Search results for: T. Thanga
2 Induction Motor Design with Limited Harmonic Currents Using Particle Swarm Optimization
Authors: C. Thanga Raj, S. P. Srivastava, Pramod Agarwal
Abstract:
This paper presents an optimal design of poly-phase induction motor using Quadratic Interpolation based Particle Swarm Optimization (QI-PSO). The optimization algorithm considers the efficiency, starting torque and temperature rise as objective function (which are considered separately) and ten performance related items including harmonic current as constraints. The QI-PSO algorithm was implemented on a test motor and the results are compared with the Simulated Annealing (SA) technique, Standard Particle Swarm Optimization (SPSO), and normal design. Some benchmark problems are used for validating QI-PSO. From the test results QI-PSO gave better results and more suitable to motor-s design optimization. Cµ code is used for implementing entire algorithms.
Keywords: Design, harmonics, induction motor, particle swarm optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17901 Shear Capacity of Rectangular Duct Panel Experiencing Internal Pressure
Authors: K. S. Sivakumaran, T. Thanga, B. Halabieh
Abstract:
The end panels of a large rectangular industrial duct, which experience significant internal pressures, also experience considerable transverse shear due to transfer of gravity loads to the supports. The current design practice of such thin plate panels for shear load is based on methods used for the design of plate girder webs. The structural arrangements, the loadings and the resulting behavior associated with the industrial duct end panels are, however, significantly different from those of the web of a plate girder. The large aspect ratio of the end panels gives rise to multiple bands of tension fields, whereas the plate girder web design is based on one tension field. In addition to shear, the industrial end panels are subjected to internal pressure which in turn produces significant membrane action. This paper reports a study which was undertaken to review the current industrial analysis and design methods and to propose a comprehensive method of designing industrial duct end panels for shear resistance. In this investigation, a nonlinear finite element model was developed to simulate the behavior of industrial duct end panel, along with the associated edge stiffeners, subjected to transverse shear and internal pressures. The model considered the geometric imperfections and constitutive relations for steels. Six scale independent dimensionless parameters that govern the behavior of such end panel were identified and were then used in a parametric study. It was concluded that the plate slenderness dominates the shear strength of stockier end panels, and whereas, both the plate slenderness and the aspect ratio influence the shear strength of slender end panels. Based on these studies, this paper proposes design aids for estimating the shear strength of rectangular duct end panels.Keywords: Thin plate, transverse shear, tension field, finite element analysis, parametric study, design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1973