.

Keywords: Ability of normal walking, exoskeleton, hemiplegic patients, lower limb motion, mechatronics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 654
6 Auto-regressive Recurrent Neural Network Approach for Electricity Load Forecasting

Authors: Tarik Rashid, B. Q. Huang, M-T. Kechadi, B. Gleeson

Abstract:

this paper presents an auto-regressive network called the Auto-Regressive Multi-Context Recurrent Neural Network (ARMCRN), which forecasts the daily peak load for two large power plant systems. The auto-regressive network is a combination of both recurrent and non-recurrent networks. Weather component variables are the key elements in forecasting because any change in these variables affects the demand of energy load. So the AR-MCRN is used to learn the relationship between past, previous, and future exogenous and endogenous variables. Experimental results show that using the change in weather components and the change that occurred in past load as inputs to the AR-MCRN, rather than the basic weather parameters and past load itself as inputs to the same network, produce higher accuracy of predicted load. Experimental results also show that using exogenous and endogenous variables as inputs is better than using only the exogenous variables as inputs to the network.

Keywords: Daily peak load forecasting, neural networks, recurrent neural networks, auto regressive multi-context neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2543
5 Multi-Agent Based Modeling Using Multi-Criteria Decision Analysis and OLAP System for Decision Support Problems

Authors: Omar Boutkhoum, Mohamed Hanine, Tarik Agouti, Abdessadek Tikniouine

Abstract:

This paper discusses the intake of combining multi-criteria decision analysis (MCDA) with OLAP systems, to generate an integrated analysis process dealing with complex multi-criteria decision-making situations. In this context, a multi-agent modeling is presented for decision support systems by combining multi-criteria decision analysis (MCDA) with OLAP systems. The proposed modeling which consists in performing the multi-agent system (MAS) architecture, procedure and protocol of the negotiation model is elaborated as a decision support tool for complex decision-making environments. Our objective is to take advantage from the multi-agent system which distributes resources and computational capabilities across interconnected agents, and provide a problem modeling in terms of autonomous interacting component-agents. Thus, the identification and evaluation of criteria as well as the evaluation and ranking of alternatives in a decision support situation will be performed by organizing tasks and user preferences between different agents in order to reach the right decision. At the end, an illustrative example is conducted to demonstrate the function and effectiveness of our MAS modeling.

Keywords: Multidimensional Analysis, OLAP Analysis, Multi-criteria Decision Analysis, Multi-Agent System, Decision Support System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844
4 Ab initio Study of Co2ZrGe and Co2NbB Full Heusler Compounds

Authors: Abada Ahmed, Hiadsi Said, Ouahrani Tarik, Amrani Bouhalouane, Amara Kadda

Abstract:

Using the first-principles full-potential linearized augmented plane wave plus local orbital (FP-LAPW+lo) method based on density functional theory (DFT), we have investigated the electronic structure and magnetism of full Heusler alloys Co2ZrGe and Co2NbB. These compounds are predicted to be half-metallic ferromagnets (HMFs) with a total magnetic moment of 2.000 B per formula unit, well consistent with the Slater-Pauling rule. Calculations show that both the alloys have an indirect band gaps, in the minority-spin channel of density of states (DOS), with values of 0.58 eV and 0.47 eV for Co2ZrGe and Co2NbB, respectively. Analysis of the DOS and magnetic moments indicates that their magnetism is mainly related to the d-d hybridization between the Co and Zr (or Nb) atoms. The half-metallicity is found to be relatively robust against volume changes. In addition, an atom inside molecule AIM formalism and an electron localization function ELF were also adopted to study the bonding properties of these compounds, building a bridge between their electronic and bonding behavior. As they have a good crystallographic compatibility with the lattice of semiconductors used industrially and negative calculated cohesive energies with considerable absolute values these two alloys could be promising magnetic materials in the spintronic field.

Keywords: Electronic properties, full Heusler alloys, halfmetallic ferromagnets, magnetic properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2506
3 DFIG-Based Wind Turbine with Shunt Active Power Filter Controlled by Double Nonlinear Predictive Controller

Authors: Abderrahmane El Kachani, El Mahjoub Chakir, Anass Ait Laachir, Abdelhamid Niaaniaa, Jamal Zerouaoui, Tarik Jarou

Abstract:

This paper presents a wind turbine based on the doubly fed induction generator (DFIG) connected to the utility grid through a shunt active power filter (SAPF). The whole system is controlled by a double nonlinear predictive controller (DNPC). A Taylor series expansion is used to predict the outputs of the system. The control law is calculated by optimization of the cost function. The first nonlinear predictive controller (NPC) is designed to ensure the high performance tracking of the rotor speed and regulate the rotor current of the DFIG, while the second one is designed to control the SAPF in order to compensate the harmonic produces by the three-phase diode bridge supplied by a passive circuit (rd, Ld). As a result, we obtain sinusoidal waveforms of the stator voltage and stator current. The proposed nonlinear predictive controllers (NPCs) are validated via simulation on a 1.5 MW DFIG-based wind turbine connected to an SAPF. The results obtained appear to be satisfactory and promising.

Keywords: Wind power, doubly fed induction generator, shunt active power filter, double nonlinear predictive controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 918
2 Clustering for Detection of Population Groups at Risk from Anticholinergic Medication

Authors: Amirali Shirazibeheshti, Tarik Radwan, Alireza Ettefaghian, Farbod Khanizadeh, George Wilson, Cristina Luca

Abstract:

Anticholinergic medication has been associated with events such as falls, delirium, and cognitive impairment in older patients. To further assess this, anticholinergic burden scores have been developed to quantify risk. A risk model based on clustering was deployed in a healthcare management system to cluster patients into multiple risk groups according to anticholinergic burden scores of multiple medicines prescribed to patients to facilitate clinical decision-making. To do so, anticholinergic burden scores of drugs were extracted from the literature which categorizes the risk on a scale of 1 to 3. Given the patients’ prescription data on the healthcare database, a weighted anticholinergic risk score was derived per patient based on the prescription of multiple anticholinergic drugs. This study was conducted on 300,000 records of patients currently registered with a major regional UK-based healthcare provider. The weighted risk scores were used as inputs to an unsupervised learning algorithm (mean-shift clustering) that groups patients into clusters that represent different levels of anticholinergic risk. This work evaluates the association between the average risk score and measures of socioeconomic status (index of multiple deprivation) and health (index of health and disability). The clustering identifies a group of 15 patients at the highest risk from multiple anticholinergic medication. Our findings show that this group of patients is located within more deprived areas of London compared to the population of other risk groups. Furthermore, the prescription of anticholinergic medicines is more skewed to female than male patients, suggesting that females are more at risk from this kind of multiple medication. The risk may be monitored and controlled in a healthcare management system that is well-equipped with tools implementing appropriate techniques of artificial intelligence.

Keywords: Anticholinergic medication, socioeconomic status, deprivation, clustering, risk analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1069
1 The Development and Testing of a Small Scale Dry Electrostatic Precipitator for the Removal of Particulate Matter

Authors: Derek Wardle, Tarik Al-Shemmeri, Neil Packer

Abstract:

This paper presents a small tube/wire type electrostatic precipitator (ESP). In the ESPs present form, particle charging and collecting voltages and airflow rates were individually varied throughout 200 ambient temperature test runs ranging from 10 to 30 kV in increments on 5 kV and 0.5 m/s to 1.5 m/s, respectively. It was repeatedly observed that, at input air velocities of between 0.5 and 0.9 m/s and voltage settings of 20 kV to 30 kV, the collection efficiency remained above 95%. The outcomes of preliminary tests at combustion flue temperatures are, at present, inconclusive although indications are that there is little or no drop in comparable performance during ideal test conditions. A limited set of similar tests was carried out during which the collecting electrode was grounded, having been disconnected from the static generator. The collecting efficiency fell significantly, and for that reason, this approach was not pursued further. The collecting efficiencies during ambient temperature tests were determined by mass balance between incoming and outgoing dry PM. The efficiencies of combustion temperature runs are determined by analysing the difference in opacity of the flue gas at inlet and outlet compared to a reference light source. In addition, an array of Leit tabs (carbon coated, electrically conductive adhesive discs) was placed at inlet and outlet for a number of four-day continuous ambient temperature runs. Analysis of the discs’ contamination was carried out using scanning electron microscopy and ImageJ computer software that confirmed collection efficiencies of over 99% which gave unequivocal support to all the previous tests. The average efficiency for these runs was 99.409%. Emissions collected from a woody biomass combustion unit, classified to a diameter of 100 µm, were used in all ambient temperature trials test runs apart from two which collected airborne dust from within the laboratory. Sawdust and wood pellets were chosen for laboratory and field combustion trials. Video recordings were made of three ambient temperature test runs in which the smoke from a wood smoke generator was drawn through the precipitator. Although these runs were visual indicators only, with no objective other than to display, they provided a strong argument for the device’s claimed efficiency, as no emissions were visible at exit when energised.  The theoretical performance of ESPs, when applied to the geometry and configuration of the tested model, was compared to the actual performance and was shown to be in good agreement with it.

Keywords: Electrostatic precipitators, air quality, particulates emissions, electron microscopy, ImageJ.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1155