Search results for: K. Mellouli
5 Qualitative Possibilistic Influence Diagrams
Authors: Wided GuezGuez, Nahla Ben Amor, Khaled Mellouli
Abstract:
Influence diagrams (IDs) are one of the most commonly used graphical decision models for reasoning under uncertainty. The quantification of IDs which consists in defining conditional probabilities for chance nodes and utility functions for value nodes is not always obvious. In fact, decision makers cannot always provide exact numerical values and in some cases, it is more easier for them to specify qualitative preference orders. This work proposes an adaptation of standard IDs to the qualitative framework based on possibility theory.
Keywords: decision making, influence diagrams, qualitative utility, possibility theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15294 A New Similarity Measure Based On Edge Counting
Authors: T. Slimani, B. Ben Yaghlane, K. Mellouli
Abstract:
In the field of concepts, the measure of Wu and Palmer [1] has the advantage of being simple to implement and have good performances compared to the other similarity measures [2]. Nevertheless, the Wu and Palmer measure present the following disadvantage: in some situations, the similarity of two elements of an IS-A ontology contained in the neighborhood exceeds the similarity value of two elements contained in the same hierarchy. This situation is inadequate within the information retrieval framework. To overcome this problem, we propose a new similarity measure based on the Wu and Palmer measure. Our objective is to obtain realistic results for concepts not located in the same way. The obtained results show that compared to the Wu and Palmer approach, our measure presents a profit in terms of relevance and execution time.
Keywords: Hierarchy, IS-A ontology, Semantic Web, Similarity Measure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14863 Selection Initial modes for Belief K-modes Method
Authors: Sarra Ben Hariz, Zied Elouedi, Khaled Mellouli
Abstract:
The belief K-modes method (BKM) approach is a new clustering technique handling uncertainty in the attribute values of objects in both the cluster construction task and the classification one. Like the standard version of this method, the BKM results depend on the chosen initial modes. So, one selection method of initial modes is developed, in this paper, aiming at improving the performances of the BKM approach. Experiments with several sets of real data show that by considered the developed selection initial modes method, the clustering algorithm produces more accurate results.Keywords: Clustering, Uncertainty, Belief function theory, Belief K-modes Method, Initial modes selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18122 Pruning Method of Belief Decision Trees
Authors: Salsabil Trabelsi, Zied Elouedi, Khaled Mellouli
Abstract:
The belief decision tree (BDT) approach is a decision tree in an uncertain environment where the uncertainty is represented through the Transferable Belief Model (TBM), one interpretation of the belief function theory. The uncertainty can appear either in the actual class of training objects or attribute values of objects to classify. In this paper, we develop a post-pruning method of belief decision trees in order to reduce size and improve classification accuracy on unseen cases. The pruning of decision tree has a considerable intention in the areas of machine learning.Keywords: machine learning, uncertainty, belief function theory, belief decision tree, pruning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19091 PmSPARQL: Extended SPARQL for Multi-paradigm Path Extraction
Authors: Thabet Slimani, Boutheina Ben Yaghlane, Khaled Mellouli
Abstract:
In the last few years, the Semantic Web gained scientific acceptance as a means of relationships identification in knowledge base, widely known by semantic association. Query about complex relationships between entities is a strong requirement for many applications in analytical domains. In bioinformatics for example, it is critical to extract exchanges between proteins. Currently, the widely known result of such queries is to provide paths between connected entities from data graph. However, they do not always give good results while facing the user need by the best association or a set of limited best association, because they only consider all existing paths but ignore the path evaluation. In this paper, we present an approach for supporting association discovery queries. Our proposal includes (i) a query language PmSPRQL which provides a multiparadigm query expressions for association extraction and (ii) some quantification measures making easy the process of association ranking. The originality of our proposal is demonstrated by a performance evaluation of our approach on real world datasets.
Keywords: Association extraction, query Language, relationships, knowledge base, multi-paradigm query.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444