Search results for: Sohrab Khanmohammadi
14 Facial Expressions Animation and Lip Tracking Using Facial Characteristic Points and Deformable Model
Authors: Hadi Seyedarabi, Ali Aghagolzadeh, Sohrab Khanmohammadi
Abstract:
Face and facial expressions play essential roles in interpersonal communication. Most of the current works on the facial expression recognition attempt to recognize a small set of the prototypic expressions such as happy, surprise, anger, sad, disgust and fear. However the most of the human emotions are communicated by changes in one or two of discrete features. In this paper, we develop a facial expressions synthesis system, based on the facial characteristic points (FCP's) tracking in the frontal image sequences. Selected FCP's are automatically tracked using a crosscorrelation based optical flow. The proposed synthesis system uses a simple deformable facial features model with a few set of control points that can be tracked in original facial image sequences.Keywords: Deformable face model, facial animation, facialcharacteristic points, optical flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163313 A Novel Approach for Scheduling Rescue Robot Mission Using Decision Analysis
Authors: Rana Soltani-Zarrin, Sohrab Khanmohammadi
Abstract:
In this paper, a new method for multi criteria decision making is represented whichspecifies a trajectory satisfying desired criteria including minimization of time. A rescue robot is defined to perform certain tasks before the arrival of rescue team, including evaluation of the probability of explosion in the area, detecting human-beings, and providing preliminary aidsin case of identifying signs of life, so that the security of the surroundings will have enhanced significantly for the individuals inside the disaster zone as well as the rescue team. The main idea behind our technique is using the Program Evaluation and Review Technique analysis along with Critical Path Method and use the Multi Criteria Decision Making (MCDM) method to decidewhich set of activities must be performed first. Since the disastrous event in one area may be well contagious to others, it is one of the robot's priorities to evaluate the relative adversity of the situation, using the above methods and prioritize its mission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 166812 Intelligent Path Planning for Rescue Robot
Authors: Sohrab Khanmohammadi, Raana Soltani Zarrin
Abstract:
In this paper, a heuristic method for simultaneous rescue robot path-planning and mission scheduling is introduced based on project management techniques, multi criteria decision making and artificial potential fields path-planning. Groups of injured people are trapped in a disastrous situation. These people are categorized into several groups based on the severity of their situation. A rescue robot, whose ultimate objective is reaching injured groups and providing preliminary aid for them through a path with minimum risk, has to perform certain tasks on its way towards targets before the arrival of rescue team. A decision value is assigned to each target based on the whole degree of satisfaction of the criteria and duties of the robot toward the target and the importance of rescuing each target based on their category and the number of injured people. The resulted decision value defines the strength of the attractive potential field of each target. Dangerous environmental parameters are defined as obstacles whose risk determines the strength of the repulsive potential field of each obstacle. Moreover, negative and positive energies are assigned to the targets and obstacles, which are variable with respects to the factors involved. The simulation results show that the generated path for two cases studies with certain differences in environmental conditions and other risk factors differ considerably.Keywords: Artificial potential field, GERT, path planning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 184411 Fuzzy Control of a Three Phase ThyristorizedInduction Motor
Authors: Abolfazl Jalilvand, Mohammad Reza Feyzi, Sohrab Khanmohammad, Mohammad Bagher Bana Sharifian, Ali Sajjadi
Abstract:
Nowadays the control of stator voltage at a constant frequency is one of the traditional and low expense methods in order to control the speed of induction motors near its nominal speed. The torque of induction motor is a nonlinear function of the firing angle, phase angle and speed. In this paper the speed control of induction motor regarding various load torque and under different conditions will be investigated based on a fuzzy controller with inverse training.
Keywords: Three phase induction motor, AC converter, speedcontrol, fuzzy control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 179910 Fuzzy Cost Support Vector Regression
Authors: Hadi Sadoghi Yazdi, Tahereh Royani, Mehri Sadoghi Yazdi, Sohrab Effati
Abstract:
In this paper, a new version of support vector regression (SVR) is presented namely Fuzzy Cost SVR (FCSVR). Individual property of the FCSVR is operation over fuzzy data whereas fuzzy cost (fuzzy margin and fuzzy penalty) are maximized. This idea admits to have uncertainty in the penalty and margin terms jointly. Robustness against noise is shown in the experimental results as a property of the proposed method and superiority relative conventional SVR.
Keywords: Support vector regression, Fuzzy input, Fuzzy cost.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13729 Uniform Distribution of Ductility Demand in Irregular Bridges using Shape Memory Alloy
Authors: Seyed Mohyeddin Ghodratian, Mehdi Ghassemieh, Mohammad Khanmohammadi
Abstract:
Excessive ductility demand on shorter piers is a common problem for irregular bridges subjected to strong ground motion. Various techniques have been developed to reduce the likelihood of collapse of bridge due to failure of shorter piers. This paper presents the new approach to improve the seismic behavior of such bridges using Nitinol shape memory alloys (SMAs). Superelastic SMAs have the ability to remain elastic under very large deformation due to martensitic transformation. This unique property leads to enhanced performance of controlled bridge compared with the performance of the reference bridge. To evaluate the effectiveness of the devices, nonlinear time history analysis is performed on a RC single column bent highway bridge using a suite of representative ground motions. The results show that this method is very effective in limiting the ductility demand of shorter pier.Keywords: bridge, ductility demand, irregularity, shape memory alloy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18718 Automated Segmentation of ECG Signals using Piecewise Derivative Dynamic Time Warping
Authors: Ali Zifan, Mohammad Hassan Moradi, Sohrab Saberi, Farzad Towhidkhah
Abstract:
Electrocardiogram (ECG) segmentation is necessary to help reduce the time consuming task of manually annotating ECG-s. Several algorithms have been developed to segment the ECG automatically. We first review several of such methods, and then present a new single lead segmentation method based on Adaptive piecewise constant approximation (APCA) and Piecewise derivative dynamic time warping (PDDTW). The results are tested on the QT database. We compared our results to Laguna-s two lead method. Our proposed approach has a comparable mean error, but yields a slightly higher standard deviation than Laguna-s method.Keywords: Adaptive Piecewise Constant Approximation, Dynamic programming, ECG segmentation, Piecewise DerivativeDynamic Time Warping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20677 Automated ECG Segmentation Using Piecewise Derivative Dynamic Time Warping
Authors: Ali Zifan, Sohrab Saberi, Mohammad Hassan Moradi, Farzad Towhidkhah
Abstract:
Electrocardiogram (ECG) segmentation is necessary to help reduce the time consuming task of manually annotating ECG's. Several algorithms have been developed to segment the ECG automatically. We first review several of such methods, and then present a new single lead segmentation method based on Adaptive piecewise constant approximation (APCA) and Piecewise derivative dynamic time warping (PDDTW). The results are tested on the QT database. We compared our results to Laguna's two lead method. Our proposed approach has a comparable mean error, but yields a slightly higher standard deviation than Laguna's method.
Keywords: Adaptive Piecewise Constant Approximation, Dynamic programming, ECG segmentation, Piecewise Derivative Dynamic Time Warping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23946 Prediction of Vapor Liquid Equilibrium for Dilute Solutions of Components in Ionic Liquid by Neural Networks
Authors: S. Mousavian, A. Abedianpour, A. Khanmohammadi, S. Hematian, Gh. Eidi Veisi
Abstract:
Ionic liquids are finding a wide range of applications from reaction media to separations and materials processing. In these applications, Vapor–Liquid equilibrium (VLE) is the most important one. VLE for six systems at 353 K and activity coefficients at infinite dilution [(γ)_i^∞] for various solutes (alkanes, alkenes, cycloalkanes, cycloalkenes, aromatics, alcohols, ketones, esters, ethers, and water) in the ionic liquids (1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide [EMIM][BTI], 1-hexyl-3-methyl imidazolium bis (trifluoromethylsulfonyl) imide [HMIM][BTI], 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [OMIM][BTI], and 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl) imide [BMPYR][BTI]) have been used to train neural networks in the temperature range from (303 to 333) K. Densities of the ionic liquids, Hildebrant constant of substances, and temperature were selected as input of neural networks. The networks with different hidden layers were examined. Networks with seven neurons in one hidden layer have minimum error and good agreement with experimental data.
Keywords: Ionic liquid, Neural networks, VLE, Dilute solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13665 A Comparative Cross-sectional Study of Religious Behavior in High School and University Students
Authors: Bahram Esmaeili, Hossein Hosseini, Mohammad Sharifi Bohloli, Hamid Reza Imani Far, Sohrab Sadeghi
Abstract:
The purpose of this study was to investigate the religious behavior of students in high school and universality in Lamerd , a town in the south of Iran, with respect to increase in their level of education and age. The participants were 450 high school and university students in all levels from first year of junior high school to the senior university students who were chosen through multistage cluster sampling method and their religious behavior was studied. Through the revised questionnaire by Nezar Alany from the University of Bahrain (r = 0/797), the religious behavior of the subjects were analyzed. Results showed that students in high school in religious behavior were superior to the students of university (003/0>p) and there was a decline of religious behavior in junior high school third year students to second students of the same school (042/0>p). More important is that the decrease in religious behavior was associated with increase in educational levels (017/0>p) and age (043/0>p).Keywords: Academic achievement, education level, religion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22284 Feasibility Investigation of Near Infrared Spectrometry for Particle Size Estimation of Nano Structures
Authors: A. Bagheri Garmarudi, M. Khanmohammadi, N. Khoddami, K. Shabani
Abstract:
Determination of nano particle size is substantial since the nano particle size exerts a significant effect on various properties of nano materials. Accordingly, proposing non-destructive, accurate and rapid techniques for this aim is of high interest. There are some conventional techniques to investigate the morphology and grain size of nano particles such as scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffractometry (XRD). Vibrational spectroscopy is utilized to characterize different compounds and applied for evaluation of the average particle size based on relationship between particle size and near infrared spectra [1,4] , but it has never been applied in quantitative morphological analysis of nano materials. So far, the potential application of nearinfrared (NIR) spectroscopy with its ability in rapid analysis of powdered materials with minimal sample preparation, has been suggested for particle size determination of powdered pharmaceuticals. The relationship between particle size and diffuse reflectance (DR) spectra in near infrared region has been applied to introduce a method for estimation of particle size. Back propagation artificial neural network (BP-ANN) as a nonlinear model was applied to estimate average particle size based on near infrared diffuse reflectance spectra. Thirty five different nano TiO2 samples with different particle size were analyzed by DR-FTNIR spectrometry and the obtained data were processed by BP- ANN.Keywords: near infrared, particle size, chemometrics, neuralnetwork, nano structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18423 Optimization of Shear Frame Structures Applying Various Forms of Wavelet Transforms
Authors: Seyed Sadegh Naseralavi, Sohrab Nemati, Ehsan Khojastehfar, Sadegh Balaghi
Abstract:
In the present research, various formulations of wavelet transform are applied on acceleration time history of earthquake. The mentioned transforms decompose the strong ground motion into low and high frequency parts. Since the high frequency portion of strong ground motion has a minor effect on dynamic response of structures, the structure is excited by low frequency part. Consequently, the seismic response of structure is predicted consuming one half of computational time, comparing with conventional time history analysis. Towards reducing the computational effort needed in seismic optimization of structure, seismic optimization of a shear frame structure is conducted by applying various forms of mentioned transformation through genetic algorithm.
Keywords: Time history analysis, wavelet transform, optimization, earthquake.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8002 Estimation of Critical Period for Weed Control in Corn in Iran
Authors: Sohrab Mahmoodi, Ali Rahimi
Abstract:
The critical period for weed control (CPWC) is the period in the crop growth cycle during which weeds must be controlled to prevent unacceptable yield losses. Field studies were conducted in 2005 and 2006 in the University of Birjand at the south east of Iran to determine CPWC of corn using a randomized complete block design with 14 treatments and four replications. The treatments consisted of two different periods of weed interference, a critical weed-free period and a critical time of weed removal, were imposed at V3, V6, V9, V12, V15, and R1 (based on phonological stages of corn development) with a weedy check and a weed-free check. The CPWC was determined with the use of 2.5, 5, 10, 15 and 20% acceptable yield loss levels by non-linear Regression method and fitting Logistic and Gompertz nonlinear equations to relative yield data. The CPWC of corn was from 5- to 15-leaf stage (19-55 DAE) to prevent yield losses of 5%. This period to prevent yield losses of 2.5, 10 and 20% was 4- to 17-leaf stage (14-59 DAE), 6- to 12-leaf stage (25-47 DAE) and 8- to 9-leaf stage (31-36 DAE) respectively. The height and leaf area index of corn were significantly decreased by weed competition in both weed free and weed infested treatments (P<0.01). Results also showed that there was a significant positive correlation between yield and LAI of corn at silk stage when competing with weeds (r= 0.97).
Keywords: Corn, Critical period, Gompertz, Logistic, Weed control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20301 An Adaptive Memetic Algorithm With Dynamic Population Management for Designing HIV Multidrug Therapies
Authors: Hassan Zarei, Ali Vahidian Kamyad, Sohrab Effati
Abstract:
In this paper, a mathematical model of human immunodeficiency virus (HIV) is utilized and an optimization problem is proposed, with the final goal of implementing an optimal 900-day structured treatment interruption (STI) protocol. Two type of commonly used drugs in highly active antiretroviral therapy (HAART), reverse transcriptase inhibitors (RTI) and protease inhibitors (PI), are considered. In order to solving the proposed optimization problem an adaptive memetic algorithm with population management (AMAPM) is proposed. The AMAPM uses a distance measure to control the diversity of population in genotype space and thus preventing the stagnation and premature convergence. Moreover, the AMAPM uses diversity parameter in phenotype space to dynamically set the population size and the number of crossovers during the search process. Three crossover operators diversify the population, simultaneously. The progresses of crossover operators are utilized to set the number of each crossover per generation. In order to escaping the local optima and introducing the new search directions toward the global optima, two local searchers assist the evolutionary process. In contrast to traditional memetic algorithms, the activation of these local searchers is not random and depends on both the diversity parameters in genotype space and phenotype space. The capability of AMAPM in finding optimal solutions compared with three popular metaheurestics is introduced.Keywords: HIV therapy design, memetic algorithms, adaptivealgorithms, nonlinear integer programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628