Search results for: Software industry
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3431

Search results for: Software industry

11 Review of Carbon Materials: Application in Alternative Energy Sources and Catalysis

Authors: Marita Pigłowska, Beata Kurc, Maciej Galiński

Abstract:

The application of carbon materials in the branches of the electrochemical industry shows an increasing tendency each year due to the many interesting properties they possess. These are, among others, a well-developed specific surface, porosity, high sorption capacity, good adsorption properties, low bulk density, electrical conductivity and chemical resistance. All these properties allow for their effective use, among others in supercapacitors, which can store electric charges of the order of 100 F due to carbon electrodes constituting the capacitor plates. Coals (including expanded graphite, carbon black, graphite carbon fibers, activated carbon) are commonly used in electrochemical methods of removing oil derivatives from water after tanker disasters, e.g., phenols and their derivatives by their electrochemical anodic oxidation. Phenol can occupy practically the entire surface of carbon material and leave the water clean of hydrophobic impurities. Regeneration of such electrodes is also not complicated, it is carried out by electrochemical methods consisting in unblocking the pores and reducing resistances, and thus their reactivation for subsequent adsorption processes. Graphite is commonly used as an anode material in lithium-ion cells, while due to the limited capacity it offers (372 mAh g-1), new solutions are sought that meet both capacitive, efficiency and economic criteria. Increasingly, biodegradable materials, green materials, biomass, waste (including agricultural waste) are used in order to reuse them and reduce greenhouse effects and, above all, to meet the biodegradability criterion necessary for the production of lithium-ion cells as chemical power sources. The most common of these materials are cellulose, starch, wheat, rice, and corn waste, e.g., from agricultural, paper and pharmaceutical production. Such products are subjected to appropriate treatments depending on the desired application (including chemical, thermal, electrochemical). Starch is a biodegradable polysaccharide that consists of polymeric units such as amylose and amylopectin that build an ordered (linear) and amorphous (branched) structure of the polymer. Carbon is also used as a catalyst. Elemental carbon has become available in many nano-structured forms representing the hybridization combinations found in the primary carbon allotropes, and the materials can be enriched with a large number of surface functional groups. There are many examples of catalytic applications of coal in the literature, but the development of this field has been hampered by the lack of a conceptual approach combining structure and function and a lack of understanding of material synthesis. In the context of catalytic applications, the integrity of carbon environmental management properties and parameters such as metal conductivity range and bond sequence management should be characterized. Such data, along with surface and textured information, can form the basis for the provision of network support services.

Keywords: carbon materials, catalysis, BET, capacitors, lithium ion cell

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1056
10 Measuring Enterprise Growth: Pitfalls and Implications

Authors: N. Šarlija, S. Pfeifer, M. Jeger, A. Bilandžić

Abstract:

Enterprise growth is generally considered as a key driver of competitiveness, employment, economic development and social inclusion. As such, it is perceived to be a highly desirable outcome of entrepreneurship for scholars and decision makers. The huge academic debate resulted in the multitude of theoretical frameworks focused on explaining growth stages, determinants and future prospects. It has been widely accepted that enterprise growth is most likely nonlinear, temporal and related to the variety of factors which reflect the individual, firm, organizational, industry or environmental determinants of growth. However, factors that affect growth are not easily captured, instruments to measure those factors are often arbitrary, causality between variables and growth is elusive, indicating that growth is not easily modeled. Furthermore, in line with heterogeneous nature of the growth phenomenon, there is a vast number of measurement constructs assessing growth which are used interchangeably. Differences among various growth measures, at conceptual as well as at operationalization level, can hinder theory development which emphasizes the need for more empirically robust studies. In line with these highlights, the main purpose of this paper is twofold. Firstly, to compare structure and performance of three growth prediction models based on the main growth measures: Revenues, employment and assets growth. Secondly, to explore the prospects of financial indicators, set as exact, visible, standardized and accessible variables, to serve as determinants of enterprise growth. Finally, to contribute to the understanding of the implications on research results and recommendations for growth caused by different growth measures. The models include a range of financial indicators as lag determinants of the enterprises’ performances during the 2008-2013, extracted from the national register of the financial statements of SMEs in Croatia. The design and testing stage of the modeling used the logistic regression procedures. Findings confirm that growth prediction models based on different measures of growth have different set of predictors. Moreover, the relationship between particular predictors and growth measure is inconsistent, namely the same predictor positively related to one growth measure may exert negative effect on a different growth measure. Overall, financial indicators alone can serve as good proxy of growth and yield adequate predictive power of the models. The paper sheds light on both methodology and conceptual framework of enterprise growth by using a range of variables which serve as a proxy for the multitude of internal and external determinants, but are unlike them, accessible, available, exact and free of perceptual nuances in building up the model. Selection of the growth measure seems to have significant impact on the implications and recommendations related to growth. Furthermore, the paper points out to potential pitfalls of measuring and predicting growth. Overall, the results and the implications of the study are relevant for advancing academic debates on growth-related methodology, and can contribute to evidence-based decisions of policy makers.

Keywords: Growth measurement constructs, logistic regression, prediction of growth potential, small and medium-sized enterprises.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2430
9 Analytical, Numerical, and Experimental Research Approaches to Influence of Vibrations on Hydroelastic Processes in Centrifugal Pumps

Authors: Dinara F. Gaynutdinova, Vladimir Ya Modorsky, Nikolay A. Shevelev

Abstract:

The problem under research is that of unpredictable modes occurring in two-stage centrifugal hydraulic pump as a result of hydraulic processes caused by vibrations of structural components. Numerical, analytical and experimental approaches are considered. A hypothesis was developed that the problem of unpredictable pressure decrease at the second stage of centrifugal pumps is caused by cavitation effects occurring upon vibration. The problem has been studied experimentally and theoretically as of today. The theoretical study was conducted numerically and analytically. Hydroelastic processes in dynamic “liquid – deformed structure” system were numerically modelled and analysed. Using ANSYS CFX program engineering analysis complex and computing capacity of a supercomputer the cavitation parameters were established to depend on vibration parameters. An influence domain of amplitudes and vibration frequencies on concentration of cavitation bubbles was formulated. The obtained numerical solution was verified using CFM program package developed in PNRPU. The package is based on a differential equation system in hyperbolic and elliptic partial derivatives. The system is solved by using one of finite-difference method options – the particle-in-cell method. The method defines the problem solution algorithm. The obtained numerical solution was verified analytically by model problem calculations with the use of known analytical solutions of in-pipe piston movement and cantilever rod end face impact. An infrastructure consisting of an experimental fast hydro-dynamic processes research installation and a supercomputer connected by a high-speed network, was created to verify the obtained numerical solutions. Physical experiments included measurement, record, processing and analysis of data for fast processes research by using National Instrument signals measurement system and Lab View software. The model chamber end face oscillated during physical experiments and, thus, loaded the hydraulic volume. The loading frequency varied from 0 to 5 kHz. The length of the operating chamber varied from 0.4 to 1.0 m. Additional loads weighed from 2 to 10 kg. The liquid column varied from 0.4 to 1 m high. Liquid pressure history was registered. The experiment showed dependence of forced system oscillation amplitude on loading frequency at various values: operating chamber geometrical dimensions, liquid column height and structure weight. Maximum pressure oscillation (in the basic variant) amplitudes were discovered at loading frequencies of approximately 1,5 kHz. These results match the analytical and numerical solutions in ANSYS and CFM.

Keywords: Computing experiment, hydroelasticity, physical experiment, vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1509
8 Smart Meters and In-Home Displays to Encourage Water Conservation through Behavioural Change

Authors: Julia Terlet, Thomas H. Beach, Yacine Rezgui

Abstract:

Urbanization, population growth, climate change and the current increase in water demand have made the adoption of innovative demand management strategies crucial to the water industry. Water conservation in urban areas has to be improved by encouraging consumers to adopt more sustainable habits and behaviours. This includes informing and educating them about their households’ water consumption and advising them about ways to achieve significant savings on a daily basis. This paper presents a study conducted in the context of the European FP7 WISDOM Project. By integrating innovative Information and Communication Technologies (ICT) frameworks, this project aims at achieving a change in water savings. More specifically, behavioural change will be attempted by implementing smart meters and in-home displays in a trial group of selected households within Cardiff (UK). Using this device, consumers will be able to receive feedback and information about their consumption but will also have the opportunity to compare their consumption to the consumption of other consumers and similar households. Following an initial survey, it appeared necessary to implement these in-home displays in a way that matches consumer's motivations to save water. The results demonstrated the importance of various factors influencing people’s daily water consumption. Both the relevant literature on the subject and the results of our survey therefore led us to include within the in-home device a variety of elements. It first appeared crucial to make consumers aware of the economic aspect of water conservation and especially of the significant financial savings that can be achieved by reducing their household’s water consumption on the long term. Likewise, reminding participants of the impact of their consumption on the environment by making them more aware of water scarcity issues around the world will help increasing their motivation to save water. Additionally, peer pressure and social comparisons with neighbours and other consumers, accentuated by the use of online social networks such as Facebook or Twitter, will likely encourage consumers to reduce their consumption. Participants will also be able to compare their current consumption to their past consumption and to observe the consequences of their efforts to save water through diverse graphs and charts. Finally, including a virtual water game within the display will help the whole household, children and adults, to achieve significant reductions by providing them with simple tips and advice to save water on a daily basis. Moreover, by setting daily and weekly goals for them to reach, the game will expectantly generate cooperation between family members. Members of each household will indeed be encouraged to work together to reduce their water consumption within different rooms of the house, such as the bathroom, the kitchen, or the toilets. Overall, this study will allow us to understand the elements that attract consumers the most and the features that are most commonly used by the participants. In this way, we intend to determine the main factors influencing water consumption in order to identify the measures that will most encourage water conservation in both the long and short term.

Keywords: Behavioural change, ICT technologies, water consumption, water conservation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521
7 Case Study on Innovative Aquatic-Based Bioeconomy for Chlorella sorokiniana

Authors: Iryna Atamaniuk, Hannah Boysen, Nils Wieczorek, Natalia Politaeva, Iuliia Bazarnova, Kerstin Kuchta

Abstract:

Over the last decade due to climate change and a strategy of natural resources preservation, the interest for the aquatic biomass has dramatically increased. Along with mitigation of the environmental pressure and connection of waste streams (including CO2 and heat emissions), microalgae bioeconomy can supply food, feed, as well as the pharmaceutical and power industry with number of value-added products. Furthermore, in comparison to conventional biomass, microalgae can be cultivated in wide range of conditions without compromising food and feed production, thus addressing issues associated with negative social and the environmental impacts. This paper presents the state-of-the art technology for microalgae bioeconomy from cultivation process to production of valuable components and by-streams. Microalgae Chlorella sorokiniana were cultivated in the pilot-scale innovation concept in Hamburg (Germany) using different systems such as race way pond (5000 L) and flat panel reactors (8 x 180 L). In order to achieve the optimum growth conditions along with suitable cellular composition for the further extraction of the value-added components, process parameters such as light intensity, temperature and pH are continuously being monitored. On the other hand, metabolic needs in nutrients were provided by addition of micro- and macro-nutrients into a medium to ensure autotrophic growth conditions of microalgae. The cultivation was further followed by downstream process and extraction of lipids, proteins and saccharides. Lipids extraction is conducted in repeated-batch semi-automatic mode using hot extraction method according to Randall. As solvents hexane and ethanol are used at different ratio of 9:1 and 1:9, respectively. Depending on cell disruption method along with solvents ratio, the total lipids content showed significant variations between 8.1% and 13.9 %. The highest percentage of extracted biomass was reached with a sample pretreated with microwave digestion using 90% of hexane and 10% of ethanol as solvents. Proteins content in microalgae was determined by two different methods, namely: Total Kejadahl Nitrogen (TKN), which further was converted to protein content, as well as Bradford method using Brilliant Blue G-250 dye. Obtained results, showed a good correlation between both methods with protein content being in the range of 39.8–47.1%. Characterization of neutral and acid saccharides from microalgae was conducted by phenol-sulfuric acid method at two wavelengths of 480 nm and 490 nm. The average concentration of neutral and acid saccharides under the optimal cultivation conditions was 19.5% and 26.1%, respectively. Subsequently, biomass residues are used as substrate for anaerobic digestion on the laboratory-scale. The methane concentration, which was measured on the daily bases, showed some variations for different samples after extraction steps but was in the range between 48% and 55%. CO2 which is formed during the fermentation process and after the combustion in the Combined Heat and Power unit can potentially be used within the cultivation process as a carbon source for the photoautotrophic synthesis of biomass.

Keywords: Bioeconomy, lipids, microalgae, proteins, saccharides.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 840
6 Cost Efficient Receiver Tube Technology for Eco-Friendly Concentrated Solar Thermal Applications

Authors: M. Shiva Prasad, S. R. Atchuta, T. Vijayaraghavan, S. Sakthivel

Abstract:

The world is in need of efficient energy conversion technologies which are affordable, accessible, and sustainable with eco-friendly nature. Solar energy is one of the cornerstones for the world’s economic growth because of its abundancy with zero carbon pollution. Among the various solar energy conversion technologies, solar thermal technology has attracted a substantial renewed interest due to its diversity and compatibility in various applications. Solar thermal systems employ concentrators, tracking systems and heat engines for electricity generation which lead to high cost and complexity in comparison with photovoltaics; however, it is compatible with distinct thermal energy storage capability and dispatchable electricity which creates a tremendous attraction. Apart from that, employing cost-effective solar selective receiver tube in a concentrating solar thermal (CST) system improves the energy conversion efficiency and directly reduces the cost of technology. In addition, the development of solar receiver tubes by low cost methods which can offer high optical properties and corrosion resistance in an open-air atmosphere would be beneficial for low and medium temperature applications. In this regard, our work opens up an approach which has the potential to achieve cost-effective energy conversion. We have developed a highly selective tandem absorber coating through a facile wet chemical route by a combination of chemical oxidation, sol-gel, and nanoparticle coating methods. The developed tandem absorber coating has gradient refractive index nature on stainless steel (SS 304) and exhibited high optical properties (α ≤ 0.95 & ε ≤ 0.14). The first absorber layer (Cr-Mn-Fe oxides) developed by controlled oxidation of SS 304 in a chemical bath reactor. A second composite layer of ZrO2-SiO2 has been applied on the chemically oxidized substrate by So-gel dip coating method to serve as optical enhancing and corrosion resistant layer. Finally, an antireflective layer (MgF2) has been deposited on the second layer, to achieve > 95% of absorption. The developed tandem layer exhibited good thermal stability up to 250 °C in open air atmospheric condition and superior corrosion resistance (withstands for > 200h in salt spray test (ASTM B117)). After the successful development of a coating with targeted properties at a laboratory scale, a prototype of the 1 m tube has been demonstrated with excellent uniformity and reproducibility. Moreover, it has been validated under standard laboratory test condition as well as in field condition with a comparison of the commercial receiver tube. The presented strategy can be widely adapted to develop highly selective coatings for a variety of CST applications ranging from hot water, solar desalination, and industrial process heat and power generation. The high-performance, cost-effective medium temperature receiver tube technology has attracted many industries, and recently the technology has been transferred to Indian industry.

Keywords: Concentrated solar thermal system, solar selective coating, tandem absorber, ultralow refractive index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 686
5 Modeling Ecological Responses of Some Forage Legumes in Iran

Authors: M. Keshavarzi

Abstract:

Grasslands of Iran are encountered with a vast desertification and destruction. Some legumes are plants of forage importance with high palatability. Studied legumes in this project are Onobrychis, Medicago sativa (alfalfa) and Trifolium repens. Seeds were cultivated in research field of Kaboutarabad (33 km East of Isfahan, Iran) with an average 80 mm. annual rainfall. Plants were cultivated in a split plot design with 3 replicate and two water treatments (weekly irrigation, and under stress with same amount per 15 days interval). Water entrance to each plots were measured by Partial flow. This project lasted 20 weeks. Destructive samplings (1m2 each time) were done weekly. At each sampling plants were gathered and weighed separately for each vegetative parts. An Area Meter (Vista) was used to measure root surface and leaf area. Total shoot and root fresh and dry weight, leaf area index and soil coverage were evaluated too. Dry weight was achieved in 750c oven after 24 hours. Statgraphic and Harvard Graphic software were used to formulate and demonstrate the parameters curves due to time. Our results show that Trifolium repens has affected 60 % and Medicago sativa 18% by water stress. Onobrychis total fresh weight was reduced 45%. Dry weight or Biomass in alfalfa is not so affected by water shortage. This means that in alfalfa fields we can decrease the irrigation amount and have some how same amount of Biomass. Onobrychis show a drastic decrease in Biomass. The increases in total dry matter due to time in studied plants are formulated. For Trifolium repens if removal or cattle entrance to meadows do not occurred at perfect time, it will decrease the palatability and water content of the shoots. Water stress in a short period could develop the root system in Trifolium repens, but if it last more than this other ecological and soil factors will affect the growth of this plant. Low level of soil water is not so important for studied legume forges. But water shortage affect palatability and water content of aerial parts. Leaf area due to time in studied legumes is formulated. In fact leaf area is decreased by shortage in available water. Higher leaf area means higher forage and biomass production. Medicago and Onobrychis reach to the maximum leaf area sooner than Trifolium and are able to produce an optimum soil cover and inhibit the transpiration of soil water of meadows. Correlation of root surface to Total biomass in studied plants is formulated. Medicago under water stress show a 40% decrease in crown cover while at optimum condition this amount reach to 100%. In order to produce forage in areas without soil erosion Medicago is the best choice even with a shortage in water resources. It is tried to represent the growth simulation of three famous Forage Legumes. By growth simulation farmers and range managers could better decide to choose best plant adapted to water availability without designing different time and labor consuming field experiments.

Keywords: Ecological parameters, Medicago, Onobrychis, Trifolium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1657
4 Weaving Social Development: An Exploratory Study of Adapting Traditional Textiles Using Indigenous Organic Wool for the Modern Interior Textiles Market

Authors: Seema Singh, Puja Anand, Alok Bhasin

Abstract:

The interior design profession aims to create aesthetically pleasing design solutions for human habitats but of late, growing awareness about depleting environmental resources, both tangible and intangible, and damages to the eco-system led to the quest for creating healthy and sustainable interior environments. The paper proposes adapting traditionally produced organic wool textiles for the mainstream interior design industry. This can create sustainable livelihoods whereby eco-friendly bridges can be built between Interior designers and consumers and pastoral communities. This study focuses on traditional textiles produced by two pastoral communities from India that use organic wool from indigenous sheep varieties. The Gaddi communities of Himachal Pradesh use wool from the Gaddi sheep breed to create Pattu (a multi-purpose textile). The Kurumas of Telangana weave a blanket called the Gongadi, using wool from the Black Deccani variety of sheep. These communities have traditionally reared indigenous sheep breeds for their wool and produce hand-spun and hand-woven textiles for their own consumption, using traditional processes that are chemical free. Based on data collected personally from field visits and documentation of traditional crafts of these pastoral communities, and using traditionally produced indigenous organic wool, the authors have developed innovative textile samples by including design interventions and exploring dyeing and weaving techniques. As part of the secondary research, the role of pastoralism in sustaining the eco-systems of Himachal Pradesh and Telangana was studied, and also the role of organic wool in creating healthy interior environments. The authors found that natural wool from indigenous sheep breeds can be used to create interior textiles that have the potential to be marketed to an urban audience, and this will help create earnings for pastoral communities. Literature studies have shown that organic & sustainable wool can reduce indoor pollution & toxicity levels in interiors and further help in creating healthier interior environments. Revival of indigenous breeds of sheep can further help in rejuvenating dying crafts, and promotion of these indigenous textiles can help in sustaining traditional eco-systems and the pastoral communities whose way of life is endangered today. Based on research and findings, the authors propose that adapting traditional textiles can have potential for application in Interiors, creating eco-friendly spaces. Interior textiles produced through such sustainable processes can help reduce indoor pollution, give livelihood opportunities to traditional economies, and leave almost zero carbon foot-print while being in sync with available natural resources, hence ultimately benefiting the society. The win-win situation for all the stakeholders in this eco-friendly model makes it pertinent to re-think how we design lifestyle textiles for interiors. This study illustrates a specific example from the two pastoral communities and can be used as a model that can work equally well in any community, regardless of geography.

Keywords: Design Intervention, Eco-Friendly, Healthy Interiors, Indigenous, Organic Wool, Pastoralism, Sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1320
3 Physiological Effects during Aerobatic Flights on Science Astronaut Candidates

Authors: Pedro Llanos, Diego García

Abstract:

Spaceflight is considered the last frontier in terms of science, technology, and engineering. But it is also the next frontier in terms of human physiology and performance. After more than 200,000 years humans have evolved under earth’s gravity and atmospheric conditions, spaceflight poses environmental stresses for which human physiology is not adapted. Hypoxia, accelerations, and radiation are among such stressors, our research involves suborbital flights aiming to develop effective countermeasures in order to assure sustainable human space presence. The physiologic baseline of spaceflight participants is subject to great variability driven by age, gender, fitness, and metabolic reserve. The objective of the present study is to characterize different physiologic variables in a population of STEM practitioners during an aerobatic flight. Cardiovascular and pulmonary responses were determined in Science Astronaut Candidates (SACs) during unusual attitude aerobatic flight indoctrination. Physiologic data recordings from 20 subjects participating in high-G flight training were analyzed. These recordings were registered by wearable sensor-vest that monitored electrocardiographic tracings (ECGs), signs of dysrhythmias or other electric disturbances during all the flight. The same cardiovascular parameters were also collected approximately 10 min pre-flight, during each high-G/unusual attitude maneuver and 10 min after the flights. The ratio (pre-flight/in-flight/post-flight) of the cardiovascular responses was calculated for comparison of inter-individual differences. The resulting tracings depicting the cardiovascular responses of the subjects were compared against the G-loads (Gs) during the aerobatic flights to analyze cardiovascular variability aspects and fluid/pressure shifts due to the high Gs. In-flight ECG revealed cardiac variability patterns associated with rapid Gs onset in terms of reduced heart rate (HR) and some scattered dysrhythmic patterns (15% premature ventricular contractions-type) that were considered as triggered physiological responses to high-G/unusual attitude training and some were considered as instrument artifact. Variation events were observed in subjects during the +Gz and –Gz maneuvers and these may be due to preload and afterload, sudden shift. Our data reveal that aerobatic flight influenced the breathing rate of the subject, due in part by the various levels of energy expenditure due to the increased use of muscle work during these aerobatic maneuvers. Noteworthy was the high heterogeneity in the different physiological responses among a relatively small group of SACs exposed to similar aerobatic flights with similar Gs exposures. The cardiovascular responses clearly demonstrated that SACs were subjected to significant flight stress. Routine ECG monitoring during high-G/unusual attitude flight training is recommended to capture pathology underlying dangerous dysrhythmias in suborbital flight safety. More research is currently being conducted to further facilitate the development of robust medical screening, medical risk assessment approaches, and suborbital flight training in the context of the evolving commercial human suborbital spaceflight industry. A more mature and integrative medical assessment method is required to understand the physiology state and response variability among highly diverse populations of prospective suborbital flight participants.

Keywords: Aerobatic maneuvers, G force, hypoxia, suborbital flight, commercial astronauts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 494
2 Modern Day Second Generation Military Filipino Amerasians and Ghosts of the U.S. Military Prostitution System in West Central Luzon’s ‘AMO Amerasian Triangle’

Authors: P. C. Kutschera, Elena C. Tesoro, Mary Grace Talamera-Sandico, Jose Maria G. Pelayo III

Abstract:

Second generation military Filipino Amerasians comprise a formidable contemporary segment of the estimated 250,000-plus biracial Amerasians in the Philippines today. Overall, they are a stigmatized and socioeconomically marginalized diaspora; historically, they were abandoned or estranged by U.S. military personnel fathers assigned during the century-long Colonial, Post- World War II and Cold War Era of permanent military basing (1898- 1992). Indeed, U.S. military personnel are assigned in smaller numbers in the Philippines today. This inquiry is an outgrowth of two recent small sample studies. The first surfaced the impact of the U.S. military prostitution system on formation of the ‘Derivative Amerasian Family Construct’ on first generation Amerasians; a second, qualitative case study suggested the continued effect of the prostitution systems' destructive impetuous on second generation Amerasians. The intent of this current qualitative, multiple-case study was to actively seek out second generation sex industry toilers. The purpose was to focus further on this human phenomenon in the postbasing and post-military prostitution system eras. As background, the former military prostitution apparatus has transformed into a modern dynamic of rampant sex tourism and prostitution nationwide. This is characterized by hotel and resorts offering unrestricted carnal access, urban and provincial brothels (casas), discos, bars and pickup clubs, massage parlors, local barrio karaoke bars and street prostitution. A small case study sample (N = 4) of female and male second generation Amerasians were selected. Sample formation employed a non-probability ‘snowball’ technique drawing respondents from the notorious Angeles, Metro Manila, Olongapo City ‘AMO Amerasian Triangle’ where most former U.S. military installations were sited and modern sex tourism thrives. A six-month study and analysis of in-depth interviews of female and male sex laborers, their families and peers revealed a litany of disturbing, and troublesome experiences. Results showed profiles of debilitating human poverty, history of family disorganization, stigmatization, social marginalization and the ghost of the military prostitution system and its harmful legacy on Amerasian family units. Emerging were testimonials of wayward young people ensnared in a maelstrom of deep economic deprivation, familial dysfunction, psychological desperation and societal indifference. The paper recommends that more study is needed and implications of unstudied psychosocial and socioeconomic experiences of distressed younger generations of military Amerasians require specific research. Heretofore apathetic or disengaged U.S. institutions need to confront the issue and formulate activist and solution-oriented social welfare, human services and immigration easement policies and alternatives. These institutions specifically include academic and social science research agencies, corporate foundations, the U.S. Congress, and Departments of State, Defense and Health and Human Services, and Homeland Security (i.e. Citizen and Immigration Services) It is them who continue to endorse a laissez-faire policy of non-involvement over the entire Filipino Amerasian question. Such apathy, the paper concludes, relegates this consequential but neglected blood progeny to the status of humiliating destitution and exploitation. Amerasians; thus, remain entrapped in their former colonial, and neo-colonial habitat. Ironically, they are unwitting victims of a U.S. American homeland that fancies itself geo-politically as a strong and strategic military treaty ally of the Philippines in the Western Pacific.

Keywords: Asian Americans, Filipino Amerasians, diaspora, military prostitution, stigmatization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2515
1 A Spatial Repetitive Controller Applied to an Aeroelastic Model for Wind Turbines

Authors: Riccardo Fratini, Riccardo Santini, Jacopo Serafini, Massimo Gennaretti, Stefano Panzieri

Abstract:

This paper presents a nonlinear differential model, for a three-bladed horizontal axis wind turbine (HAWT) suited for control applications. It is based on a 8-dofs, lumped parameters structural dynamics coupled with a quasi-steady sectional aerodynamics. In particular, using the Euler-Lagrange Equation (Energetic Variation approach), the authors derive, and successively validate, such model. For the derivation of the aerodynamic model, the Greenbergs theory, an extension of the theory proposed by Theodorsen to the case of thin airfoils undergoing pulsating flows, is used. Specifically, in this work, the authors restricted that theory under the hypothesis of low perturbation reduced frequency k, which causes the lift deficiency function C(k) to be real and equal to 1. Furthermore, the expressions of the aerodynamic loads are obtained using the quasi-steady strip theory (Hodges and Ormiston), as a function of the chordwise and normal components of relative velocity between flow and airfoil Ut, Up, their derivatives, and section angular velocity ε˙. For the validation of the proposed model, the authors carried out open and closed-loop simulations of a 5 MW HAWT, characterized by radius R =61.5 m and by mean chord c = 3 m, with a nominal angular velocity Ωn = 1.266rad/sec. The first analysis performed is the steady state solution, where a uniform wind Vw = 11.4 m/s is considered and a collective pitch angle θ = 0.88◦ is imposed. During this step, the authors noticed that the proposed model is intrinsically periodic due to the effect of the wind and of the gravitational force. In order to reject this periodic trend in the model dynamics, the authors propose a collective repetitive control algorithm coupled with a PD controller. In particular, when the reference command to be tracked and/or the disturbance to be rejected are periodic signals with a fixed period, the repetitive control strategies can be applied due to their high precision, simple implementation and little performance dependency on system parameters. The functional scheme of a repetitive controller is quite simple and, given a periodic reference command, is composed of a control block Crc(s) usually added to an existing feedback control system. The control block contains and a free time-delay system eτs in a positive feedback loop, and a low-pass filter q(s). It should be noticed that, while the time delay term reduces the stability margin, on the other hand the low pass filter is added to ensure stability. It is worth noting that, in this work, the authors propose a phase shifting for the controller and the delay system has been modified as e^(−(T−γk)), where T is the period of the signal and γk is a phase shifting of k samples of the same periodic signal. It should be noticed that, the phase shifting technique is particularly useful in non-minimum phase systems, such as flexible structures. In fact, using the phase shifting, the iterative algorithm could reach the convergence also at high frequencies. Notice that, in our case study, the shifting of k samples depends both on the rotor angular velocity Ω and on the rotor azimuth angle Ψ: we refer to this controller as a spatial repetitive controller. The collective repetitive controller has also been coupled with a C(s) = PD(s), in order to dampen oscillations of the blades. The performance of the spatial repetitive controller is compared with an industrial PI controller. In particular, starting from wind speed velocity Vw = 11.4 m/s the controller is asked to maintain the nominal angular velocity Ωn = 1.266rad/s after an instantaneous increase of wind speed (Vw = 15 m/s). Then, a purely periodic external disturbance is introduced in order to stress the capabilities of the repetitive controller. The results of the simulations show that, contrary to a simple PI controller, the spatial repetitive-PD controller has the capability to reject both external disturbances and periodic trend in the model dynamics. Finally, the nominal value of the angular velocity is reached, in accordance with results obtained with commercial software for a turbine of the same type.

Keywords: Wind turbines, aeroelasticity, repetitive control, periodic systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1233