Search results for: Norwati K.A
4 Improving Academic Performance Prediction using Voting Technique in Data Mining
Authors: Ikmal Hisyam Mohamad Paris, Lilly Suriani Affendey, Norwati Mustapha
Abstract:
In this paper we compare the accuracy of data mining methods to classifying students in order to predicting student-s class grade. These predictions are more useful for identifying weak students and assisting management to take remedial measures at early stages to produce excellent graduate that will graduate at least with second class upper. Firstly we examine single classifiers accuracy on our data set and choose the best one and then ensembles it with a weak classifier to produce simple voting method. We present results show that combining different classifiers outperformed other single classifiers for predicting student performance.Keywords: Classification, Data Mining, Prediction, Combination of Multiple Classifiers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27563 Navigation Patterns Mining Approach based on Expectation Maximization Algorithm
Authors: Norwati Mustapha, Manijeh Jalali, Abolghasem Bozorgniya, Mehrdad Jalali
Abstract:
Web usage mining algorithms have been widely utilized for modeling user web navigation behavior. In this study we advance a model for mining of user-s navigation pattern. The model makes user model based on expectation-maximization (EM) algorithm.An EM algorithm is used in statistics for finding maximum likelihood estimates of parameters in probabilistic models, where the model depends on unobserved latent variables. The experimental results represent that by decreasing the number of clusters, the log likelihood converges toward lower values and probability of the largest cluster will be decreased while the number of the clusters increases in each treatment.Keywords: Web Usage Mining, Expectation maximization, navigation pattern mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15792 A Survey: Clustering Ensembles Techniques
Authors: Reza Ghaemi , Md. Nasir Sulaiman , Hamidah Ibrahim , Norwati Mustapha
Abstract:
The clustering ensembles combine multiple partitions generated by different clustering algorithms into a single clustering solution. Clustering ensembles have emerged as a prominent method for improving robustness, stability and accuracy of unsupervised classification solutions. So far, many contributions have been done to find consensus clustering. One of the major problems in clustering ensembles is the consensus function. In this paper, firstly, we introduce clustering ensembles, representation of multiple partitions, its challenges and present taxonomy of combination algorithms. Secondly, we describe consensus functions in clustering ensembles including Hypergraph partitioning, Voting approach, Mutual information, Co-association based functions and Finite mixture model, and next explain their advantages, disadvantages and computational complexity. Finally, we compare the characteristics of clustering ensembles algorithms such as computational complexity, robustness, simplicity and accuracy on different datasets in previous techniques.Keywords: Clustering Ensembles, Combinational Algorithm, Consensus Function, Unsupervised Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34541 Li4SiO4 Prepared by Sol-gel Method as Potential Host for LISICON Structured Solid Electrolytes
Authors: Syed Bahari Ramadzan Syed Adnan, Nor Sabirin Mohamed, Norwati K.A
Abstract:
In this study, Li4SiO4 powder was successfully synthesized via sol gel method followed by drying at 150oC. Lithium oxide, Li2O and silicon oxide, SiO2 were used as the starting materials with citric acid as the chelating agent. The obtained powder was then sintered at various temperatures. Crystallographic phase analysis, morphology and ionic conductivity were investigated systematically employing X-ray diffraction, Fourier Transform Infrared, Scanning Electron Microscopy and AC impedance spectroscopy. XRD result showed the formation of pure monoclinic Li4SiO4 crystal structure with lattice parameters a = 5.140 Å, b = 6.094 Å, c = 5.293 Å, β = 90o in the sample sintered at 750oC. This observation was confirmed by FTIR analysis. The bulk conductivity of this sample at room temperature was 3.35 × 10-6 S cm-1 and the highest bulk conductivity of 1.16 × 10-4 S cm-1 was obtained at 100°C. The results indicated that, the Li4SiO4 compound has potential to be used as host for LISICON structured solid electrolyte for low temperature application.Keywords: Conductivity, LISICON, Li4SiO4, Solid electrolyte, Structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3320