Search results for: Ali Etemad
3 Spatial Clustering Model of Vessel Trajectory to Extract Sailing Routes Based on AIS Data
Authors: Lubna Eljabu, Mohammad Etemad, Stan Matwin
Abstract:
The automatic extraction of shipping routes is advantageous for intelligent traffic management systems to identify events and support decision-making in maritime surveillance. At present, there is a high demand for the extraction of maritime traffic networks that resemble the real traffic of vessels accurately, which is valuable for further analytical processing tasks for vessels trajectories (e.g., naval routing and voyage planning, anomaly detection, destination prediction, time of arrival estimation). With the help of big data and processing huge amounts of vessels’ trajectory data, it is possible to learn these shipping routes from the navigation history of past behaviour of other, similar ships that were travelling in a given area. In this paper, we propose a spatial clustering model of vessels’ trajectories (SPTCLUST) to extract spatial representations of sailing routes from historical Automatic Identification System (AIS) data. The whole model consists of three main parts: data preprocessing, path finding, and route extraction, which consists of clustering and representative trajectory extraction. The proposed clustering method provides techniques to overcome the problems of: (i) optimal input parameters selection; (ii) the high complexity of processing a huge volume of multidimensional data; (iii) and the spatial representation of complete representative trajectory detection in the context of trajectory clustering algorithms. The experimental evaluation showed the effectiveness of the proposed model by using a real-world AIS dataset from the Port of Halifax. The results contribute to further understanding of shipping route patterns. This could aid surveillance authorities in stable and sustainable vessel traffic management.
Keywords: Vessel trajectory clustering, trajectory mining, Spatial Clustering, marine intelligent navigation, maritime traffic network extraction, sdailing routes extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4532 Destination Port Detection for Vessels: An Analytic Tool for Optimizing Port Authorities Resources
Authors: Lubna Eljabu, Mohammad Etemad, Stan Matwin
Abstract:
Port authorities have many challenges in congested ports to allocate their resources to provide a safe and secure loading/unloading procedure for cargo vessels. Selecting a destination port is the decision of a vessel master based on many factors such as weather, wavelength and changes of priorities. Having access to a tool which leverages Automatic Identification System (AIS) messages to monitor vessel’s movements and accurately predict their next destination port promotes an effective resource allocation process for port authorities. In this research, we propose a method, namely, Reference Route of Trajectory (RRoT) to assist port authorities in predicting inflow and outflow traffic in their local environment by monitoring AIS messages. Our RRo method creates a reference route based on historical AIS messages. It utilizes some of the best trajectory similarity measures to identify the destination of a vessel using their recent movement. We evaluated five different similarity measures such as Discrete Frechet Distance (DFD), Dynamic Time ´ Warping (DTW), Partial Curve Mapping (PCM), Area between two curves (Area) and Curve length (CL). Our experiments show that our method identifies the destination port with an accuracy of 98.97% and an f-measure of 99.08% using Dynamic Time Warping (DTW) similarity measure.
Keywords: Spatial temporal data mining, trajectory mining, trajectory similarity, resource optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6951 Analysis of Metallothionein Gene MT1A (rs11076161) and MT2A (rs10636) Polymorphisms as a Molecular Marker in Type 2 Diabetes Mellitus among Malay Population
Authors: Norsakinah Mohammad Osman, Ali Etemad, Patimah Ismail
Abstract:
Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder that characterized by the presence of high glucose in blood that cause from insulin resistance and insufficiency due to deterioration β-cell Langerhans functions. T2DM is commonly caused by the combination of inherited genetic variations as well as our own lifestyle. Metallothionein (MT) is a known cysteine-rich protein responsible in helping zinc homeostasis which is important in insulin signaling and secretion as well as protection our body from reactive oxygen species (ROS). MT scavenged ROS and free radicals in our body happen to be one of the reasons of T2DM and its complications. The objective of this study was to investigate the association of MT1A and MT2A polymorphisms between T2DM and control subjects among Malay populations. This study involved 150 T2DM and 120 Healthy individuals of Malay ethnic with mixed genders. The genomic DNA was extracted from buccal cells and amplified for MT1A and MT2A loci; the 347bp and 238bp banding patterns were respectively produced by mean of the Polymerase Chain Reaction (PCR). The PCR products were digested with Mlucl and Tsp451 restriction enzymes respectively and producing fragments lengths of (158/189/347bp) and (103/135/238bp) respectively. The ANOVA test was conducted and it shown that there was a significant difference between diabetic and control subjects for age, BMI, WHR, SBP, FPG, HBA1C, LDL, TG, TC and family history with (P<0.05). While the HDL, CVD risk ratio and DBP does not show any significant difference with (P>0.05). The genotype frequency for AA, AG and GG of MT1A polymorphisms was 72.7%, 22.7% and 4.7% in cases and 15%, 55% and 30% in control respectively. As for MT2A, genotype frequency of GG, GC and CC was 42.7%, 27.3% and 30% in case and 5%, 40% and 55% for control respectively. Both polymorphisms show significant difference between two investigated groups with (P=0.000). The Post hoc test was conducted and shows a significant difference between the genotypes within each polymorphism (P=0. 000). The MT1A and MT2A polymorphisms were believed to be the reliable molecular markers to distinguish the T2DM subjects from healthy individuals in Malay populations.
Keywords: Type 2 Diabetes Mellitus (T2DM), Metallothionein (MT), MT1A (rs11076161), MT2A (rs10636), Malay, Genetic Polymorphism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2315