Search results for: Norzita Ngadi
5 QCM-D Study on Relationship of PEG Coated Stainless Steel Surfaces to Protein Resistance
Authors: Norzita Ngadi, John Abrahamson, Conan Fee, Ken Morison
Abstract:
Nonspecific protein adsorption generally occurs on any solid surfaces and usually has adverse consequences. Adsorption of proteins onto a solid surface is believed to be the initial and controlling step in biofouling. Surfaces modified with end-tethered poly(ethylene glycol) (PEG) have been shown to be protein-resistant to some degree. In this study, the adsorption of β-casein and lysozyme was performed on 6 different types of surfaces where PEG was tethered onto stainless steel by polyethylene imine (PEI) through either OH or NHS end groups. Protein adsorption was also performed on the bare stainless steel surface as a control. The adsorption was conducted at 23 °C and pH 7.2. In situ QCM-D was used to determine PEG adsorption kinetics, plateau PEG chain densities, protein adsorption kinetics and plateau protein adsorbed quantities. PEG grafting density was the highest for a NHS coupled chain, around 0.5 chains / nm2. Interestingly, lysozyme which has smaller size than β-casein, appeared to adsorb much less mass than that of β- casein. Overall, the surface with high PEG grafting density exhibited a good protein rejection.Keywords: QCM-D, PEG, stainless steel, β-casein, lysozyme.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19904 Are PEG Molecules a Universal Protein Repellent?
Authors: Norzita Ngadi, John Abrahamson, Conan Fee, Ken Morison
Abstract:
Poly (ethylene glycol) (PEG) molecules attached to surfaces have shown high potential as a protein repellent due to their flexibility and highly water solubility. A quartz crystal microbalance recording frequency and dissipation changes (QCM-D) has been used to study the adsorption from aqueous solutions, of lysozyme and α-lactalbumin proteins (the last with and without calcium) onto modified stainless steel surfaces. Surfaces were coated with poly(ethylene imine) (PEI) and silicate before grafting on PEG molecules. Protein adsorption was also performed on the bare stainless steel surface as a control. All adsorptions were conducted at 23°C and pH 7.2. The results showed that the presence of PEG molecules significantly reduced the adsorption of lysozyme and α- lactalbumin (with calcium) onto the stainless steel surface. By contrast, and unexpected, PEG molecules enhanced the adsorption of α-lactalbumin (without calcium). It is suggested that the PEG -α- lactalbumin hydrophobic interaction plays a dominant role which leads to protein aggregation at the surface for this latter observation. The findings also lead to the general conclusion that PEG molecules are not a universal protein repellent. PEG-on-PEI surfaces were better at inhibiting the adsorption of lysozyme and α-lactalbumin (with calcium) than with PEG-on-silicate surfaces.
Keywords: Stainless steel, PEG, QCM-D, protein, PEI layer, silicate layer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22873 QCM-D Study of E-casein Adsorption on Bimodal PEG Brushes
Authors: N. Ngadi, J. Abrahamson, C. Fee, K. Morison
Abstract:
Adsorption of proteins onto a solid surface is believed to be the initial and controlling step in biofouling. A better knowledge of the fouling process can be obtained by controlling the formation of the first protein layer at a solid surface. A number of methods have been investigated to inhibit adsorption of proteins. In this study, the adsorption kinetics of
Keywords: E-casein, QCM-D, stainless steel, bimodal brush, PEG
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13792 Production of 3-Methyl-1-Butanol by Yeast Wild Strain
Authors: R. Nor Azah, A. R. Roshanida, N. Norzita
Abstract:
The biomass-based fuels have become great concern in order to replace the petroleum-based fuels. Biofuels are a wide range of fuels referred to liquid, gas and solid fuels produced from biomass. Recently, higher chain alcohols such as 3-methyl-1-butanol and isobutanol have become a better candidate compared to bioethanol in order to replace gasoline as transportation fuel. Therefore, in this study, 3-methyl-1-butanol was produced through a fermentation process by yeast. Several types of yeast involved in this research including Saccharomyces cerevisiae, Kluyveromyces lactis GG799 and Pichia pastoris (KM71H, GS115 and X33). The result obtained showed that K. lactis GG799 gave the highest concentration of 3-methyl-1-butanol at 274 mg/l followed by S. cerevisiae, P. pastoris GS115, P. pastoris KM71H and P. pastoris X33 at 265 mg/l, 190 mg/l, 182 mg/l and 174 mg/l respectively. Based on the result, it proved that yeast have a potential in producing 3-methyl-1-butanol naturally.
Keywords: Biofuel, fermentation, 3-methyl-1-butanol, yeast.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27431 Thermal and Visual Performance of Solar Control Film
Authors: Norzita Jaafar, Nor Zaini Zakaria, Azni Zain Ahmed, Razidah Ismail
Abstract:
The use of solar control film on windows as one of solar passive strategies for building have becoming important and is gaining recognition. Malaysia located close to equator is having warm humid climate with long sunshine hours and abundant solar radiation throughout the year. Hence, befitting solar control on windows is absolutely necessary to capture the daylight whilst moderating thermal impact and eliminating glare problems. This is one of the energy efficient strategies to achieve thermal and visual comfort in buildings. Therefore, this study was carried out to investigate the effect of window solar controls on thermal and visual performance of naturally ventilated buildings. This was conducted via field data monitoring using a test building facility. Four types of window glazing systems were used with three types of solar control films. Data were analysed for thermal and visual impact with reference to thermal and optical characteristics of the films. Results show that for each glazing system, the surface temperature of windows are influenced by the Solar Energy Absorption property, the indoor air temperature are influenced by the Solar Energy Transmittance and Solar Energy Reflectance, and the daylighting by Visible Light Transmission and Shading Coefficient. Further investigations are underway to determine the mathematical relation between thermal energy and visual performance with the thermal and optical characteristics of solar control films.Keywords: window, solar control film, natural ventilation, thermal performance, visual performance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2267