Search results for: Dr. Shirley Gato-Trinidad
3 Climate Change Finger Prints in Mountainous Upper Euphrates Basin
Authors: Abdullah Gokhan Yilmaz, Monzur Alam Imteaz, Shirley Gato-Trinidad, Iqbal Hossain
Abstract:
Climate change leading to global warming affects the earth through many different ways such as weather (temperature, precipitation, humidity and the other parameters of weather), snow coverage and ice melting, sea level rise, hydrological cycles, quality of water, agriculture, forests, ecosystems and health. One of the most affected areas by climate change is hydrology and water resources. Regions where majority of runoff consists of snow melt are more sensitive to climate change. The first step of climate change studies is to establish trends of significant climate variables including precipitation, temperature and flow data to detect any potential climate change impacts already happened. Two popular non-parametric trend analysis methods, Mann-Kendal and Spearman-s Rho were applied to Upper Euphrates Basin (Turkey) to detect trends of precipitation, temperatures (maximum, minimum and average) and streamflow.Keywords: Climate change, precipitation, snow hydrology, trend analysis and Upper Euphrates Basin
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 555962 Evaluation of the Performance of ACTIFLO® Clarifier in the Treatment of Mining Wastewaters: Case Study of Costerfield Mining Operations, Victoria, Australia
Authors: Seyed Mohsen Samaei, Shirley Gato-Trinidad
Abstract:
A pre-treatment stage prior to reverse osmosis (RO) is very important to ensure the long-term performance of the RO membranes in any wastewater treatment using RO. This study aims to evaluate the application of the Actiflo® clarifier as part of a pre-treatment unit in mining operations. It involves performing analytical testing on RO feed water before and after installation of Actiflo® unit. Water samples prior to RO plant stage were obtained on different dates from Costerfield mining operations in Victoria, Australia. Tests were conducted in an independent laboratory to determine the concentration of various compounds in RO feed water before and after installation of Actiflo® unit during the entire evaluated period from December 2015 to June 2018. Water quality analysis shows that the quality of RO feed water has remarkably improved since installation of Actiflo® clarifier. Suspended solids (SS) and turbidity removal efficiencies has been improved by 91 and 85 percent respectively in pre-treatment system since the installation of Actiflo®. The Actiflo® clarifier proved to be a valuable part of pre-treatment system prior to RO. It has the potential to conveniently condition the mining wastewater prior to RO unit, and reduce the risk of RO physical failure and irreversible fouling. Consequently, reliable and durable operation of RO unit with minimum requirement for RO membrane replacement is expected with Actiflo® in use.
Keywords: Actiflo® clarifier, membrane, mining wastewater, reverse osmosis, wastewater treatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12011 Development of a Catchment Water Quality Model for Continuous Simulations of Pollutants Build-up and Wash-off
Authors: Iqbal Hossain, Dr. Monzur Imteaz, Dr. Shirley Gato-Trinidad, Prof. Abdallah Shanableh
Abstract:
Estimation of runoff water quality parameters is required to determine appropriate water quality management options. Various models are used to estimate runoff water quality parameters. However, most models provide event-based estimates of water quality parameters for specific sites. The work presented in this paper describes the development of a model that continuously simulates the accumulation and wash-off of water quality pollutants in a catchment. The model allows estimation of pollutants build-up during dry periods and pollutants wash-off during storm events. The model was developed by integrating two individual models; rainfall-runoff model, and catchment water quality model. The rainfall-runoff model is based on the time-area runoff estimation method. The model allows users to estimate the time of concentration using a range of established methods. The model also allows estimation of the continuing runoff losses using any of the available estimation methods (i.e., constant, linearly varying or exponentially varying). Pollutants build-up in a catchment was represented by one of three pre-defined functions; power, exponential, or saturation. Similarly, pollutants wash-off was represented by one of three different functions; power, rating-curve, or exponential. The developed runoff water quality model was set-up to simulate the build-up and wash-off of total suspended solids (TSS), total phosphorus (TP) and total nitrogen (TN). The application of the model was demonstrated using available runoff and TSS field data from road and roof surfaces in the Gold Coast, Australia. The model provided excellent representation of the field data demonstrating the simplicity yet effectiveness of the proposed model.
Keywords: Catchment, continuous pollutants build-up, pollutants wash-off, runoff, runoff water quality model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3136