Search results for: I. McCulloh
3 Tweets to Touchdowns: Predicting National Football League Achievement from Social Media Optimism
Authors: Rohan Erasala, Ian McCulloh
Abstract:
The National Football League (NFL) Draft is a chance for every NFL team to select their next superstar. As a result, teams heavily invest in scouting, and millions of fans partake in the online discourse surrounding the draft. This paper investigates the potential correlations between positive sentiment in individual draft selection threads from the subreddit r/NFL and if these data can be used to make successful player recommendations. It is hypothesized that there will be limited correlations and nonviable recommendations made from these threads. The hypothesis is tested using sentiment analysis of draft thread comments and analyzing correlation and precision at k of top scores. The results indicate weak correlations between the percentage of positive comments in a draft selection thread and a player’s approximate value, but potentially viable recommendations from looking at players whose draft selection threads have the highest percentage of positive comments.
Keywords: National Football League, NFL, NFL Draft, sentiment analysis, Reddit, social media, NLP, sentiment analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 132 Impact of Similarity Ratings on Human Judgement
Authors: Ian A. McCulloh, Madelaine Zinser, Jesse Patsolic, Michael Ramos
Abstract:
Recommender systems are a common artificial intelligence (AI) application. For any given input, a search system will return a rank-ordered list of similar items. As users review returned items, they must decide when to halt the search and either revise search terms or conclude their requirement is novel with no similar items in the database. We present a statistically designed experiment that investigates the impact of similarity ratings on human judgement to conclude a search item is novel and halt the search. In the study, 450 participants were recruited from Amazon Mechanical Turk to render judgement across 12 decision tasks. We find the inclusion of ratings increases the human perception that items are novel. Percent similarity increases novelty discernment when compared with star-rated similarity or the absence of a rating. Ratings reduce the time to decide and improve decision confidence. This suggests that the inclusion of similarity ratings can aid human decision-makers in knowledge search tasks.
Keywords: Ratings, rankings, crowdsourcing, empirical studies, user studies, similarity measures, human-centered computing, novelty in information retrieval.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4171 Improving Decision Support for Organ Transplant
Authors: I. McCulloh, A. Placona, D. Stewart, D. Gause, K. Kiernan, M. Stuart, C. Zinner, L. Cartwright
Abstract:
We find in our data that an alarming number of viable deceased donor kidneys are discarded every year in the US, while waitlisted candidates are dying every day. We observe as many as 85% of transplanted organs are refused at least once for a patient that scored higher on the match list. There are hundreds of clinical variables involved in making a clinical transplant decision and there is rarely an ideal match. Decision makers exhibit an optimism bias where they may refuse an organ offer assuming a better match is imminent. We propose a semi-parametric Cox proportional hazard model, augmented by an accelerated failure time model based on patient-specific suitable organ supply and demand to estimate a time-to-next-offer. Performance is assessed with Cox-Snell residuals and decision curve analysis, demonstrating improved decision support for up to a 5-year outlook. Providing clinical decision-makers with quantitative evidence of likely patient outcomes (e.g., time to next offer and the mortality associated with waiting) may improve decisions and reduce optimism bias, thus reducing discarded organs and matching more patients on the waitlist.
Keywords: Decision science, KDPI, optimism bias, organ transplant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 181