Search results for: B. Kaewkamnerdpong
2 Canonical PSO based Nanorobot Control for Blood Vessel Repair
Authors: Pinfa Boonrong, Boonserm Kaewkamnerdpong
Abstract:
As nanotechnology advances, the use of nanotechnology for medical purposes in the field of nanomedicine seems more promising; the rise of nanorobots for medical diagnostics and treatments could be arriving in the near future. This study proposes a swarm intelligence based control mechanism for swarm nanorobots that operate as artificial platelets to search for wounds. The canonical particle swarm optimization algorithm is employed in this study. A simulation in the circulatory system is constructed and used for demonstrating the movement of nanorobots with essential characteristics to examine the performance of proposed control mechanism. The effects of three nanorobot capabilities including their perception range, maximum velocity and respond time are investigated. The results show that canonical particle swarm optimization can be used to control the early version nanorobots with simple behaviors and actions.
Keywords: Artificial platelets, canonical particle swarm optimization, nanomedicine, nanorobot, swarm intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26871 Mirror Neuron System Study on Elderly Using Dynamic Causal Modeling fMRI Analysis
Authors: R. Keerativittatayut, B. Kaewkamnerdpong, J. Laothamatas, W. Sungkarat
Abstract:
Dynamic Causal Modeling (DCM) functional Magnetic Resonance Imaging (fMRI) is a promising technique to study the connectivity among brain regions and effects of stimuli through modeling neuronal interactions from time-series neuroimaging. The aim of this study is to study characteristics of a mirror neuron system (MNS) in elderly group (age: 60-70 years old). Twenty volunteers were MRI scanned with visual stimuli to study a functional brain network. DCM was employed to determine the mechanism of mirror neuron effects. The results revealed major activated areas including precentral gyrus, inferior parietal lobule, inferior occipital gyrus, and supplementary motor area. When visual stimuli were presented, the feed-forward connectivity from visual area to conjunction area was increased and forwarded to motor area. Moreover, the connectivity from the conjunction areas to premotor area was also increased. Such findings can be useful for future diagnostic process for elderly with diseases such as Parkinson-s and Alzheimer-s.Keywords: Mirror Neuron System (MNS), Dynamic Causal Modeling (DCM), Functional Magnetic Resonance Imaging (fMRI)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727