Search results for: El Kaak
2 Large Vibration Amplitudes of Circular Functionally Graded Thin Plates Resting on Winkler Elastic Foundations
Authors: El Kaak, Rachid, El Bikri, Khalid, Benamar, Rhali
Abstract:
This paper describes a study of geometrically nonlinear free vibration of thin circular functionally graded (CFGP) plates resting on Winkler elastic foundations. The material properties of the functionally graded composites examined here are assumed to be graded smoothly and continuously through the direction of the plate thickness according to a power law and are estimated using the rule of mixture. The theoretical model is based on the classical Plate theory and the Von-Kármán geometrical nonlinearity assumptions. An homogenization procedure (HP) is developed to reduce the problem considered here to that of isotropic homogeneous circular plates resting on Winkler foundation. Hamilton-s principle is applied and a multimode approach is derived to calculate the fundamental nonlinear frequency parameters which are found to be in a good agreement with the published results. On the other hand, the influence of the foundation parameters on the nonlinear fundamental frequency has also been analysed.Keywords: Functionally graded materials, nonlinear vibrations, Winkler foundation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18411 Large Vibration Amplitude of Circular Functionally Graded Plates Resting on Pasternak Foundations
Authors: El Kaak Rachid, El Bikri Khalid, Benamar Rhali
Abstract:
In the present study, the problem of geometrically nonlinear free vibrations of functionally graded circular plates (FGCP) resting on Pasternak elastic foundation with immovable ends was studied. The material properties of the functionally graded composites examined were assumed to be graded in the thickness direction and estimated through the rule of mixture. The theoretical model is based on the classical Plate theory and the Von Kármán geometrical nonlinearity assumptions. Hamilton’s principle is applied and a multimode approach is derived to calculate the fundamental nonlinear frequency parameters, which are found to be in a good agreement with the published results dealing with the problem of functionally graded plates. On the other hand, the influence of the foundation parameters on the nonlinear frequency to the linear frequency ratio of the FGCP has been studied. The effect of the linear and shearing foundations is to decrease the frequency ratio, where it increases with the effect of the nonlinear foundation stiffness.
Keywords: Non-linear vibrations, Circular plates, Pasternak foundation, functionally graded materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2185