Search results for: Gürsel A. Süer
5 A Dual Fitness Function Genetic Algorithm: Application on Deterministic Identical Machine Scheduling
Authors: Saleem Z. Ramadan, Gürsel A. Süer
Abstract:
In this paper a genetic algorithm (GA) with dual-fitness function is proposed and applied to solve the deterministic identical machine scheduling problem. The mating fitness function value was used to determine the mating for chromosomes, while the selection fitness function value was used to determine their survivals. The performance of this algorithm was tested on deterministic identical machine scheduling using simulated data. The results obtained from the proposed GA were compared with classical GA and integer programming (IP). Results showed that dual-fitness function GA outperformed the classical single-fitness function GA with statistical significance for large problems and was competitive to IP, particularly when large size problems were used.
Keywords: Machine scheduling, Genetic algorithms, Due dates, Number of tardy jobs, Number of early jobs, Integer programming, Dual Fitness functions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20684 Evaluation the Distribution of Implant Supported Prostheses between 2005-2009 Years
Abstract:
The aim of this retrospective study was to evaluate the parameters of dental implants such as patient gender, number of implant, failed implant before prosthetic restorations and failed implant after implantation and failed implant after prosthetic restorations. 135 male and 99 female patients, total 234 implant patients which have been treated with 450 implant between 2005- 2009 years in GATA Haydarpasa Training Hospital Dental Service. Twelve implants were failed before prosthetic restorations. Four implant were failed after fixed prosthetic restorations. Cumulative survival rate after prostheses were 97.56 % during 6 years period.Keywords: Dental implants, implant supported prostheses, single implants, single crown
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16223 A Validity and Reliability Study of Grasha- Riechmann Student Learning Style Scale
Authors: Yaşar Baykul, Musa Gürsel, Hacı Sulak, Erhan Ertekin, Ersen Yazıcı, Osman Dülger, Yasin Aslan, Kağan Büyükkarcı
Abstract:
The reliability of the tools developed to learn the learning styles is essential to find out students- learning styles trustworthily. For this purpose, the psychometric features of Grasha- Riechman Student Learning Style Inventory developed by Grasha was studied to contribute to this field. The study was carried out on 6th, 7th, and 8th graders of 10 primary education schools in Konya. The inventory was applied twice with an interval of one month, and according to the data of this application, the reliability coefficient numbers of the 6 sub-dimensions pointed in the theory of the inventory was found to be medium. Besides, it was found that the inventory does not have a structure with 6 factors for both Mathematics and English courses as represented in the theory.Keywords: Learning styles, Grasha-Riechmann, reliability, validity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 65572 Investigating Determinants of Medical User Expectations from Hospital Information System
Authors: G. Gürsel, K. H. Gülkesen, N. Zayim, A. Arifoğlu, O. Saka
Abstract:
User satisfaction is one of the most used success indicators in the research of information system (IS). Literature shows user expectations have great influence on user satisfaction. Both expectation and satisfaction of users are important for Hospital Information Systems (HIS). Education, IS experience, age, attitude towards change, business title, sex and working unit of the hospital, are examined as the potential determinant of the medical users’ expectations. Data about medical user expectations are collected by the “Expectation Questionnaire” developed for this study. Expectation data are used for calculating the Expectation Meeting Ratio (EMR) with the evaluation framework also developed for this study. The internal consistencies of the answers to the questionnaire are measured by Cronbach´s Alpha coefficient. The multivariate analysis of medical user’s EMRs of HIS is performed by forward stepwise binary logistic regression analysis. Education and business title is appeared to be the determinants of expectations from HIS.Keywords: Evaluation, Fuzzy Logic, Hospital Information System, User Expectation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19461 Bayes Net Classifiers for Prediction of Renal Graft Status and Survival Period
Authors: Jiakai Li, Gursel Serpen, Steven Selman, Matt Franchetti, Mike Riesen, Cynthia Schneider
Abstract:
This paper presents the development of a Bayesian belief network classifier for prediction of graft status and survival period in renal transplantation using the patient profile information prior to the transplantation. The objective was to explore feasibility of developing a decision making tool for identifying the most suitable recipient among the candidate pool members. The dataset was compiled from the University of Toledo Medical Center Hospital patients as reported to the United Network Organ Sharing, and had 1228 patient records for the period covering 1987 through 2009. The Bayes net classifiers were developed using the Weka machine learning software workbench. Two separate classifiers were induced from the data set, one to predict the status of the graft as either failed or living, and a second classifier to predict the graft survival period. The classifier for graft status prediction performed very well with a prediction accuracy of 97.8% and true positive values of 0.967 and 0.988 for the living and failed classes, respectively. The second classifier to predict the graft survival period yielded a prediction accuracy of 68.2% and a true positive rate of 0.85 for the class representing those instances with kidneys failing during the first year following transplantation. Simulation results indicated that it is feasible to develop a successful Bayesian belief network classifier for prediction of graft status, but not the graft survival period, using the information in UNOS database.Keywords: Bayesian network classifier, renal transplantation, graft survival period, United Network for Organ Sharing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2109